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Abstract: Optimizing subsea oil production systems utilizing recirculated gas lift and limited
produced gas treatment capacity presents challenges. Real-time optimization (RTO) is a used
method for optimizing such systems, but it is restricted by the lack of reliable sensors and
the high cost of developing and updating models. As a result, the RTO is typically executed
infrequently, and the optimal set points are not updated in real time, leading to suboptimal
plant performance over extended periods. This study implements self-optimizing control (SOC)
techniques as an alternative solution that can handle frequent disturbances and drive the plant
towards near-optimal performance without requiring frequent model updates or solver use. It
compares different SOC structures in recirculated gas-lifted oil production optimization, their
advantages, and disadvantages. The study concludes that SOC structures are an effective and
suitable alternative to RTO, particularly in large and complex systems with limited measurement
capabilities, given sufficient process system knowledge is considered for SOC design. This
conclusion reinforces previous research, but with a more realistic case study.
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1. INTRODUCTION

The subsea oil and gas industry has placed greater empha-
sis on efficient production processes while meeting safety,
environmental, and cost-effectiveness requirements. This
has led to the development of innovative artificial lift
techniques such as gas-lifted subsea oil production opti-
mization to increase the flow rate of oil from a reservoir.
This technique involves injecting compressed gas into the
wellbore to reduce the hydrostatic pressure of the fluid
column, allowing the reservoir to flow more easily. The
compressed gas is typically produced gas or gas injected
from a separate source. Taking gas from a separate source
may be less commercially attractive for offshore facilities.

Overall, a gas lift system is a forgiving method of enhanced
production, in other words, even a poor gas lift design
may increase production (Elldakli, 2017). However, many
optimization studies have been limited by less realistic
assumptions, such as a fixed separator pressure and gas
lift supply from an separate source (Aamo et al., 2005; Kr-
ishnamoorthy et al., 2016), which is less likely designed for
offshore facilities. Here, we consider a case of recirculated
gas lift oil production system, which utilizes produced gas
as its total gas lift supply and injects it into wells using
a gas lift compressor train. This is the most practically
common structure of gas lift oil production system. To im-
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prove accuracy, a dynamic separator model that considers
varying pressure conditions has also been developed.

When it comes to optimizing a recirculated gas lift subsea
oil production system with limited produced gas treatment
capacity, one might think that numerical-based real-time
optimization (RTO) completed with a dynamic estimator
is the obvious solution. This method involves optimizing
the process economics using rigorous steady-state models,
while disturbances are estimated by the dynamic estimator
(Krishnamoorthy et al., 2018; Matias and Le Roux, 2018).
However, there are several challenges that this method
may not be able to overcome. The challenges are as follows:

(1) Costly suitable model development for numerical
solver leading to infrequent optimal set point updates:
Experienced process engineers may create suitable
models, but it can be time-consuming due to numer-
ous parameter updates. Frequent optimization may
not be easily performed, and regular set point updates
may only occur weekly or even monthly. However,
disturbances can occur more frequently, requiring fast
time scale self-optimizing control (SOC) structures.

(2) Limited available measurement to estimate essential
parameters such as disturbances and gradients: Ac-
curate estimations of essential parameters such as
disturbance and gradient are necessary for optimiza-
tion purposes, but they may be hindered by the lack
of sufficient or reliable sensors in the measurement.
Thus, gradient-based SOC techniques or the use of
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Fig. 1. The recirculated gas lift oil production system.
Black valves represent pressure drop. The opening of
the white valves can be manipulated in practice.

dynamic estimator may not be preferable, or their
application may be limited.

(3) Numerical solvers may have issues with numerical ro-
bustness: This kind of issue may occur due to several
reasons, including not having a solver-friendly model
(even though it is a good model for simulation). Fur-
thermore, some solvers may fail to find the solution
due to this issue.

(4) Costly dynamic model development for dynamic es-
timator in large and complex systems with multi-
ple units and different timescales can be challenging
and time-consuming: This dynamic model is required
for dynamic estimator, and without a good dynamic
model, parameter estimation may not be accurate or
may provide non-sense estimation.

Hence, alternative solutions, such as SOC, are considered
to address these challenges. This work explores several
potential self-optimizing control structures for recirculated
gas-lifted subsea oil production systems.

2. PROBLEM DESCRIPTION

This section describes a case study designed to explore
the possibility of identifying the most effective and suit-
able self-optimizing control structure that can maximize
profits, even under conditions of reservoir uncertainty and
limited produced gas treatment capacity.

2.1 Recirculated Gas Lifted Subsea Oil Production System

The recirculated gas lift oil production system is depicted
in Fig. 1. The system consists of six (6) gas lifted-oil
producing wells, riser, separator, gas lift compressor train
(series of three centrifugal compressor), and gas lift supply
line. The model is based on extensive research, modifica-
tion and integration from various sources, including Grav-
dahl and Egeland O. (1998); Aamo et al. (2005); Cortinovis
et al. (2015); Backi et al. (2018); Milosavljevic et al. (2020),
to name a few. However, to maintain the focus of this work,
the description of the complete model is not included in
this paper. By incorporating more realistic assumptions,
we aim to provide a more realistic representation of the gas
lift oil production process, which has not been previously
discussed to the best of the author’s knowledge.

2.2 Steady-state Optimization Problem Formulation

The problem at hand involves determining the optimal gas
lift valve (GLV) positions and surge control valve (SCV)
positions for each gas lift compressor to maximize revenue
from produced oil, minimize energy consumption of the
compressor train, and satisfy operational constraints. The
production choke valves (PCV) are assumed to be fixed
and fully open (to hold convex problem assumption), re-
gardless of the disturbance being considered. Additionally,
fixed angular velocity is assumed for each gas lift compres-
sor for practical reasons. The steady-state optimization
problem formulation can be expressed as follows:

min
u

J (u, d) = −poilwos + penΦgl (1a)

s.t. gzgl,i (u, d) : zgl,i − 1 ≤ 0 i = 1, . . . , 6, (1b)

gzs,i (u, d) : −zs,i + 0 ≤ 0 i = 1, . . . , 3, (1c)

gsi (u, d) : si − s̄i ≤ 0 i = 1, . . . , 3, (1d)

g (u, d) : wgs − w̄gs ≤ 0 (1e)

Here, the manipulated variables (MVs) are as follows:

u = [z1 . . . znu ]
⊤
= [zgl,1 . . . zgl,6 zs,1 . . . zs,3]

⊤

where zgl,i is the position of GLV of well i, zs,i is the
position of SCV of gas lift compressor i, and nu = 9
is the number of MVs. The disturbance d comes from
reservoir uncertainty. The produced oil rate, produced gas
rate, and maximum produced gas treatment capacity are
represented by wos, wgs, and w̄gs, respectively. The price
of oil and energy are represented by poil and pen, respec-
tively.The energy consumed by the gas lift compressor
train is represented by, Φgl =

∑3
i=1 Φgl,i. The surge of gas

lift compressor i is represented as si, and the associated
limit is represented as s̄i. The input constraints for the
GLV and SCV are shown in constraints (1b) and (1c),
respectively. The surge constraint of gas lift compressor i is
shown in constraint (1d), and the produced gas constraint
is shown in constraint (1e).

In addition to constrained variables, we assume that the
available measurements are:

y = [pbh,2 pwh,2 pd,3 ps]
⊤

Here, pd,3 represents the discharge pressure of the gas lift
compressor train, and ps represents the separator pressure.
Both of them are the artificial boundaries in the previous
studies. Meanwhile pbh,2 and pwh,2 are bottom hole and
wellhead pressure of well 2, respectively.

2.3 The Nominal Optimal Operating Point

When the numerical solver finds the optimal solution by
solving problem (1), a nominal optimal steady-state op-
erating point can be obtained. This process most likely
occur at a slow and infrequent time scale. The obtained
decision/MVs associated with this nominal optimal oper-
ating point are as follows.

u⋆ = [0.88 0.49 1.00 0.64 0.60 0.81 0.00 0.00 0.00]
⊤

(2)

Further, the active constraints associated with this nomi-
nal optimal operating point are g⋆zgl,3 , g

⋆
zs,1 , g

⋆
zs,2 , g

⋆
zs,3 , g

⋆
s,1,

g⋆s,2, g
⋆
s,3, and g⋆. It means that with a given disturbance

d, optimal operation happen if constraints (1c)-(1e) are
active, and the position of GLV 3 is fully open. A GLV
may have a gain inversion. However, we assume that the
chosen operation point is far from this occurrence.



2.4 Reservoir Uncertainty (Disturbances)

The uncertainty in the reservoir, denoted by d, is related to
the gas-oil-ratio of a particular well that exhibits unstable
conditions. To be specific, we assume that the disturbance
is originating from well 2, and is represented by d = GOR2.

Multiphase flow meter (MPFM) has recently been rec-
ommended for frequent estimation of the GOR or other
parameters of a well, replacing the use of test separator.
Despite its promising performance, only 3% of the 70,000
active oil producing wells worldwide have utilized MPFM
(Mehdizadeh, 2007). To address the majority of the case,
we assume that we are unable to frequently and accurately
estimate the GOR of the well and rely on the historical
data of well testing using test separator to obtain the GOR
fluctuation range as the information we have. Therefore,
in this case, we assume that based on well testing, this
disturbance to fluctuate by up to±2.5%. If the disturbance
increases by 2.5%, the optimal state is achieved when
constraint (1e) is active. On the other hand, the optimal
state is attained when constraint (1e) is inactive.

3. SELF-OPTIMIZING CONTROL STRUCTURE

This section provides a brief introduction to self-optimizing
control, and its implementation on the problem described
in Section 2. For a more detailed review of SOC, please
refer to the survey paper by Jäschke et al. (2017).

3.1 General Principle

The goal of self-optimizing control (SOC) is to achieve
near-optimal operation by controlling a combination of
selected variables c ∈ Rnu at their constant set points
(Skogestad, 2000). The objective is to maintain these vari-
ables at their set-points despite the presence of varying
disturbances, resulting in an acceptably low loss during
operation. This is accomplished by utilizing feedback from
the appropriate combination of measurements to counter-
act the effect of unmeasured disturbances d. It is important
to note that this technique assumes the same active con-
straints remain active for all values of the disturbances,
and these constraints are controlled.

This goal of this technique can be achieved through
a heuristic method, null space method introduced by
Alstad and Skogestad (2007), or a combination of them.
In the following sections, several self-optimizing control
structures applicable to a recirculated gas-lifted subsea
oil production well are described. Constraints related to
limited produced gas treatment capacity are considered.

3.2 Active Constraint Control

When the optimal set points remain unchanged, the posi-
tion of the GLVs and the SCVs are typically maintained,
which implies that the MVs remain constant at the values
specified in Eq. 2. This configuration is referred to as
Structure 1.

In this study, both the produced gas and surge line con-
straints are active at the nominal optimal operating point.
To achieve effective control, the MVs (valve positions)
should be paired with the constrained variables closely.
This implies that the relationship between the constrained
variables and MVs should have a high gain for better con-
trol, but the MVs’ initial nominal optimal values should

not readily lead to saturation in controlling the constraint.
Therefore, manipulating GLV 3 to control the produced
gas constraint (1e) is not recommended. Instead, we sug-
gest using zgl,5 (GLV 5) to control constraint (1e) as it
has enough maneuvering room to handle the disturbance
variation caused by GOR2 increasing or decreasing by up
to 2.5%. GLV 5 also has the highest gain compared to
the remaining GLVs. This ensure effective control of ac-
tive constraints which is essential, according to Skogestad
(2000). This relationship can be expressed as

zgl,5 → g(u, d)

With respect to the gas-lift compressors, the most efficient
operating point is achieved when the surge constraints (1d)
are active. Although the SCVs are already saturated (fully
closed) at the nominal optimal, in some cases, opening the
SCV is necessary to ensure that the surge line constraint
remains active. In other cases, when the SCV is fully closed
(and already saturated), the discharge pressure of the gas
lift compressor train is automatically adjusted, and the
discharge pressure is considered floating and will never be
saturated. As a result, we propose pairing the SCV with
the associated surge line constraint (1d), which can be
expressed mathematically as

zs,i → gzs,i(u, d)

for i = 1, 2, 3. By incorporating these active constraint
controllers, we refer to this configuration as Structure 2.

3.3 Heuristic Method

Active constraint set changing: The gas production of a
reservoir can fluctuate due to various factors, such as the
gas-oil-ratio (GOR). When well 2 produces more gas from
the reservoir, as indicated by the increase in parameter
GOR2, the active constraint controller adjusts the position
of GLV 5 for maximum produced gas handling capacity.
This ensures no steady-state violation on the produced gas
constraint (1e). However, if the amount of gas produced by
well 2 decreases, the calculated position of GLV 5 from the
active constraint controller may become unsuitable (active
constraint set changes), rendering the assumption of self-
optimizing control invalid. In such cases, it is necessary to
identify an alternative self-optimizing controlled variable
that is good and measurable for GLV 5. The position of
GLV 5 itself is an obvious option. According to Krish-
namoorthy and Skogestad (2020), we can choose the type
of the selector based on the relationship between the MV
and the constrained variables, and the suitable selector for
this case is MIN selector. Additionally, we assume that the
active surge constraint (1d) is the best choice for all values
of expected disturbance.

When selecting a self-optimizing controlled variable, it is
also important to consider its proximity to the source of
the disturbance, which, in this case, is GOR2. One option
for stabilization is to use a readily available and measured
variable, such as the bottom hole pressure of well 2, which
is commonly used to stabilize the reservoir. Thus, the
position of GLV 2 can be replaced with the bottom hole
pressure of well 2 (zgl,2 → pbh,2). However, the bottom
hole pressure may not always be a practical variable to
measure, as damage to the associated sensor may require
costly replacements due to its location. As an alternative,
we can use wellhead pressure (zgl,2 → pwh,2), which is
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Fig. 2. Structure 1 removes all controllers and selector,
while Structure 2 removes the pressure controller and
selector, leaving only the online produced gas flow
controller and surge controllers. Structure 3 considers
a MIN selector that allows the active constraint to
change with zgl,5 as the self-optimizing controlled
variable when GOR2 decreases, and pbh,2 as an-
other self-optimizing controlled variable for stabiliza-
tion purposes. Structure 4 considers wellhead pres-
sure of well 2 (pwh,2) instead of pbh,2, and Struc-
ture 5 considers the differential pressure of well 2
(∆pbw,2 = pbh,2 − pwh,2) instead of pbh,2. Black valves
represent pressure drops.

easier to maintain and replace, although it may not be the
closest variable to the source of the disturbance.

Another possible self-optimizing controlled variable is the
differential pressure between wellhead and bottom hole
pressure, which can be used to maintain the flow rate from
the well by keeping the differential pressure constant. This
can be performed by embedding an observer that considers
all necessary pressure profile in the well to establish
analytical redundancy if the sensor in the bottomhole
underperforms.

Based on these heuristic steps, we construct three poten-
tially promising control structures, named Structure 3, 4,
and 5, as illustrated in Fig. 2. However, this heuristic
method does not explore other measurement sets and
remaining MVs, which may be impractical and time-
consuming. This is the limitation of heuristic method.

3.4 Null Space Method

Combining different measurements can result in a better
performing control structure. To incorporate unexplored
measurements and MVs in a systematic way, we use the
null space method. Let us assume that we have nu in-
dependent unconstrained free variables u, nd independent
disturbances d, and ny independent measurements y. Our
goal is to obtain nc = nu independent controlled variables
c that are linear combinations of the measurements, which
can be expressed as: c = Hy.

To achieve this, we use the optimal sensitivity matrix

F =
∂y⋆

∂d
which is evaluated with constant active constraints. If
ny ≥ nu + nd, we can select the matrix H in the left null

space of F, such that HF = 0. This choice of H ensures
that fixing c at its nominal optimal value is first-order
optimal for disturbances d, resulting in zero loss as long
as the sensitivity matrix F remains unchanged (Alstad
and Skogestad, 2007). However, to prevent unnecessary
complexity and cost, the number of measurements used
in the structure should be limited. Ideally, a cost-benefit
analysis should be performed to determine the optimal
instrumentation for the plant.

Furthermore, null space method still assumes that the
same active constraints remain active for all values of the
disturbances. To relax this assumption into the design, we
use a selector for active constraint switching. Similar to
the heuristic method, we choose zgl,5 as the self-optimizing
controlled variable when GOR2 decreases, using the MIN
selector. This strategy eliminates the need to explicitly es-
timate GOR2. Instead, any variation in GOR2 is indirectly
detected through changes in the total produced gas wgs,
which serves as the CV. The selector is determined by the
relationship between MV and CV, as described by Krish-
namoorthy and Skogestad (2020). Moreover, when the well
is equipped with an adequate measurement set, it becomes
feasible to estimate GOR2 using a straightforward model
or data processing techniques.

Ideally, we can implement null space method for uncon-
strained case, and construct another control structure for
this case. This control structure can also be switched
using selector (Jäschke et al., 2017). However, the optimal
operating point of the other case is normally unknown
in practice. Therefore, an insight from previous heuristic
method is necessary.

Utilizing single MV (Structure 6): In addition to flexible
active constraint controls (that is combined with MIN
selector), this structure (denoted as Structure 6 ) consider

the following measurement set: y = [pbh,2 pwh,2]
⊤
.

It is possible to replace one of the measurements with the
position of GLV 2. However, doing so would result in a loss
of control over either the bottom hole or wellhead pressure,
which is undesirable as maintaining proper stabilizing
control is crucial. Here, zgl,2 is considered as an MV for
stabilizing control.

To obtain the sensitivity matrix F, numerical methods
were employed. The null space method was then utilized
to determine the optimal matrix H, which corresponds to
the following controlled variables:

c = 0.521pbh,2 + 0.854pwh,2 (3)

This structure has the same measurement elements as
Structure 3-5. Hence, comparing them is justified.

Based on branch and bound algorithm (Kariwala and Cao,
2009) and the requirement to keep at least either pbh,2 or
pwh,2 as one of the measurements, we found that Structure
6 is still the best option.

Utilizing two MVs (Structure 7): As we consider two
MVs (i.e., zgl,2 and zgl,4) and one disturbance (nd = 1),
three measurement is required (ny = 3). Further, as we
have four measurement candidate and we want to include
at least either pbh,2 or pwh,2 in the measurement set,
four combinations of measurements need to be evaluated.



Unfortunately, the branch and bound algorithm (Kariwala
and Cao, 2009) is not applicable because zgl,4 may be
saturated when GOR2 increases up to 2.5%. Therefore,
the only possible evaluation technique to determine the
best combination is the average steady-state lost. Based
on this technique, we found the best combination of mea-

surement is: y = [pbh,2 pwh,2 pd,3]
⊤
, and the corresponded

controlled variables are:

c =

[
c(1)
c(2)

]
=

[
0.520pbh,2 + 0.854pwh,2 − 0.012pd,3
0.041pbh,2 − 0.012pwh,2 + 0.999pd,3

]
(4)

Based on Relative-Gain-Array (RGA) analysis (Skogestad
and Postlethwaite, 2005), the recommended pairing is:
zgl,2 → c(1), and zgl,4 → c(2).

4. RESULTS AND DISCUSSIONS

4.1 Estimated Loss Evaluation

One of the motivation of utilizing SOC is numerical ro-
bustness issues. In this simulation, we evaluate problem
(1) with eleven (11) different value of GOR2 ranging from
97.5% to 102.5% of GOR2 nominal with 0.5% interval.
The plant simulator is developed using the CasADi ver.
3.5.1 toolbox (Andersson et al. (2019)) in MATLAB R2019b
and is simulated using the IDAS integrator. The simula-
tions are performed on a 2.11 GHz processor with 16 GB
memory. The solver used is IPOPT with MUMPS as linear
solver. Note that there are many linear solvers available
and each has its own numerical limitation (Tasseff et al.,
2019). Table 1 shows solver’s performance, indicating that
the solver is not always possible to obtain optimal solutions
due to various numerical issues. For those cases, we esti-
mate the optimal solutions based on the linear regression
from the closest available two solution points. Thus, we
consider an optimal profit set containing the solver-based
optimal profit and the estimated optimal profit.

Steady-state loss is the difference between the profit ob-
tained by the discussed/proposed control structure and
the optimal profit from the optimal profit set. Table 2
summarizes steady-state loss obtained by different control
structures when GOR2 increases or decreases up to 2.5%.

Table 1. Solver’s success and fail performance

−2.5% −2.0% −1.5% −1.0% −0.5%

✓ ✗ ✓ ✓ ✓

0.5% 1.0% 1.5% 2.0% 2.5%

✓ ✓ ✓ ✗ ✗

Table 2. Steady-state monthly loss

Control −2.5% GOR2 +2.5% GOR2

Structure (est.)

1 NOK 59.544 Inf
2 NOK 6.116.745 NOK ∼ 3.444.831
3 NOK 604.897 NOK ∼ 2.810.376
4 NOK 686.095 NOK ∼ 3.595.481
5 NOK 633.027 NOK ∼ 3.065.285
6 NOK 124.246 NOK ∼ 1.523.036
7 NOK 248.667 NOK ∼ 1.817.930

4.2 Active Constraint Control

Structure 1 lacks a control strategy to handle reservoir
uncertainty. This option is not ideal because an increase
in GOR2 leads to an increase in the amount of total

Fig. 3. Comparison of steady-state monthly loss of dif-
ferent structures. Red boxes indicates estimated loss
evaluation.

produced gas. In steady-state, this violates the maximum
gas handling capacity constraint. By installing constraint
controllers, described in Structure 2, these violations are
successfully eliminated. However, it is worth noting that
the expected steady-state loss when GOR2 decreases is
much higher compared to Structure 1 (see Table 2).

4.3 Heuristic Method

WhenGOR2 decreases, in Structure 3-5, the self-optimizing
controlled variable for GLV 5 is the position of the GLV 5,
while the SCVs handle the surge constraints. As a result,
Structure 3-5 has successfully decreased the expected aver-
age steady-state loss compared to Structure 2 (see Table.
2). In general, Structure 3 outperforms other heuristic-
based structures.

Depending on the reservoir dynamics and the possible
controlling tuning, each control structure may reach the
steady-state with different time steps/time constant. In
addition to that, the selection of control structure should
also consider the specific situation and constraints of the
field. If immediate stabilization action is required and
there is a reliable bottomhole sensor, Structure 3 would
be a good option. On the other hand, if maintaining
the wellhead pressure is more feasible than installing and
maintaining a bottomhole sensor, Structure 4 may be
preferable. Structure 5 requires both a bottomhole and
wellhead pressure sensor and is only viable if both sensors
are functional.

The heuristic method is an intuitively useful tool for en-
gineers. For instance, providing alternative self-optimizing
controlled variable for GLV 5 when GOR2 decreases is
determined heuristically. This is significant considering
null space method assumes the same active constraint for
any disturbance values. While this method may provide
valuable insights, it can also require significant effort and
resources to achieve meaningful results. Therefore, it is
essential to carefully consider the benefits and drawbacks
of using the heuristic method in each specific situation,
taking into account factors such as the scope of the prob-
lem, available resources, and the desired outcome.

4.4 Null Space Method

As expected, with the same element of measurement set,
Structure 6 outperforms control Structure 3-5, developed
heuristically (see Fig. 3). When we consider more can-
didate of measurement, and utilize branch and bound
algorithm to find the optimal measurement set, we found
that Structure 6 still outperforms other possible control
structures, containing artificial boundaries, i.e, separator
pressure and discharge compressor pressure. This is an es-
sential result to demonstrate the importance of eliminating
artificial boundaries.
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Fig. 4. Comparison of transient performance of Structure
6 and Structure 7 (consider pd,3 in the measurement
combination)

Increasing the number of the use of measurement set
(ny = 3 in Structure 7 ) may not always leading to
lower steady-state loss than Structure 6, for instance,
if the additional used MV is saturated (see Fig. 3). In
addition, null space method may maximize the use of
available MVs by providing more measurement but it does
not take into account the effect of the location of the
suggested measurement element. For instance, Structure
7 has discharge pressure in the measurement set which is
located far away from its MVs (GLVs). As a consequence,
it consumes more time in reaching the steady-state, as
shown in Fig. 4. This comparison obtained with controller
tuned using Simple IMC rule (Skogestad, 2003).

5. CONCLUSION

This paper investigated the possibilities of applying self-
optimizing control to a recirculated gas lifted subsea
oil well production optimization. This study reconfirms
the previous work that self-optimizing control can be an
alternative for optimization strategy without solver.

It was found that the most recommended control structure
is Structure 6. This structure uses null space method in de-
termining the optimal combination of controlled variables,
uses a selector to allow active constraint region switching,
and consider a required stabilizing control. This concludes
that both heuristic and null space method are necessary
and comply one to another.

As future works, we suggest considering cascade controller
to solve the issue of having saturated MVs. In addition,
it is also interesting design a control structure for a
more realistic case where the surge constraint may be
inactive, measurable GOR (including using embedded
observer), multiple significant disturbances, and PCVs as
manipulated variables.
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cangöz, M. (2015). Experimental evaluation of MPC-
based anti-surge and process control for electric driven
centrifugal gas compressors. Journal of Process Control,
34, 13–25. doi:10.1016/j.jprocont.2015.07.001.

Elldakli, F. (2017). Gas Lift System. Petroleum
& Petrochemical Engineering Journal, 1(3). doi:
10.23880/PPEJ-16000121.

Gravdahl, J. and Egeland O. (1998). Compressor Surge
and Rotating Stall: Modeling and Control. Springer.
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