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Abstract: This study introduces a novel Neuro-Controller Simple Internal Model Control (NC-
SIMC) paradigm. Our primary goal is to develop a neural network architecture that integrates
the logical principles of Proportional-Integral-Derivative (PID) controller design, as outlined
by the SIMC rules, into a model capable of generating control actions without the necessity
for training with closed-loop data. This is achieved by employing the Simple Internal Model
Control framework to effectively train the adapted neural network structure. We present a
machine-learning approach that combines a specialized inductive bias node by using a custom
new layer inside the neutral net structure to address this goal. Hence, it bridges traditional
control theory and machine learning. A key innovation of our NC-SIMC approach is its ability
to learn and internally formulate a control structure and parameters. This enables it to establish
suitable control actions based on the system’s state, setpoint, and feedback without relying on a
fixed control structure. Our paper demonstrates the efficacy of NC-SIMC in stabilizing control
actions and its adaptability across various operating conditions without requiring retuning. This
performance is shown to be favorably comparable to traditional SIMC rules. We conclude by
discussing the potential for future improvements in dynamic performance and the integration
of constraints directly into the inductive bias layer, opening new avenues for advanced control
system design. The main advantage of our strategy is that no closed-loop data is needed to
identify the NC-SIMC PID controller. Instead, the model learns from the SIMC rules.

Keywords: PID control design based on artificial intelligence methods; PID tuning and
automatic tuning methodologies; Adaptive and robust PID control.

1. INTRODUCTION

The theoretical basis of our Neuro-Controller Simple Inter-
nal Model Control (NC-SIMC) development is grounded
in the established principles of traditional PID controller
design. PIDs have a well-established body of literature
and are applied across all segments of dynamic system
control. Over the years, various methods for formulation
and tuning such controllers have been proposed, including
Ziegler and Nichols (1942), the Internal Model Control
(IMC) presented in Rivera et al. (1986); Garcia and Morari
(1982), and the SIMC approach by Skogestad (2003). Tra-
ditionally, PID controller tuning focuses on the system’s
open-loop behavior, followed by its application in a closed-
loop setting. This method involves identifying key system
parameters and determining appropriate tuning adjust-
ments to enhance robustness and performance to meet
specific scenarios. Given the simplicity of PID controllers,
the main challenge in implementation is the selection of
tuning parameters, which is why the cited works are so
significant and shed light on the field of controller tuning.

The advent of artificial intelligence has led to a growing
interest in AI-powered PID controllers, as evidenced by
their increasing prevalence in recent literature. These AI-

based solutions, however, typically necessitate training
with open-loop data before being deployed in a closed-loop
system (Zribi et al., 2015). This requirement represents a
significant limitation of the AI approach to PID control.
The training process demands extensive data collection
and analysis, which can be time-consuming and may only
sometimes accurately represent a system’s full range of
operational scenarios. On the other hand, several works
have proposed different structures of neural nets to tune
an existing PID structure Zribi et al. (2015); Badr (1997);
Hernández-Alvarado et al. (2016); Xu (2022); de Moura
et al. (2020).

Furthermore, many of these AI strategies are often pre-
sented as alternatives to traditional control theory rather
than as complementary approaches. This perspective over-
looks the rich, established knowledge base within tradi-
tional control theory. By positioning AI-based methods as
replacements rather than as enhancements or extensions,
there is a risk of missing valuable insights and principles
that traditional control theory offers. A more integrated
approach, which combines AI’s adaptability and learning
capabilities with the foundational principles of traditional
PID control, could lead to more robust and effective
control systems. Such an approach would leverage the



strengths of both AI and traditional methods, potentially
overcoming the limitations of each when used in isolation.

In this context, the primary contribution of our work
in developing the (NC-SIMC, Neuro-Controller Simple
Internal Model Control, or Nogueira-Costa- Skogestad
Internal Model Control) lies in its integration of artificial
intelligence with traditional PID control principles by
inductive bias. Without needing an extensive database, the
proposed neural structure learns from the well-established
SIMC rules and uses a novel internal PID layer to compute
the control actions. By blending AI’s adaptability and
advanced learning capabilities with the robustness and
reliability of traditional PID control methods, the NC-
SIMC offers a more versatile and efficient solution for
modern control systems. The inductive bias layer plays
a crucial role, allowing the control action values to be
obtained by the network based on a customized neuron
that contains a PID function as an activation function.
Hence, the control actions are calculated by a specifically
constructed output layer, making the values of the closed-
loop control actions unnecessary in the training step of the
methodology.

The paper’s subsequent sections are as follows: Section
2 presents the proposed methodology. Section 3 discusses
the test results for a polymerization reactor, and Section
4 concludes the paper.

2. METHODOLOGY

The initial step in the process is the open-loop excitation
of the system at various operating points. The excitation’s
amplitude and frequency are determined using a Latin
Hypercube Sampling algorithm. Using the open-loop re-
sponse values of the system, identification is performed at
the sampled operating points to approximate the system
to a first or second-order plus time delay transfer function
as:

g(s) =
k

(τ1s+ 1)(τ2s+ 1)
e−θs (1)

The SIMC tuning for the series PID rules proposed by
Skogestad (2003) with good robustness are:

Kc =
0.5

k

τ1
θ

(2)

τI = min{τ1, 8θ} (3)

τD = τ2. (4)

Additionally, when a first-order plus time delay approxi-
mates the system, the time constant τ2 = 0, then, τD = 0,
the other rules are the same (Skogestad, 2003). Therefore,
in this paper, only PI controllers are evaluated.

With the rules, it is possible to build the training, valida-
tion, and test sets for building the NC-SIMC controller.
To do so, apply Equations (2)-(4) rules to each stationary
state identified through the LHS inserted into the system.

Once the tuning values for the different operating points
have been identified, the construction of the NC-SIMC
controller proceeds. In this methodology phase, the neural
network shown in Figure 1 is trained to provide the control

action of a PI controller based on the system’s current
state. Also, the learning function is defined as:

MSE =
1

n

n∑
i=1

(Kci − K̂ci)
2 +

1

n

n∑
i=1

(τI i − τ̂I i)
2

in which Kci and τI i are the tuning obtained by the SIMC
rules and K̂ci and τ̂I i are the values predicted by the NC-
SIMC.

In the final layer of our model’s architecture, we introduce
a specialized component known as the PI-reinforced node.
This node functions as an inductive bias element and is
a customized neuron. Its activation function is designed
to mimic that of a PI controller, effectively integrating
the principles of Proportional-Integral control. This node
receives a bias from two system components: the error
and integral. This design choice ensures that the node’s
response is closely aligned with the dynamic behavior of
a PI controller, thereby enhancing the model’s ability to
manage system errors in a manner akin to traditional
control systems but with the added adaptability and
learning capabilities of a neural network.

The network structure weights and biases presented in
Figure 1 are obtained through offline training that does
not depend on the closed-loop operation. In this way, the
network is trained to provide tuning for the controller.
This last node includes a bias composed of the current
error between the setpoint and the measured variable plus
the integral of the error.

The network’s hyperparameters, type and number of lay-
ers, neurons, and activation functions, among others, can
be defined through an optimization algorithm such as the
one proposed by Li et al. (2016). These algorithms search
for an optimized network structure from a search region.
Using such algorithms significantly reduces the need for
testing to verify whether or not the network has an ade-
quate structure and facilitates network construction.

When the NC-SIMC controller is operating, it considers
the current values of the measured variables and inputs
and adapts the control action accordingly. This makes NC-
SIMC adaptive and suitable for working over an extensive
operating range without retuning the PI control.

3. RESULTS

This study focuses on a styrene polymerization reactor,
crucial in polymer production, and utilizes the mathe-
matical models proposed by Hidalgo and Brosilow (1990)
and Alvarez and Odloak (2012). The process begins with
initiator decomposition and radical formation, leading to
live polymer chain generation. Chain growth occurs by
adding monomers until the radicals deactivate into dead
polymer chains. The operational model of the reactor
excludes monomer and solvent chain transfers, emphasiz-
ing monomer consumption and the short-lived nature of
polymer radicals. Operational temperatures negate ther-
mal monomer initiation concerns. Additionally, the model
considers the chain termination rate and deems the heat
from initiation and termination negligible compared to



Fig. 1. Methodology chart.

the heat of polymerization. The equations are outlined by
Alvarez and Odloak (2012) as:
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The differential equation set encapsulates the dynamic
behavior of monomer, initiator, dead-polymer chains, and
live-polymer chains in a styrene polymerization reactor.
Each differential equation delineates the temporal con-
centration change of these entities, incorporating reaction
kinetics, feed rates, and volumetric variations. The rate
constants for propagation, initiation, termination via com-
bination, and termination through disproportionation are
symbolized by kp, ki, kt, and ktd respectively. Concentra-
tions of monomer, initiator, and live-polymer chains with n
units, and reactor temperature are represented by [M ], [I],
[Pn], and [T ]. The flow rates for the reactor’s output and
input are given by F and Fin whileMf , If , and Tf indicate
the monomer, initiator, and temperature concentrations at
the input, respectively. V denotes the reactor’s volume.

In this system, two variables are used for control purposes.
The first is the reactor temperature (T ) (Equation 10), and
the second is the average molecular weight of the polymer
produced given by Alvarez and Odloak (2012):

M̄w = Mm
D2

D1
. (16)

However, the average molecular weight may not be mea-
surable, so Odloak suggests that an alternative approach
is to control the polymer’s viscosity:

η = 0.0012(M̄w)
0.71. (17)

These variables are directly linked to the quality of the
polymer produced, and meeting the necessary specifica-
tions can be achieved through their control. The initiator
flow rates and the cooling jacket fluid flow rate are se-
lected as manipulated variables. In contrast, the flow rates
of monomer and solvent are considered unknown distur-
bances by the control loops. Viscosity and temperature
control can thus be achieved by pairing the viscosity and
initiator flow rate (η × Qi) and the reactor temperature
with the cooling jacket feed flow rate (T × Qc).

A first-order transfer function model was used to approxi-
mate the system response. This implies that the derivative
action is not used. Only the proportional and integral ac-
tions are to generate the training, validation, and test sets
to build the NC-SIMC controller for the reactor described
by Equations (5)-(17). Also, a set of random signals was
created using a Latin Hypercube Sampler to perform the
open-loop tests. The operational region was defined based
on the values presented in Table 2, allowing for a 50 %
variation in the input variables either way. These signals
were simulated using Equations (5)-(17), and the response
was used to identify a transfer function for each of the
steady states reached. With the identified parameters in
hand, the SIMC rules were applied to obtain the tuning
parameters displayed in Figure 2. In Figure 2, histograms
show the distributions of each parameter, whereas the solid
line indicates the respective nominal value for the param-
eter. This nominal value is obtained in the steady state
reached with the input values from Table 2. Additionally,
these values are used to tune the SIMC controller and serve
as a benchmark for evaluating the NC-SIMC controller in
the subsequent discussion.



Table 1. Model parameters and initial conditions (Alvarez and Odloak, 2012).

Nominal Process Parameters Value

Frequency factor for initiator decomposition, Ad(h
−1) 2.142× 1017

Activation energy for initiator decomposition, Ed(K) 14897
Frequency factor for propagation reaction, Ap(L ·mol−1 · h−1 3.81× 1010

Activation temperature for propagation reaction, Ep(K) 3557
Frequency factor for termination reaction, At(Lmol−1h−1) 4.50× 1012

Activation temperature for termination reaction, Et(K) 843
Initiator efficiency, fi 0.6
Heat of polymerization, −∆Hr(J ·mol−1) 6.99× 104

Overall heat transfer coefficient, hA(J ·K−1 · L−1) 1.05× 106

Mean heat capacity of reactor fluid, ρCp(JK−1L−1) 1506
Heat capacity of cooling jacket fluid, ρcCpc(JK−1L−1) 4043
Molecular weight of the monomer, Mm(g ·mol−1) 104.14

Initial conditions Value

Reactor volume, V (L) 3000
Volume of cooling jacket fluid, V c(L) 3312.4
Concentration of initiator in feed, If (mol · L−1) 0.5888
Concentration of monomer in feed, Mf (mol · L−1) 8.6981
Temperature of reactor feed, Tf (K) 330
Inlet temperature of cooling jacket fluid, Tcf(K) 295

Table 2. Steady-state inputs conditions and region of sampling for the LHS algorithm.

Variable Steady-state Minimum Maximum

Initiator flow rate, Qi(L · h−1) 108 91.8 124.2
Solvent flow rate, Qs(L · h−1) 3312.4 2815.5 3809.26
Monomer flow rate, Qm(L · h−1) 0.5888 0.5005 0.6771
Cooling jacket fluid flow rate, Qc(L · h−1) 8.6981 7.3934 10.0028

Fig. 2. SIMC data for training, test, and validation
datasets. The datasets were selected randomly with
the following proportions: Train 70%, Validation 15%,
and Test 15%.

The first scenario for comparing the controllers is shown
in Figure 3. The controllers were directly tested on the
nonlinear system from Equations (5)-(17). In the scenario
of Figure 3, the SIMC and NC-SIMC controllers are tested
against setpoint changes, disturbances at the inputs, and
unmeasured in the presence of measurement noise. At
the 100-hour mark, the first setpoint change occurs in
temperature. The subsequent modification is at 400 hours
when the viscosity setpoint is changed. To accommodate
this modification, the controllers act in a coordinated
manner. This first part of the simulation is conducted to
test the performance of the controllers separately. It can

be observed that the CN-SIMC controllers impose a faster
yet stabilized response similar to the SIMCs. Between 750
and 1200 hours, a disturbance of +5L/h is added to both
inputs. Thus, the controllers experience changes in both
setpoints simultaneously at 1000 hours in the presence
of disturbances. It can be verified that both controllers
produce stable responses and behavior similar to what was
expected, and they are capable of avoiding steady-state
error. At 1300 hours, a new setpoint change is made in
both variables for the system to return to the origin and
proceed with the disturbance rejection test. At 1600 hours,
a disturbance of +5L/h is added to the solvent flow rate
Qs and monomer flow rate Qm. The results indicate that
the controllers’ speed pattern is maintained, and both can
mitigate the effects of these disturbances.

Additionally, Table 3 shows a series of performance indices
used to compare the accumulated results in the experi-
ment. The indices indicated as “MV” are calculated con-
sidering the error relative to the initial value of the series.
These results indicate that the controllers are equivalent
in performance and control effort.

Figure 4 presents two robustness tests. In the first one, on
the left side of Figure 4, the controllers are tested against
delays. In this test, the control actions were delayed by
15 sampling times. In the second test, on the right side of
Figure 4, the aim is to seek the controller’s gain margin.
As proposed by Skogestad (2003), the SIMC controller
has a gain margin (GM) of 3.14. In this test, a gain of
3 ·Kc was implemented for the initial setpoint changes for
each controller at 10 hours and 300 hours. In Figure 4,
it is possible to see that this value brings the NC-SIMC
controller to the stability margin of the viscosity closed
loop. At 600 hours, a gain of 1.5 · Kc was used for both
controllers, with a joint setpoint change. The results of the



Fig. 3. Closed loop simulations of the NC-SIMC controller performance with setpoint change, noise and input
disturbances. Sampling time 0.1 h.

Table 3. Performance index comparing the
controllers on the case study of Figure 3.

Index
η T

NC-SIMC SIMC NC-SIMC SIMC

IAE 1.04E + 03 1.03E + 03 3.12E + 03 3.26E + 03

ISE 3.42E + 02 3.38E + 02 5.36E + 03 6.58E + 03

ITSE 3.42E + 01 3.38E + 01 5.36E + 02 6.58E + 02

ITAE 1.04E + 02 1.03E + 02 3.12E + 02 3.26E + 02

MAE 5.21E − 02 5.14E − 02 1.56E − 01 1.63E − 01

MSE 1.71E − 02 1.69E − 02 2.68E − 01 3.29E − 01

IAE-MV 3.11E + 05 3.06E + 05 1.78E + 06 1.77E + 06

ISE-MV 7.44E + 06 7.12E + 06 2.35E + 08 2.32E + 08

ITAE-MV 3.11E + 04 3.06E + 04 1.78E + 05 1.77E + 05

ITSE-MV 7.44E + 05 7.12E + 05 2.35E + 07 2.32E + 07

MAE-MV 1.56E + 01 1.53E + 01 8.89E + 01 8.85E + 01

MSE-MV 3.72E + 02 3.56E + 02 1.17E + 04 1.16E + 04

robustness tests show that the NC-SIMC controller tends
to accelerate the closed-loop response. When compared
with the responses from Figure 3, it is observed that this
behavior is expected since the NC-SIMC controllers have
a faster response than the SIMC. Similarly, Figure 2 shows
that the NC-SIMC controllers were trained to achieve
gains lower and higher than the value used as nominal
in the SIMC. This indicates that the NC-SIMC controllers
will modulate the speed of response based on the operating
point.

4. CONCLUSIONS

This research introduces the Neuro-Controller Simple In-
ternal Model Control (NC-SIMC), a novel hybrid neural
network structure that integrates inductive bias and is
trained following SIMC rules. The NC-SIMC employs an
offline training methodology independent of closed-loop
data, relying instead on tuning parameters derived directly
from SIMC rules in an open-loop context. A key feature

of this controller is the incorporation of an Inductive Bias
layer, achieved through the use of a customized neuron.
This neuron employs a Proportional-Integral (PI) activa-
tion function, enabling the network to generate control
actions directly.

Our study’s findings indicate that the NC-SIMC can
deliver a stable response comparable to that achieved
through traditional SIMC rule applications. This system’s
advantage is its ability to adapt to varying operating
conditions, facilitating automatic and seamless adjust-
ments in controller tuning. Opportunities exist to enhance
this model’s dynamic performance further and incorpo-
rate constraint handling more effectively. This could be
achieved by integrating selectors directly into the inductive
bias layer, thereby expanding the controller’s capabilities
in managing a broader range of operational scenarios.
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