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Abstract

Model predictive control (MPC) allows for dealing with multivariable interactions and dynamic satisfaction of constraints. Most
commonly, standard MPC has a cost function that aims at keeping selected controlled variables at constant setpoints. This work
considers systems where the steady-state active constraints change during operation, which is not optimally covered by conventional
MPC which uses fixed controlled variables. We propose a simple framework that detects the constraint changes and updates the
controlled variables accordingly. The unconstrained controlled variables are chosen to minimize an economic cost. In this paper,
the nullspace method for self-optimizing control is used to estimate the steady-state cost gradient based on a static combination of
measurements. This estimated gradient is also used for detecting the current set of active constraints, which in particular allows for
giving up constraints that were previously active. The proposed framework, here referred to as “region-based MPC”, is shown to
be optimal for linear constrained systems with a quadratic economic cost function, and it allows for good economic performance in
nonlinear systems in a neighborhood of the considered design points.
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1. Introduction

Model predictive control (MPC) denotes a class of control
strategies based on the online optimization of the predicted dy-
namic trajectory of the system [1]. It is a valuable tool for pro-
cess control, being able to deal with multivariable interactions
and constraint satisfaction. In practice, MPC is usually imple-
mented as a supervisory control layer above the plant regulatory
layer, where stability is assessed, and is subordinate to a real-
time optimization (RTO) layer, which updates plant operation
based on economics, as presented in Figure 1. It is possible
to combine the RTO and control (MPC) layers into one; this is
commonly known as Economic MPC [2] and is not considered
in this paper.

The steady-state economic optimization of the plant, solved
at the RTO layer, can be defined as the following constrained
optimization problem:

min
u

Jec(u, d)

s.t. g(u, d) ≤ 0
(1)

where u ∈ Rnu is the vector of inputs or manipulated variables
(MVs), d ∈ Rnd is the vector of disturbances, Jec is the scalar
economic cost function, and g(u, d) ∈ Rng is the vector of in-
equality constraints. Note that the model equations and corre-
spondent states have been formally eliminated from the formu-
lation. The set of active constraintsA is defined for the optimal
solution u∗ as the set for which gi(u∗, d) = 0 with i ∈ A.

Solving the problem in (1) results in the optimal plant inputs
u∗, but as shown in Figure 1 the RTO layer implements the op-
timization results in the form of setpoint updates CV sp to the
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Figure 1: Typical hierarchical control structure with standard setpoint-tracking
MPC in the supervisory layer. The cost function for the RTO layer is Jec and
the cost function for the MPC layer is JMPC . With no RTO layer (and thus con-
stant setpoints CV sp), this structure is not economically optimal when there are
changes in the active constraints. For smaller applications, the state estimator
may be used also as the RTO estimator.
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MPC layer. We refer to this type of implementation as setpoint-
tracking MPC, or standard MPC. As discussed in more detail
later, see Equation (5), standard MPC uses a cost function of
the form:

JMPC =

N∑
k=1

||CVk −CV sp||2Q + ||∆uk ||2R

where the first term penalizes setpoint deviations and the last
term penalizes dynamic input changes.

Standard MPC has two main elements: a state estimator and
an open-loop moving horizon optimizer (which is often referred
to simply as MPC). The state estimator ensures feedback, cor-
recting the internal model according to the measurements, and
the MPC uses that information to calculate the input sequence
that drives the internal model to the desired operating point.
The MPC problem can accommodate constraint satisfaction, ei-
ther as direct constraints in the optimization problem or through
the use of penalty terms. Additionally, one may consider a tar-
get calculation block, which ensures that the setpoint that the
MPC tracks is feasible at steady state [1].

In most standard MPC implementations, the CVs are selected
based on process intuition, and not in a systematic manner.
In this context, self-optimizing control (SOC) provides useful
tools for systematic selection of CVs, having optimal steady-
state operation as the main goal [3, 4]. This gives the controlled
variables:

CV = Hy

where y denotes the available process measurements (including
selected inputs and measured disturbances) and H is a selection
or combination matrix. Most SOC approaches for CV selection
assume that the steady-state active constraint set A is constant
[4].

Graciano et al. [5] implemented MPC using nominal self-
optimizing CVs, that is, with the nominally active constraints.
This can reject disturbances in fast timescales and minimize
the nominal economic loss without the intervention of the RTO
layer, at the same time avoiding violation of constraints. This
is relatively simple to implement, but it cannot be regarded as
self-optimizing in a broad sense, because the optimal approach
is to use different self-optimizing CVs for each set of active
steady-state constraints [6].

This work proposes a framework for self-optimizing con-
trol under changing active constraints, which we label “region-
based MPC”, see Figure 2. Here, the self-optimizing CVs
tracked by MPC are a function of the detected active constraint
set. The constraint switching is based on the work of Wood-
ward et al. [7]. In three case studies, we show that standard
MPC with a single (nominal) set of CVs leads to economic loss
when there are changes in active constraints during operation,
and we show that the proposed MPC framework attains steady-
state optimal operation if the design conditions of SOC are met,
and near-optimal operation in a broader sense.

The rest of the paper is organized as follows. In Section 2 we
present some basic notions of MPC implementation. In Sec-
tion 3 we describe the control structure proposed in this work,
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Figure 2: Proposed region-based MPC structure with active set detection and
change in controlled variables. The possible updates from an upper RTO layer
(y∗, J∗u etc.) are not considered in the present work. Even with no RTO layer
(and thus with constant setpoints CV sp

A , see (14) and (15), in each active con-
straint region), this structure is potentially economically optimal when there are
changes in the active constraints.

and the results of its application in some case studies are pre-
sented in Section 4. Based on these results and the theoretical
aspects of the control structure, we discuss the proposed frame-
work in Section 5, and the paper is then concluded in Section 6.

2. Standard MPC implementation

We first briefly discuss the standard MPC implementation
represented in Figure 1, which includes a state estimator and
an open-loop optimizer (MPC block). For the estimator, con-
sider the following dynamic model used as an internal model
for MPC: 

dx
dt
= f (x, u, dc)

y = h(x, dc)
(2)

Here, x ∈ Rnx represents the vector of dynamic states,
u ∈ Rnu the vector of inputs (MVs), y ∈ Rny the vector of mea-
surements and dc ∈ Rndc a vector of model disturbances.

There is usually one dc for each controlled variable, which
is used to account for uncertainty, for example, related to the
“true” disturbances d, measurement bias, or model parameter
changes. Note that dc does not need to have a physical interpre-
tation and is used mainly to include integral action in MPC. In
other words, to attain offset-free control, the internal model is
augmented with the integrating states dc:

xaug =

[
x
dc

]
(3)

For a linear internal model, the number of additional integrating
states must be at least the number of controlled variables, and it

2



need not be greater than the number of measurements [8]. The
dynamic model considered by the state estimator is therefore of
the form: 

dx̂aug

dt
=

d
dt

[
x̂
d̂c

]
=

[
f (x̂, u, d̂c)

0

]
+ ω

ŷ = h(x̂, d̂c) + ν
(4)

where ω ∼ N(0,Qe) and ν ∼ N(0,Re) are the random variables
present in most state estimation frameworks, and Qe and Re are
the corresponding tuning parameters [9]. The estimated states
x̂ and d̂c are then used to solve a moving-horizon optimization
problem, which results in the next control action to be imple-
mented. A simple discretized MPC optimization problem can
be of the form:

min
uk ,xk

JMPC =

N∑
k=1

||CVk −CV sp||2Q + ||∆uk ||2R

s.t. xk = ϕ(xk−1, uk−1, d̂c)

yk = h(xk, d̂c)
CVk = Hyk

∆uk = uk − uk−1

x0 = x̂

ymin ≤ yk ≤ ymax

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

− ∆umax ≤ ∆uk ≤ ∆umax

(5)

Here, xk denotes the state at the k-th time step, and
ϕ(xk−1, uk−1, d̂c) is the result of the integration of the dynamic
model (2) from tk−1 to tk = tk−1 +∆t with u = uk−1, dc = d̂c, and
the initial condition as the previous state x(tk−1) = xk−1. The
objective function JMPC aims to minimize the tracking error
CV − CV sp while penalizing large input changes ∆uk. N is the
number of prediction steps, and Q and R are tuning matrices.

The output, state, and input constraints in (5) can be used
to embed the RTO constraint g(u, d) ≤ 0 (1) in the MPC time
scale. State constraints are not needed if we assume that the
constraints g(u, d) are measured (or estimated) and included as
elements in the measurements vector y. Without loss of gen-
erality, we will assume that the economic constraints can be
estimated from the dynamic model as:

g = hg(x, u, dc) (6)

We remark that an MPC in the form of Equation (5) has no
stability guarantees, but it can converge if the prediction hori-
zon N is large enough (the reader is referred to Mayne [10] for
an in-depth review of MPC formulations).

The focus of the present work is the case where the original
setpoints CV sp must be given up due to constraints becoming
active at steady-state. In theory, the RTO layer may update the
setpoints, but in most cases there is no RTO layer, so the set-
points are constant. Standard MPC satisfies the constraints, but
it is suboptimal in terms of steady-state economic performance,

and we propose a better way of dealing with economic con-
straints on standard setpoint-tracking MPC, without the need
for RTO updates.

3. Region-based MPC framework

The structure of the proposed region-based MPC scheme is
summarized in Figure 2. The state estimator, also present in
standard MPC, serves as the feedback element for MPC as well
as for the active set detection block, which is the new element of
the framework when compared to standard MPC. The detected
active setA along with the setpoints, is sent to the MPC block,
which uses a different set of CVs for each active setA.

We next describe how the CVs for each active set are deter-
mined, and how the set of active constraints can be estimated
online.

3.1. Controlled variables for MPC

The controlled variables for each region are defined such that
the steady-state economic problem (9) is solved by feedback
control, meaning that we adjust u to keep CV = CV sp. These
CVs are defined as:

CVA =
[
gA
cA

]
(7)

Here, gA denotes the active constraints, and cA denotes the
unconstrained CVs for optimal operation. The control action
calculation for the proposed region-based MPC is very similar
to that of Equation (5), but the objective function changes for
eachA according to:

JMPC
A =

N∑
k=1

||CVA −CV sp
A ||2QA + ||∆uk ||2RA (8)

where QA and RA are tuning parameters that can be chosen
independently for each active setA.

The unconstrained controlled variables cA should be selected
to minimize the steady-state cost, given that the active con-
straints gA are being controlled. For that, we follow Halvorsen
et al. [11] and we consider a local QP approximation of the
economic optimization problem of the form:

min
∆u

Jec = Jec⋆ +
[
∆uT ∆dT

] [J⋆u
J⋆d

]
+

1
2

[
∆uT ∆dT

] [ Juu Jud

Jud
T Jdd

] [
∆u
∆d

] (9a)

s.t. g = g⋆ +Gg∆u +Gg
d∆d ≤ 0 (9b)

Here, ∆d = d−d⋆ and ∆u = u−u⋆ represent the disturbances
and inputs as their deviation from their reference values d⋆ and
u⋆ respectively, and Jec⋆, J⋆u , and Juu represent respectively the
cost function, its gradient, and its Hessian with respect to the
inputs, evaluated at steady state at the reference point. Addi-
tionally, the measurements y can be locally represented by a
linear steady-state model of the form:
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∆y = Gy∆u +Gy
d∆d (10)

The linearized expression (9b) for the constraints is not used
by Halvorsen et al. [11], but it is needed here because we con-
sider changes in active constraints. The unconstrained CVs cA
are defined in terms of the CVs for the fully unconstrained re-
gion, c0, which is itself a static linear combination of the mea-
surements:

c0 = H0y (11)

Assuming that there are enough measurements (ny = nu +

nd), we can find an analytical expression for H0 based on the
nullspace method that is given by [12, 13]:

H0 =
[
Juu Jud

] [
Gy Gy

d

]†
(12)

which is used to obtain an optimal first-order estimate of the
cost gradient Ju [13]:

Ĵu = c0 − csp
0 = H0(y − y⋆) + J⋆u (13)

The setpoint for the unconstrained CV, csp
0 = H0y⋆ − J⋆u ,

is calculated based on the reference steady state and the corre-
sponding value of the cost gradient. If the reference steady state
is an optimal operating point at a fully unconstrained region, J⋆u
is zero. However, if the reference steady state is not optimal, or
if the system is operating at a constrained region, it is nonzero.

For the constrained case, the ideal self-optimizing variable
is the reduced gradient NT

AJu [6], and the CVs related to the
unconstrained degrees of freedom are given by:

cA = NT
AH0y

where NA is a projection matrix, defined as a basis for the
nullspace of the active constraints gradient, i.e. Gg

ANA = 0.
Because cA is a linear combination of the unconstrained CVs
c0, the corresponding setpoint will be given by csp

A = NT
Acsp

0 .
The full set of CVs for each active constraint region A then
becomes:

CVA =
[
gA
cA

]
=

[
gA

NT
AH0y

]
(14)

with the corresponding setpoints being:

CV sp
A =
[

0
NT
A(H0y⋆ − J⋆u )

]
(15)

This choice of CVs minimizes the steady-state economic loss
around the reference point (u⋆, d⋆). Furthermore, even if the
new operating point is such that the active set A is different
than that of the reference point, the use of CVA minimizes the
steady-state loss, as long as the approximations in Equations (9)
and (10) hold. We now discuss how to detect the active set
using the available measurements, so as to select the correct
controlled variables.

3.2. Active constraint set detection
In the previous section, we estimated the cost gradient Ju as a

function of the available measurements y. The same idea is now
applied to active set detection. Woodward et al. [7] describes an
active set detection algorithm for a feedback optimizing strat-
egy that only depends on the current value of the cost gradient
Ju, the constraints g, and the constraints gradient Gg. Here, we
adapt this strategy so that the method depends directly on the
available measurements. In summary, we assume g to be di-
rectly measured, Ju is estimated using Equation (13), and Gg is
assumed constant at its nominal value from Equation (9b).

In order to estimate Ju, which is the steady-state cost gradi-
ent, we use the value of the measurements at the expected (pre-
dicted optimal from the region-based MPC perspective using
Equation (16)) steady state where the CVs are driven to their
setpoints, which we call yss. This expected steady state can be
determined using Equation (2), leading to:0 = f (xss, uss, d̂c)

CVA(xss, d̂c) = CV sp
A

(16)

The steady-state measurements are then obtained as
yss = h(xss, d̂c), along with the corresponding predicted con-
straint values from Equation (6) as gss = hg(xss, uss, d̂c). With
these values, we are ready to apply the method from Woodward
et al. [7]. The algorithm is summarized in Algorithm 1, and we
shall explain its main steps.

Algorithm 1 Active set estimation based on the MPC internal
model, adapted from Woodward et al. [7]

1: Ĵu ← H0(yss − y⋆) + J⋆u ▷ from (13)
2: Ak ← Ak−1 ∪ { i | gss

i ≥ 0 }
3: δu∗ ← solution of (17)
4: Ak ← { i ∈ Ak | Gg

i δu
∗ = 0 }

5: if n
(
Ak
)
> nu then ▷ too many active constraints

6: FindA′ ⊂ Ak | gss(CVA′ = CV sp
A′ ) ≤ 0 ▷ re-solve (16)

7: Ak ← A′
8: end if

The algorithm begins in step 1 by finding the expected
steady-state measurements yss by solving Equation (16), and
with it we find the predicted cost gradient Ĵu through Equa-
tion (13). Then, we include in step 2 the constraints predicted
to be violated, i.e. gss

i ≥ 0, into the estimated active set. With
this augmented active set A, we solve in step 3 the following
optimization problem:

δu∗ = arg min
δu
−δuTδu

s.t.

G
g
Aδu ≤ 0

δuTδu = −δuT Ĵu

(17)

With this problem, we wish to find the largest projection of
the negative of the estimated cost gradient, −Ĵu, onto the fea-
sible directions, i.e. directions that do not violate Gg

Aδu ≤ 0.
The solution δu∗ therefore dictates the best feasible descent di-
rection for improving the economic cost function. In step 4,
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the inactive constraints at the solution (Gg
i δu

∗ < 0) are then re-
moved from the active set A, as controlling these constraints
would hinder economic improvement.

Because this method does not account for infeasibility, an
additional step to obtain the active set A sent to the controller
is necessary. If the active set resulting from the previous oper-
ations has more than nu elements, it is deemed infeasible, be-
cause the controller cannot track more than nu variables with the
available inputs. One must then pick a subset that is predicted to
be feasible (gss

i ≤ 0 ∀i) by evaluating the corresponding closed-
loop steady states with Equation (16), as represented in step 6.
With this, the controller always tries to control a feasible set of
active constraints. One may also add a constraint priority list,
such that, when operation is infeasible for all candidate active
sets, the less important constraint is given up.

The problem given in Equation (17) is presented as an NLP
due to the quadratic equality constraint, but the work of Wood-
ward et al. [7] solves this problem using a specific algorithm.
Here, we simply solve the optimization problem directly. To
prevent premature switching due to the estimator dynamics, the
estimatedA is only used for switching CVs after Nsw time steps
where the estimated A is different than the one being imple-
mented in the controller, and Nsw becomes a tuning parameter
that improves switching performance.

4. Case studies

For the following case studies, consider the continuous-
discrete time objective function for MPC:

JMPC
A =

∫ N∆t

0
||CVA −CV sp

A ||2QA dt +
N∑

k=1

||∆uk ||2RA (18)

This formulation is used for convenience, as the integration
of the MPC objective function and the internal model are done
together using orthogonal collocation. The resulting problem is
solved using CasADi/IPOPT [14].

4.1. Case study 1 - toy example

In this example, we illustrate the optimality of the proposed
methodology for systems with quadratic cost function and lin-
ear dynamic and constraint models, which is sufficient for the
exactness of the methodology described in Section 3, and the
economic improvement when compared to a standard imple-
mentation of self-optimizing MPC.

The hypothetical system considered here has 2 dynamic
states x and 3 MVs u, with economic objectives and constraints
being represented by the following optimization problem:

min
u

1
2

xT
[
1 0
0 10

]
x +

1
2

uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

 u
s.t.

g1 = x1 − 0.8x2 ≤ 0
g2 = u1 + u2 + u3 ≤ 0

(19)

The dynamic states x are affected by the MVs u and the dis-
turbances d according to the following linear state-space dy-
namic model:



ẋ =
[− 1
τ1

0
0 − 1

τ2

]
x +
[ 0.2
τ1

0 0
0 0.2

τ2
0

]
u +
[ 1
τ1

0
0 1

τ2

]
d

y =


g1
g2
x2
u2
u3

 =

1 −0.8
0 0
0 1
0 0
0 0

 x +


0 0 0
1 1 1
0 0 0
0 1 0
0 0 1

 u
(20)

with τ1 = 1 and τ2 = 2. For the vector of measurements y, as
discussed in Section 3, we follow the convention of considering
the constraints as direct measurements, figuring in the first two
rows of the measurement vector. The remaining measurements
are chosen with the goal of satisfying a sufficient number of
independent measurements (ny = nu + nd).

Using the information above, we may eliminate the state vari-
ables x, since at steady state, we have that:

x =
[
0.2 0 0
0 0.2 0

]
u +
[
1 0
0 1

]
d (21)

We then write the steady-state optimization problem in the
standard form:

min
u

J =
1
2

uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

 u + uT

0.2 0
0 2
0 0

 d
s.t. g =

[
0.2 −0.16 0
1 1 1

]
u +
[
1 −0.8
0 0

]
d ≤ 0

(22)

along with the steady-state expression for the measurements:

y =


0.2 −0.16 0
1 1 1
0 0.2 0
0 1 0
0 0 1

 u +

1 −0.8
0 0
0 1
0 0
0 0

 d (23)

for which the matrices presented in Equations (9) and (10) are
recognizable. This problem has two inequality constraints and
three MVs, so optimal operation has always between one and
three unconstrained DOFs. As the system has only two distur-
bances, we can graphically illustrate the active constraint re-
gions as in Figure 3, where we can see all possible combina-
tions of active constraints. This map of disturbances is not used
in the method, and it is only made with the goal of visualizing
the optimal operation mode for each disturbance.

For implementing a standard self-optimizing MPC controller
with dynamic constraint handling, we follow the strategy de-
scribed by Graciano et al. [5]. We design the self-optimizing
CVs c = Hy at the unconstrained region, choosing as the refer-
ence steady state the optimal value for d⋆ =

[
−4; +4

]
. We can

therefore use the matrix H = H0 as defined in Equation (12),
leading to:
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Figure 3: Active constraint regions for case study 1 as a function of disturbances

H0 =

0.2 1 0.16 −1.1 −1.2
0 −0.1 2 0.9 0
0 −0.2 0 0.1 0.5


The measurements at the optimal operating point for d⋆ are

y⋆ = [−6.17 −9.86 2.62 −6.91 −2.56]T , and the corre-
sponding setpoint is csp = H0y⋆ =

[
0 0 0

]T
. The implemen-

tation of the region-based MPC controller leads to c0 being this
same set of CVs, and it depends additionally on the calculation
of projection matrices NA for the constrained regions. These
are presented in Table 1. In terms of the tuning of the con-
trollers, these are presented in Table 2, with the standard MPC
using only the tuning corresponding to the fully unconstrained
region (A = {}).

A NT
A

{}
1 0 0
0 1 0
0 0 1


{1}

[
0.625 0.781 0

0 0 1

]
{2}

[−0.577 0.789 −0.211
−0.577 −0.211 0.789

]
{1, 2}

[
−0.362 −0.453 0.815

]
Table 1: Optimal gradient projections for case study 1

The process was simulated at two different points inside each
region. Results of the closed-loop simulation of both control
strategies are given in Figure 4. The three CVs c = H0y ob-
tained in the unconstrained region (A = {}) are not suitable
for the constrained regions in terms of optimal operation. This
is most easily seen by comparing the inputs (u1, u2, u3) from
standard MPC (green) with the optimal inputs (magenta). The
inputs obtained with the proposed region-based MPC (blue) are
optimal at steady state in all four regions, and the switching of
CVs is seen to be smooth.

The economic loss of standard MPC is shown in more detail
in Figure 5. It can be seen that the loss is nonzero whenever

Parameter A Value

QA

{} diag([1, 1, 100])
{1} diag([1, 1, 1])
{2} diag([1, 1, 1])
{1, 2} diag([1, 1, 1])

RA diag([0.01, 0.01, 0.01])

N 30

∆t 0.333

Qe diag([0.05, 0.05, 1, 1])

Re diag([0.01, 0.01, 0.01, 0.01, 0.01])

Table 2: Tuning of controllers and estimator for case study 1
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Figure 4: Dynamic simulation results for case study 1 - comparison between
standard MPC (green) and the proposed region-based MPC (blue)
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the system leaves the unconstrained region. Note that the lines
delimiting the operating regions (blue) do not coincide with the
optimal boundaries (magenta) at the partly constrained regions,
because the use of fixed CVs is not optimal. Therefore, stan-
dard MPC does not guarantee control of the correct active con-
straints.
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Figure 5: Economic loss of standard MPC for case study 1 as a function of
disturbances. Magenta lines delimit optimal active constraint regions, blue lines
delimit operating regions of standard MPC. Region-based MPC attains zero
loss for all disturbance values.

It is worth mentioning that the proposed method does not rely
on RTO updates for dealing with changes in active constraints.
Instead, it relies on a switching logic for the CVs solely based
on measurements and the nominal plant behavior, and on the
self-optimizing property of the chosen CVs, which means that
no setpoint updates are required for the system to operate opti-
mally.

4.2. Case study 2 - Williams-Otto reactor

This case study is based on the process described by Williams
and Otto [15], see Figure 6. It consists of a continuously stirred
reactor tank with perfect level control, in which A and B are
mixed, generating the main product of interest P, along with the
less interesting product E and the undesired byproduct G. The
three reactions are:

A + B
k1−→ C k1 = k0,1e−E1/Tr

C + B
k2−→ P + E k2 = k0,2e−E2/Tr

P +C
k3−→ G k3 = k0,3e−E3/Tr

The component mass balances result in the following system
of ODEs:

dxA

dt
=

FA

W
− (FA + FB)xA

W
− k1xAxB (24a)

dxB

dt
=

FB

W
− (FA + FB)xB

W
− k1xAxB − k2xC xB (24b)

dxC

dt
= − (FA + FB)xC

W
+ 2k1xAxB − 2k2xC xB − k3xPxC (24c)

dxP

dt
= − (FA + FB)xP

W
+ k2xC xB − 0.5k3xPxC (24d)

TC


FB

TR

FA

FC


xA, xB, xC

xP, xE, xG

Figure 6: Schematic representation of Williams-Otto reactor, with MVs in red

dxE

dt
= − (FA + FB)xE

W
+ 2k2xC xB (24e)

dxG

dt
= − (FA + FB)xG

W
+ 1.5k3xPxC (24f)

Here, xi represents the mass fraction of component i. The
model parameters for this case study are summarized in Table 3.
The economic optimization problem to be considered is:

min
u

J = pAFA + pBFB − (FA + FB)
[
pP(1 + ∆pP)xP + pE xE

]
s.t. xE ≤ 0.30

xA ≤ 0.12
(25)

Parameter Value

W 2105 kg
k0,1 1.6599 × 10−6 kg/s
k0,2 7.2117 × 10−8 kg/s
k0,3 2.6745 × 10−12 kg/s
E1 6666.7 K
E2 8333.3 K
E3 11111 K
pA 79.23 $/kg
pB 118.34 $/kg
pP 1043.38 $/kg
pE 20.92 $/kg

Table 3: Model parameters for case study 2

The available DOFs for operation are u =
[
FB TR

]T
,

namely the mass inflow of pure B and the reactor temperature,
and the considered disturbances are d =

[
FA ∆pP

]T
, namely

the mass inflow of pure A and the relative variation of the price
pP. Similar to case study 1, we can visualize the active con-
straint regions as a function of the two disturbances, as shown
in Figure 7.

We choose to scale the constraints relative to the maximum
optimal constraint value in the disturbance window shown in
Figure 7. This gives the following scaled problem:
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Figure 7: Active constraint regions for case study 2 as a function of disturbances

min
u

J = pAFA + pBFB − (FA + FB)
[
pP(1 + ∆pP)xP + pE xE

]
s.t. g1 =

xE − 0.30
0.0287329

≤ 0

g2 =
xA − 0.12

0.0714527
≤ 0

(26)
The measurements are the two constraints, the frac-

tion of component P and the price of P, that is, y =[
g1 g2 xp ∆pP

]T
. To design the region-based MPC, we

must first obtain the matrices Juu, Jud, Gy, Gy
d, and Gu, which

depend on the operating point. One simple approach is to cal-
culate those matrices at the design point and keep them constant
during operation. We shall consider this strategy using two de-
sign points, in order to evaluate the effect of nonlinearity on the
proposed framework.

For the MPC controllers, we use a linear approximation of
the dynamic model at the design point, and estimate distur-
bances and additional integrating states using a linear Kalman
filter that ensures zero offset [16]. The use of a mismatch be-
tween the internal linear MPC model and the true nonlinear
plant model is to show that the steady-state economic perfor-
mance is a result of a correct choice of CVs, and not necessarily
of a correct dynamic process model.

The first set of simulations refers to a linearization at the ver-
tex between the regions (d⋆ = [1.54265 − 0.0891]), where the
resulting H0 is given by:

H0 =

[−42.0785 −36.0878 1153.68 −126.066
3.42257 −0.370313 −232.921 0.369661

]
and the corresponding gradient projections and controller tun-
ings are given in Tables 4 and 5, respectively.

The results are shown in Figures 8 to 10, From the dynamic
simulation in Figure 8, we see that the behavior of standard
MPC and region-based MPC is identical in the unconstrained
region (until t = 4 h), but the operation at the subsequent region
with g1 active (from t = 4 to t = 8 h) highlights the differ-
ence between the approaches. The region-based MPC frame-
work detects quite accurately the region change and switches

A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1208 0.9927

]
{2}

[
−0.0849 0.9964

]
{1, 2} -

Table 4: Optimal gradient projections for example 2 - linearization at vertex

the CVs accordingly, whereas standard MPC attempts to track
the CVs from the unconstrained region, which is not always
optimal. There is some loss with region-based MPC associated
with the nonlinearity in the model. For the fully constrained
region ({g1, g2} from t = 8 to t = 12 h), the two MPC schemes
behave similarly, attaining zero steady-state loss by taking all
the constraints to their limit values. The region-based MPC
attains this through direct constraint control, whereas standard
MPC relies on its dynamic constraint handling, which has its
own issues regarding stability and performance.

The steady-state behavior for both the region-based MPC and
the standard MPC was simulated for the whole domain dis-
played in Figure 7, and the results are presented in Figures 9
and 10, respectively. Due to the linearization being performed
at the vertex between the four regions, the description of the
boundaries between the regions is fairly accurate for the region-
based MPC in Figure 9, which illustrates the local exactness of
the method. However, we can see a large economic loss at the
unconstrained region as the system moves further from the ref-
erence point, and this can be attributed to the errors associated
with Equation (12) for nonlinear systems. The standard MPC
in Figure 10 does not reproduce the optimal behavior locally
in terms of region boundaries, and it creates an economic loss
peak at the region with g1 active, which is not seen in the same
magnitude for the region-based MPC. It can also be seen that
there are some disturbance combinations with a smaller eco-
nomic loss for standard MPC than for region-based MPC, al-
though this is not the general trend. This curious behavior is
a combination of the inaccuracy of the CVs calculated locally
with the giving up of those CVs by the MPC algorithm, which
in itself depends on the tuning parameters of the MPC. This fact
is illustrated in Figure 11, where a different standard MPC tun-
ing than that of Table 5 led to much worse overall performance
in the constrained regions. For the proposed region-based MPC
this is not an issue because the choice of CVs is consistent with
the active constraints, and therefore the control offset will be
zero at steady state, making the steady-state performance inde-
pendent of the dynamic tuning.

We now design the region-based MPC and the standard MPC
to operate around d⋆ = [2.0,+0.2], which lies in the interior of
the unconstrained region. Here, the resulting H0 is:

H0 =

[−46.0296 −32.6404 1577.81 −96.6946
5.50426 −2.61125 −393.808 0.342395

]
and the corresponding gradient projections and controller tun-
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Parameter A Value

QA

{} diag([0.01, 1.0])
{1} diag([30.0, 1.0])
{2} diag([30.0, 1.0])
{1, 2} diag([3.0, 30.0])

RA diag([0.5, 0.02])

N 60

∆t 0.0333 h

Qe diag([10−3, 10−3, 10−3, 10−3, 10−3, 10−3, 8, 8, 0.8, 0.8])

Re diag([10−12, 10−12, 10−12, 10−12])

Table 5: Tuning of controllers and estimator for example 2 - linearization at vertex
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Figure 8: Dynamic simulation results for case study 2 - comparison between
standard MPC (green) and the proposed region-based MPC (blue) - linearized
at vertex
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Figure 9: Steady-state economic loss for region-based MPC on case study 2 -
linearized at vertex
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Figure 10: Steady-state economic loss for standard MPC on case study 2 -
linearized at vertex
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Figure 11: Steady-state economic loss for standard MPC on case study 2 -
linearized at vertex, Q = diag([5 × 10−4, 5])

ings are given in Tables 6 and 7, respectively.

A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1110 0.9938

]
{2}

[
−0.1685 0.9857

]
{1, 2} -

Table 6: Optimal gradient projections for example 2 - linearization at d⋆ =
[2.0,+0.2]

Parameter A Value

QA

{} diag([5 × 10−4, 5])
{1} diag([30.0, 1.0])
{2} diag([30.0, 1.0])
{1, 2} diag([3.0, 30.0])

Table 7: Tuning of controllers and estimator for example 2 - linearization at
d⋆ = [2.0, +0.2] (omitted parameters are the same as in Table 5)

For this linearization, the results are shown in Figures 12
to 14. In this case, the region-based MPC overall gives a much
smaller economic loss on the partly constrained regions com-
pared to standard MPC. Also, the regions obtained in Figure 13
are shaped similarly to the optimal regions, which does not hap-
pen with the standard MPC in Figure 14. Because the lineariza-
tion of the system happened in the interior of the unconstrained
region, the economic loss on that region is smaller when com-
pared to that of Figure 9, while not resulting in a larger loss for
the remaining regions in the case of the region-based MPC.
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Figure 12: Dynamic simulation results for case study 2 - comparison between
standard MPC (green) and the proposed region-based MPC (blue) - linearized
at d⋆ = [2.0,+0.2]
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Figure 13: Steady-state economic loss for region-based MPC on case study 2 -
linearized at d⋆ = [2.0,+0.2]
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Figure 14: Steady-state economic loss for standard MPC on case study 2 -
linearized at d⋆ = [2.0,+0.2]

4.3. Case study 3 - Williams-Otto reactor revisited

We now revisit the previous case study, to consider a case
with three rather than two constraints and only one distur-
bances. This is a case where stanbdard decentralized selector-
based region-based control would not work, because ng > nu

[17]. With only one disturabances it is easier to visualize some
of results. We consider the following optimization problem:

min
u

J = pAFA + pBFB − (FA + FB) (pPxP + pE xE)

s.t. FB ≤ 4.0
Tr ≤ 355.0
xG ≤ 0.105

(27)

Here, the operational constraints are related to maximum
allowed values for FB, Tr, and xG. The MVs are the same,
u =
[
FB Tr

]T
, but we only consider one disturbance, d = FA,

which is in the reange 0.5 ≤ d ≤ 3.5. We again normalize the
constraints. The normalized problem is given by:

min
u

J = pAFA + pBFB − (FA + FB) (pPxP + pE xE)

s.t. g1 =
FB − 4.0
2.68018

≤ 0

g2 =
Tr − 355.0

9.55095
≤ 0

g3 =
xG − 0.105
0.00411912

≤ 0

(28)

Figure 15 present the active constraint regions as a function
of the disturbance FA. It can be seen that all possible feasi-
ble combinations of active constraints appear in the considered
disturbance range.

This problem has three constraints and two MVs, and there-
fore a fixed pairing between constraints and MVs would not
account for all possible active constraint regions. For instance,
if u1 is paired to g1, u2 is paired to g2, and g3 may be active at
the same time as the other constraints, control of g3 must have
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Figure 15: Active constraint regions for case study 3 in terms of optimal
constraint values as a function of d (magenta dashed lines represent region
switches)

some sort of adaptive pairing, if decentralized control is to be
achieved (see Bernardino et al. [18] for an example).

In Figure 16, we present results for the dynamic simulation
of the system. It should be noted that the tuning used for the
standard MPC is done such that it can operate acceptably even
when constraints become active, which hinders the overall at-
tainable performance. Because the region-based MPC can be
tuned independently for every active constraint region, dynamic
performance can be expected to be better.
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Figure 16: Dynamic simulation results for case study 3 - comparison between
standard MPC (green) and the proposed region-based MPC (blue)

In Figures 17 to 19 we compare the steady-state behavior of
the region-based MPC and the standard MPC, respectively, in
terms of the constraints’ values and economic losses. We can
see that the linearization strategy is such that the operation is
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exactly optimal at d = d⋆ = 1.0 for the region-based MPC, but
the same cannot be said for the standard MPC. This is because
the system was linearized at a partly constrained region, and
while the region-based MPC is able to use the correction J⋆u in
Equation (13), the same correction applied to the standard MPC
does not lead to optimal operation. In addition, standard MPC
performs poorly at driving the system to the correct constraints
to be controlled, which leads to huge discrepancies with relation
to optimality for d > 1.9 and large economic losses.
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Figure 17: Steady-state constraint values for standard MPC on case study 3
(optimal values as dashed lines)
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Figure 18: Steady-state constraint values for region-based MPC on case study
3 (optimal values as dashed lines)

5. Discussion

5.1. Exact local method for H (for case with measurements er-
ror and any number of measurements)

The gradient esitmationm in this work is paper on the
nullspace method of self-optimizing control and therefore dis-
regards measurement error. In another paper [19], we propose
a gradient estimation method that accounts for static measure-
ment error (ny), based on the exact local method, which results
in an optimal linear combination of any number (ny) of mea-
surements.

TODO: The rest of the discussion is very long. Try to reduce!
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Figure 19: Closed-loop steady-state economic loss for controllers on case study
3 (y-axis is scaled quadratically for better visualization)

5.2. Optimal operation under changing active constraints

The region-based MPC proposed in this work depends on a
logic element that detects the current active constraint set so
that the corresponding self-optimizing CVs, defined by CVA,
are selected and controlled. The use of simple logic elements
for changing control structures is very common among practi-
tioners, but it is not generally clear how to use these elements
optimally [20]. This issue has received attention in recent devel-
opments, especially when a low number of switching variables
is involved [21, 22]. In general, it is necessary that one has an-
alyzed the range of disturbances to be handled by the control
structure, in order to propose a switching strategy, along with a
pairing between MVs and CVs, that accommodates all control
objectives. That procedure is, however, dependent on the case
study and the engineering insight, and one may find cases where
a decentralized strategy would be impossible or too complex to
be considered in practice [18].

In addition to this issue, even if the disturbance range is such
that constraints paired to the same MV are never active at the
same time, the whole control structure should in principle be
changed according to which set of constraints is active because
the optimal CVs related to the unconstrained degrees of free-
dom will change. Therefore, in terms of self-optimizing control
of such systems, we can say that the general case of a switch-
ing logic between CVs must be in some sense centralized, as the
complexity of the decision process becomes combinatorial. Be-
cause of these intrinsic limitations of decentralized SOC struc-
tures, centralized approaches for SOC become vital for guar-
anteeing optimal operation of systems with several changing
constraints.

5.3. Estimation of active constraints

To determine the active set during operation, we use the
method by Woodward et al. [7], which is proven optimal for
measured gradients. In this work, the cost gradient is estimated
through a linear combination of the measurements, which is
consistent with the CVs being used.
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Another approach for detecting changes in the active con-
straint region, is to tracks the values of the CVs in the neigh-
boring regions. [6, 23]. The CVs determined for each region
must be consistent to result in a unique solution to the switch-
ing problem. If this is not the case, one may encounter multiple
steady-state solutions and lack of convergence where the con-
trol structures switches indefinitely. This was observed when
applying this approach to the case studies.

On the other hand, the solution presented in this work relies
on a single model realization, and all CVs obtained from it are
consistent.

5.4. Use of direct measurements
To simplify the active constraint prediction, one mau con-

sider basing the gardient esimate based .... In Algorithm 1, we
describe the estimation of the active set considering the pre-
dicted closed-loop behavior (TODO: you keep using the ”close-
loop”; I think meaning that you are looking at the final steady
state). of the internal model. This is done to accelerate con-
vergence, and one could instead use the current value of the
measurements y for determining both cost gradient estimation
and constraint violation. The use of direct measurements is il-
lustrated in Figure 20, (TODO: ???? not clear what you are
trying to say) compared to the approach used in the course of
this work, with all other parameters being the same across the
simulations.
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Figure 20: Comparison between region-based MPC with active set detection
from closed-loop predictions (blue) and from direct measurements (green)

We can see that the use of direct measurements on the active
set detection algorithm gives a worse overall closed-loop be-
havior in this case. For the first step change on the disturbance
(t = 1.5 h), even though g3 is dynamically violated, the cost
gradient estimated directly from the measurements dictates that
it will be given up at steady state, and the constraint is therefore
not deemed active. When the system is close to steady state,
the cost gradient estimate becomes more accurate, and the con-
straint is then considered active. A similar behavior happens for
the second step change on the disturbance (t = 3 h). For the last
disturbance value (from t = 6 h), the closed-loop system faces
problems, as the e estimated active set does not match the op-
eration of the system, and the state estimator is in conflict with

the dynamic constraint. Because of this, we see oscillation in
the result, and the system does not seem to converge.

TODO: The following paragraph is unclear and not needed.
It is important to consider that the cost gradient is only cor-

rectly evaluated at steady state, because the derivation of H0,
see Equation (12), is based on the steady-state optimization
problem. Indeed, the cost gradient Ju is only defined at steady
state. This means that one may find inconsistent results for the
cost gradient during transients, and the use of predicted steady-
state values would be in general beneficial, which is why the
estimator is also important for active set detection. However,
we remark that the state estimator is not used to re-optimize the
plant like in the hybrid RTO scheme in Krishnamoorthy et al.
[24], and therefore estimating the disturbances d is not neces-
sary. We simply require that the estimator matches the measure-
ments at steady state, similar to the conditions for offset-free
control [8].

5.5. Tuning of region-based MPC

TODO: Also this is unclear to me:
The region-based MPC can be seen as a set of multivari-

able feedback controllers coordinated by a logic element. This
logic element introduces an additional information loop, be-
sides the feedback controller itself, which may cause stability
problems. Rapid changes in which of the controllers is active
may occur from the interaction between the switching element
and the closed-loop dynamics, generating high-frequency, self-
sustained switching. This is a known issue in closed-loop sys-
tems with selectors or other logical elements, and it may be
counteracted by restricting how fast the logical element may
change, leading to overall system stability [25]. In this work,
this is attained by the tuning parameter Nsw. Additionally, view-
ing the controllers of each region as independent is an oppor-
tunity for independent tuning of those controllers, as different
CVs usually have different dynamic behaviors. Careful evalua-
tion of MPC tunings for different regions is therefore advised,
so that good dynamic performance is attained in all relevant op-
erating conditions.

5.6. Comparison between region-based MPC and other MPC
approaches

The simulations verify that standard setpoint-tracking MPC
is unable to deal with changing steady-state constraints. To sat-
isfy a steady-state constraint which is not in the nominal region,
the standard MPC gives up on tight control of its CVs, usu-
ally all at the same time. In our simulations, the prioritization
of CVs is automatically done by the tuning the MPC control
weights, and the steady-state offset of the CVs will therefore be
indirectly determined by such tuning. This aspect is not usu-
ally prioritized in the design of MPC controllers, and therefore
we have no quantitative control over how much offset we toler-
ate for each CV. Another possibility, which is used in industrial
implementations of MPC, is solving a sequence of steady-state
calculations, assessing constraint satisfaction, before solving
the MPC problem itself [26]. This allows for adapting the MPC
problem, changing control specifications so that constraints are
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considered when necessary, and avoiding the use of dynamic
constraints that may cause stability issues. The problem here
becomes determining the control specifications, which is often
based on process experience.

The present work has not focused on integrating the proposed
tool with RTO, as other works have covered [27]. Instead, the
region-based MPC was formulated to be independent of the
RTO layer, such that it operates near optimally without its up-
dates. Naturally, the proposed tool can be integrated with RTO,
by updating the gain matrices and reference values in Figure 2.
Because these updates are associated with the steady-state con-
ditions of optimality, the economic performance of the region-
based MPC will be as good as the quality of these updates.

Some MPC frameworks (for example, that of Rawlings [1])
include a target calculation block, which will define to what
steady state the MPC will converge. In these frameworks, it
seems possible that the approach presented in this work can be
used at the target calculation block only, and the MPC problem
remains unchanged for every active constraint region. The main
benefit of this would be that the stability properties of the MPC
problem would remain the same regardless of the detected ac-
tive set. This does not completely solve the stability issue, as
the estimator and the target calculator blocks must converge,
but it would still be an appealing approach.

We must also note that the proposal of this work is fundamen-
tally different from that of centralized approaches such as eco-
nomic model predictive control (EMPC). In these approaches,
the dynamic and economic problems are solved together, which
requires a high level of detail in the available dynamic model
[2]. In the proposed region-based MPC, we only require a rea-
sonable dynamic model to ensure closed-loop stability for the
tracking of CVs and an accurate economic steady-state problem
that will define these CVs.

6. Conclusion

A framework for self-optimizing control under changing ac-
tive constraints was presented, see Figure 2. Its main ele-
ments are (1) the active set detection block (see Algorithm 1),
and (2) the design of self-optimizing CVs in each active con-
straint region for the unconstrained degrees of freedom, see
cA = NT

AH0y in Equation (14) and the respective setpoint in
Equation (15). In this paper, we estimated the cost gradient
Ju using the nullspace method from self-optimizing control, by
obtaining a measurement combination matrix H0. More gener-
ally, with measurement bias and any number of measurements
y, it is recommended to obtain H0 for estimating the cost gra-
dient Ju using the exact local method [19]. The setpoints csp

A
are calculated based on the nominal operating point and were
not updated during the simulations for the three case studies, to
show the self-optimizing nature of the chosen CVs. We high-
light that the switching of control objectives is done without the
need for pairing MVs and CVs and without the need for RTO
updates, making it applicable to a wide class of problems.
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[6] J. Jäschke, S. Skogestad, Optimal controlled variables for polynomial
systems, Journal of Process Control 22 (2012) 167–179.

[7] L. Woodward, M. Perrier, B. Srinivasan, Real-time optimization using
a jamming-free switching logic for gradient projection on active con-
straints, Computers & Chemical Engineering 34 (2010) 1863–1872.

[8] U. Maeder, F. Borrelli, M. Morari, Linear offset-free model predictive
control, Automatica 45 (2009) 2214–2222.

[9] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches, John Wiley & Sons, 2006.

[10] D. Q. Mayne, Model predictive control: Recent developments and future
promise, Automatica 50 (2014) 2967–2986.

[11] I. J. Halvorsen, S. Skogestad, J. C. Morud, V. Alstad, Optimal selection
of controlled variables, Industrial & Engineering Chemistry Research 42
(2003) 3273–3284.

[12] V. Alstad, S. Skogestad, E. S. Hori, Optimal measurement combinations
as controlled variables, Journal of Process Control 19 (2009) 138–148.
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