
Reinforcement Learning based MPC with Neural Dynamical Models

Saket Adhau, Sébastien Gros, and Sigurd Skogestad

Abstract— This paper presents an end-to-end learning ap-
proach to developing a Nonlinear Model Predictive Control
(NMPC) policy, which does not require an explicit first-
principles model and assumes that the system dynamics are
either unknown or partially known. The paper proposes the
use of available measurements to identify a nominal Recurrent
Neural Network (RNN) model to capture the nonlinear dynam-
ics, which includes constraints on the state variables and input.
To address the issue of suboptimal control policies resulting
from simply fitting the model to the data, the paper uses
Reinforcement learning (RL) to tune the NMPC scheme and
generate an optimal policy for the real system. The approach’s
novelty lies in the use of RL to overcome the limitations of
the nominal RNN model and generate a more accurate control
policy. The paper discusses the implementation aspects of initial
state estimation for RNN models and integration of neural
models in MPC. The presented method is demonstrated on a
classic benchmark control problem: cascaded two tank system
(CTS).

Index Terms— Reinforcement Learning, Nonlinear Model
Predictive Control, Recurrent Neural Networks

I. INTRODUCTION

Model Predictive Control (MPC) is a widely used control
strategy in various fields such as process control, robotics,
and autonomous systems [1]. The success of MPC depends
on the availability of a mathematical model that predicts
the future behavior of the system and optimizes control
actions accordingly [2]. However, uncertainties in model
parameters, measurement errors, stochiasticity, unmodeled
dynamics, and incomplete knowledge of the system can
introduce errors, leading to suboptimal control performance.
To address these challenges, the authors of [3] proposed
combining data-driven and model-based control to enhance
MPC performance. This approach enables the control of
complex systems with nonlinear dynamics and uncertainties,
without relying on an accurate mathematical model of the
system.

Although the approach presented in [3] can address model
uncertainties, it still assumes the availability of some form
of mathematical model to define the state and action spaces.
In real-world scenarios, a detailed mathematical model or

This work was supported by the Research Council of Norway, under
the IKTPLUSS program (Project number 299585) and Safe Reinforcement
Learning using MPC (SARLEM) (Project number 300172)

Saket Adhau is with the Department of Sustainable Energy
Technology, SINTEF Industry, 7031 Trondheim, Norway (e-mail:
saket.adhau@sintef.no)

Sigurd Skogestad is with the Department of Chemical Engineering, Nor-
wegian University of Science and Technology, 7491, Trondheim, Norway.
(e-mail: sigurd.skogestad@ntnu.no)

Sebastien Gros is with the Department of Engineering Cybernetics, Nor-
wegian University of Science and Technology, 7491 Trondheim, Norway
(e-mail: sebastien.gros@ntnu.no)

complete knowledge of the system dynamics may not be
available, and only input-output data may be accessible.
In such cases, techniques such as system identification [4]
or data-driven approaches [5] can be used to estimate the
system’s dynamics and construct a model that can be utilized
for control purposes.

In this paper, we propose to construct a “domain-aware”
neural network model for modeling the unknown system
dynamics. The purpose of this model is to replace the classic
dynamic model used in [3]. The neural network can handle
complex nonlinear systems where defining a state space
may be difficult. During the training phase, we include
constraints on both the state variables and input of the
model to ensures that it remains physically meaningful and
consistent with the real system. By constraining the state
variables, we can ensure that the model remains within a
physically feasible region of operation, and by constraining
the input, we ensure that the control inputs generated by the
model are within the range of physically feasible inputs. This
dynamical model will then be integrated into an RL-based
MPC framework proposed in [3] to build an optimal MPC
policy with focus on closed loop performance. Our aim is to
improve the closed loop performance of the system by using
this neural network model, which provides more flexibility
and adaptability compared to a classic dynamic model.

The initial state estimation is addressed using a past
window of both measurements and outputs. The measured
outputs are sequentially fed to the model instead of the
predicted ones. We present discussions on adaptation of
the neural model in case of model mismatch, and also the
integration of neural dynamical models in MPC pipeline.
We analyze the performance of the proposed approach on
a classical benchmark problem: Cascaded Two tank system
(CTS). The proposed method is highly sample efficient with
only one requirement: a sufficiently excited time-series data
set of the system dynamics.

The paper is organized into several sections. Section I
provides an introduction to the problem and motivation for
the research. Section II reviews the relevant literature and
presents the background information on the RL-based MPC
approach. Section III describes the approach to system iden-
tification using neural networks. In Section IV, we present
the implementation of our proposed approach and the results
of our experiments. Finally, Section V concludes the paper.

II. BACKGROUND

Obtaining an accurate mathematical model to represent
the dynamics of a physical system can be a daunting task,
particularly for complex systems with nonlinear dynamics



and uncertainties. A well-performing model should be able
to capture the essential dynamics of the system and ac-
curately predict its behavior in response to control inputs.
Additionally, the model should be inexpensive to evaluate
and differentiate, especially for real-time MPC applications.
This necessitates that the model be of appropriate complexity,
neither too simple to overlook important dynamics nor too
complex to become computationally intractable.

While System identification is often considered an es-
sential step in developing an MPC strategy, its necessity
depends on the specific application and the characteristics of
the system being controlled. Numerous techniques have been
developed for system identification, ranging from classical
methods to more advanced data-driven approaches [6].

Classical system identification methods include black-box
modeling techniques such as ARX, ARMAX, and state-
space modeling [7]. These methods do not require an explicit
understanding of the underlying system dynamics to model
the system, and can be effective for complex nonlinear
systems. However, they still require some knowledge of the
system and its behavior, specifically the inputs and outputs
of the system and their relationship to each other. As a result,
these methods may not be suitable for systems with limited
or poor quality input-output data.

Neural dynamical models are a powerful tool for modeling
nonlinear dynamics as they can capture complex and non-
linear relationships between input and output data without
relying on a mathematical model [8]. Unlike traditional
modeling techniques, these models can handle nonlinearities
and interactions between system variables. RNNs are a
type of neural network that can maintain information from
previous inputs, making them well-suited for time series data
and increasingly popular for tackling nonlinear problems [9],
[10]. With their ability to capture the dynamic behavior of
a system, neural dynamical models can be useful for system
identification and control in a wide range of applications.

Recently, researchers [11] proposed an approach for mod-
eling the dynamics of complex systems using RNNs, demon-
strating the potential of this method in accurately identifying
and controlling nonlinear systems. Another study [12] uti-
lized constrained block-nonlinear neural networks to identify
and model nonlinear systems. The authors demonstrated that
this method can effectively capture the dynamics of a wide
range of systems, and can be used to design control strategies
that achieve improved performance compared to traditional
approaches.

A. Reinforcement Learning

Consider a problem described by Markov Decision Pro-
cess (MDP) with potentially stochastic state transition dy-
namics denoted by,

P[s+|s,a] , (1)

where s,a is the current state-action pair and s+ is the
subsequent state and P is the conditional probability. The
state-action space s ∈ S,a ∈ A is assumed to be continuous
and P is a probability density, but the theory proposed here is

valid in general. The notation used for state transitions in (1)
is standard in MDP literature, whereas the control literature
commonly employs s+ = f(s,a, ζ) where ζ is a stochastic
variable and f is a possibly nonlinear function.

Let us consider a stage cost L(sk,ak) associated to the
MDP can take the form of:

L(sk,ak) = ℓ(sk,ak) + I∞(h(sk,ak)) , (2)

where ℓ(sk,ak) captures the cost given to different input-
output pairs, and the constraints

h(sk,ak) ≤ 0 , (3)

capture undesirable states and inputs, and infinite values are
given to L when (3) is violated. Additionally, we use the
indicator function,

I∞(x) =

{
∞ if xi > 0 for some i
0 otherwise. (4)

With the addition of a discount factor 0 < γ ≤ 1, given
(1) and (2), any optimal discounted policy π⋆ minimizes the
expected total discounted cost,

J(π) = E

[ ∞∑
k=0

γkL(sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (5)

where the expected value E[·] is taken over the (possibly)
stochastic state transition dynamics (1) in closed loop with
policy π.

The optimal action-value function Q⋆, value function V⋆,
and optimal policy π⋆(s) associated to the MDP, are defined
by the Bellman equations [13]:

Q⋆ (s,a) = L (s,a) + γE [V⋆(s+) | s,a] , (6a)
V⋆ (s) = Q⋆ (s, π⋆ (s)) = min

a
Q⋆ (s,a) . (6b)

Throughout the paper we will assume that the associated
stage cost L, and the discount factor γ yield a well posed
problem, i.e. the value function defined by (6) are well posed,
and finite over some non-empty sets.

We then consider a model of the real system having state
transition dynamics

P[ŝ+|s,a] (7)

which typically do not match (1) perfectly. We now consider
a modified stage cost defined as:

L̂(s,a) =

{
Q⋆(s,a)− γV+(s,a) if |V+(s,a)| <∞
∞ otherwise

(8)
where V+(s,a) = E[V⋆(ŝ+)|s,a] where the expectation is
taken over the distribution (7). We now briefly reiterate the
central theorem in [3], stating that under some condition,
the policy π⋆ that minimizes the stage cost L for the true
dynamics (1) can also be generated using the model (7)
combined with the stage cost L̂. The approach here used
is to bypass the difficult evaluation of (8), and replacing it
by learning L̂ directly from the data.



Let us consider the parametrization of value function V⋆

using the following ENMPC scheme parameterized using θ:

Vθ(s) = min
x,u

λθ(x) + γNV f
θ (xN ) +

N−1∑
k=0

γkℓθ(xk,uk)

(9a)
s.t. x0 = s, (9b)

xk+1 = fθ(xk,uk), (9c)
g(uk) ≤ 0, (9d)

hθ(xk,uk) ≤ 0, hf
θ(xN ) ≤ 0, (9e)

where the ENMPC scheme (9) holds a model parametrization
fθ, a constraint parametrization hθ, a parametrization of the
stage cost ℓθ and terminal cost V f

θ with the storage function
λθ. While the pure input constraints are fixed g(a) ≤ 0 are
arguably fixed, the mixed constraints in the ENMPC scheme
ought to be modified, in order to capture the domain where
L̂(s,a) is finite. Additionally, a relaxed version of L and of
mixed constraints is considered to avoid infinite penalties in
case of constraint violations.

Further, we define the action-value function Qθ(s,a) as

Qθ(s,a) = min
u,x

(9a) , (10a)

s.t. (9b)− (9e) , (10b)
u0 = a . (10c)

The proposed parametrization trivially satisfies the funda-
mental equalities underlying the Bellman equations, i.e.,

πθ(s) = argmin
a

Qθ(s,a), Vθ(s) = min
a

Qθ(s,a). (11)

B. Q−Learning for ENMPC

In the Q−learning algorithm, the action-value function is
represented by Qθ(s,a), where θ is a vector of parameters.
The classical approach to Q−learning involves updating
these parameters based on temporal differences δ, which
are computed from the difference between the predicted and
actual rewards received from taking a particular action in
a given state. This approach is coupled with instantaneous
policy updates, where:

δk = ℓ(sk,ak) + γ min
ak+1

Qθ (sk+1,ak+1)−Qθ (sk,ak) ,

(12a)
θ ← θ + αδk∇θQθ (sk,ak) , (12b)

where the scalar α > 0 is the learning rate. For further
clarification such as the gradient calculation in the RL-based
MPC scheme, readers are directed to the paper by [3].

C. Need for a Model

In the approach presented above, a model is needed to
formulate the state and action spaces, which are essential for
training the RL agent. While the agent can learn the optimal
policy from data, it still requires a model to operate within a
well-defined state and action space. Therefore, even though
the RL-based MPC scheme can handle model mismatch or

uncertainties, a model is still required to formulate the state
and action spaces, as well as to evaluate the performance of
the learned policy.

III. RECURRENT NEURAL NETWORKS

The use of RNNs for modeling dynamical systems in
MPC settings has several advantages over classical system
identification methods. RNNs excel at capturing complex
and nonlinear relationships between input and output data,
making them well-suited for time series data and nonlinear
problems.

A. Constrained system identification using RNNs

Consider a discrete-time dynamical system, denoted by
S which takes input values u ∈ Rnu and produces output
values y ∈ Rny . At any given time step k, the system’s
output may depend on all previous input samples, i.e., it
exhibits memory,

yk = S(uk, uk−1, . . . , u0). (13)

Assuming that the system S can be adequately represented
by a nonlinear dynamical model, denoted by M:

ŷk =M(uk, uk−1, . . . , u0; θ) (14)

where θ ∈ Rnθ is a parameter vector to be determined.
We use bold symbols u and y to denote the sequence of

N input and output samples in a dataset D.
In this paper, we assume that the model has the following

state-space representation:

xk+1 = F(xk,uk; θF ) (15a)
ŷk = G(xk,uk; θG), (15b)

where xk ∈ Rnx is the unknown system state, uk ∈ Rnu

is the control input at time k. In this paper, F and G
are the state-update and output mappings respectively, both
parameterized by θ = θF , θG . In particular, F and G are
neural networks, and the overall model (15) is a RNN.

The data is assumed to be available in the form of input-
output tuples, denoted by

D = {(yi
k,u

i
k), (y

i
k+1,u

i
k+1), . . . , (y

i
k+N ,ui

k+N )}, i ∈ Nn
1

(16)

where n is the number of sample trajectories with N time
steps. The primary aim is to learn a constrained neural
equivalent of the unknown system dynamics, given input-
output time-series dataset (16) obtained by observing the
system.

B. System identification loss

The neural state space dynamics (15) are trained on the
sampled input-output trajectories (16) using the loss function



Plant
Neural

Model, θ

NMPC,

θ
Reinforcement

Learning

u⋆
t

xt

xtx̂t

θ

Fig. 1: Illustration depicting the proposed methodology that employs nonlinear neural dynamical models, constructed using
measurement data, within a RL based MPC framework, to attain an optimal control policy.

described below:

Lϕ(Y
true,Y, Ȳ,

¯
Y|θ) =

1

nN

n∑
i=1

N∑
k=1

(∣∣∣∣∣∣ytrue,i
k − yi

k

∣∣∣∣∣∣2
2
+Qy

∣∣∣∣∣∣p(yi
k,
¯
yi
k+1)

∣∣∣∣∣∣2
2
+

+Qy

∣∣∣∣∣∣p(yi
k, ȳ

i
k+1)

∣∣∣∣∣∣2
2
+Qu

∣∣∣∣∣∣p(fu(ui
k),

¯
fu)
∣∣∣∣∣∣2
2
+

Qu

∣∣∣∣∣∣p(fu(ui
k), f̄u)

∣∣∣∣∣∣2
2

)
,

(17)

where k represents the time step of the prediction horizon
N , whereas i is the batch index of n sampled trajecto-
ries. The tracking loss is given by the first term, taken as
two norm over the residual vector between true Ytrue =
{Ytrue,i

1 , . . . ,Ytrue,i
N } and predicted Y = {Yi

1, . . . ,Y
i
N}

output trajectories over N step. The second term is optional
and is used to promote smoothening of the trajectories of
dynamic models. Furthermore, the third and fourth terms
impose constraints on the output trajectories using penalty
functions. We apply inequality constraints on predictions
during the training phase itself, making the unconstrained
optimization problem amenable to the gradient-based opti-
mization methods used in deep learning. We use the fol-
lowing penalty functions for time-varying lower and upper
bounds ȳk,

¯
yk:

¯
p(yk,

¯
yk) = max(0,−yk +

¯
yk) , (18a)

p̄(yk, ȳk) = max(0,yk − ȳk) , (18b)

The penalty functions shown in (18) are easy to implement
and can be modified according the specific requirements
as shown in [14]. The iterative gradient-based optimization
algorithms, like Adam [15], can be used to minimize the loss.
The required derivatives computation is accomplished using
standard reverse-mode Automatic Differentiation (AD) algo-
rithms and software [16]. As standard practice is followed
for nominal model training, we will not discuss it in more
detail.

C. RNN initial state estimation

The estimation of initial state in an RNN model is very
important, especially for our application of MPC [17]. The
initial state can affect the state transition predictions and thus
needs to be estimated accurately. Extending the ideas used
in [11] we denote the predicted output ŷk which is a part of
the state:

xk+1 = F(xk, ŷk,uk; θF ) (19a)
ŷk+1 = G(xk+1, ŷk,uk; θG), (19b)
for k = 0, 1, . . . , Nc − 1. (19c)

While the predictions are performed using (19), the ini-
tial state is estimated using a window of the past data
{yk−1, . . . ,yk−Nc

,uk−1, . . . ,uk−Nc
}, where the measured

outputs yk−i are sequentially fed to the model instead of
the predicted ones for Nc steps, and xk−Nc is set to zero. In
particular, the state estimation is performed by opening the
output prediction loop for the first Nc steps:

xk+1 = F(xk,yk,uk; θF ) (20a)
ŷk+1 = G(xk+1,yk,uk; θG), (20b)

D. Using RNN models in MPC scheme

In MPC, the control law is typically obtained by solving
an optimization problem that involves the system model.
If a neural network is chosen as the system model, it is
crucial for it to be differentiable to calculate gradients for
the optimization problem. This is because most optimization
algorithms typically used in MPC rely on the gradient
information to find the optimal control inputs.

Fortunately, most neural network architectures used in
practice, such as feedforward networks and recurrent net-
works, are differentiable and can be used in MPC. However,
there are additional challenges when using neural network-
based models in MPC. The choice of network architecture
and the selection of appropriate regularization methods are
some of the important considerations. Despite these chal-
lenges, neural network-based models can still be a powerful
tool for improving the performance of MPC systems when
carefully designed and implemented.



The detailed procedure for the proposed method is il-
lustrated in Fig. 1. The method begins by constructing a
neural model of the system using available measurement
data. This model is then utilized in RL based MPC scheme
to optimize the closed loop performance. By employing the
RL-MPC scheme, we are able to modify the cost function
as well as model (if required) to adapt and learn from the
system’s behavior in real-time, leading to improved control
performance.

IV. CASE STUDY

To demonstrate the effectiveness of neural network-based
models in an RL-based MPC approach, we utilize the Cas-
caded Tanks System (CTS)described in [18].

The CTS is a control system for fluid level that involves
two tanks with free outlets, supplied by a pump. The
controlled pump transfers water from a bottom reservoir to
the upper tank. The water from the upper tank flows into
the lower tank via a small opening and subsequently into
the reservoir via another small opening. The system input,
denoted as u, is the water flow from the bottom reservoir
to the upper tank. Meanwhile, the state variables h1 and
h2 represent the water levels in the upper and lower tanks,
respectively.

The identification of the CTS system poses a significant
challenge due to several factors. The system’s hard saturation
nonlinearity, combined with its weakly nonlinear behavior
during regular operation, makes the identification process
complex. Moreover, the overflow from the upper to the lower
tank introduces input-dependent process noise, which further
complicates the problem.

DataSet: The experimental dataset was obtained from
the collection 1 of public benchmarks widely used in sys-
tem identification. These datasets are commonly used as a
benchmark for testing the accuracy and robustness of system
identification methods. The training and test datasets contain
1024 points each, collected at a constant sampling time
∆t = 5 s.

Metrics: We use Root Mean Square Error (RMSE) to
evaluate the performance index as it is suggested in the
description of the benchmark problem [18]:

Neural Network: The proposed method utilizes the Py-
Torch Deep Learning (DL) framework [16] for training
neural network models with the adaptation of RNN based
system identification module from [11]. The network com-
prises of one hidden layer with 128 neurons, utilizing Leaky
ReLU as the activation function. Gradient-based optimization
is carried out using the Adam optimizer [15], with the
learning rate parameter set to 10−3. The batch size is set
to 64, and n = 10000 iterations are carried out to ensure
convergence to a cost function plateau. The training process
takes approximately 400 seconds.

The neural networks’ weight parameters are initialized
with random Gaussian variables with zero mean and a stan-
dard deviation of 10−4, while the bias terms are initialized

1http://www.nonlinearbenchmark.org

to zero, These values are observed to be effective in aiding
the convergence of the model during the training process.

RL and MPC: In this work, for formulating the MPC
problem, we use CasADi [19] with IPOPT as the Nonlinear
Programming (NLP) solver [20]. For learning the optimal
policy, we use Q−learning with a learning rate of α = 10−3.
The discount factor, was set to γ = 0.99.

To enable the use of arbitrary neural network models
trained in PyTorch with CasADi, we use the implemen-
tation 2 from [21]. This implementation allows seamless
integration of neural network models trained in PyTorch into
the CasADi framework, enabling the use of deep learning
techniques in control problems. All the simulations have been
performed on a Macbook Pro with Intel Core i7 running at
2.6GHz and 16GB of memory.

A. Result Analysis:

Fig. 2a displays the time trajectories of both the true and
model output. Due to visualization constraints, only a subset
of the test dataset is presented. Notably, the fitted model
accurately characterizes the system dynamics with a high
degree of precision. The neural loop training achieved an
RMSE of 0.2912 indicating a satisfactory level of accuracy in
the model’s predictions. Although our proposed approach has
resulted in better RMSE results compared to the state-of-the-
art black-box nonlinear identification methods used for this
benchmark [22]–[24], it is important to note that the main
goal of this approach is not to obtain a highly accurate model
of the system. Rather, the primary objective is to develop
a model that can effectively function within the RL-MPC
framework. The RL-MPC approach can then fine-tune the
control policy as required.

Fig. 2b depicts the simulated closed loop trajectories of RL
based MPC for the CTS benchmark problem. Our intention
is to showcase that the proposed approach is capable of
achieving the desired results. It is important to note that these
results are presented solely for the purpose of demonstrating
the capabilities of the approach and are not compared to any
other technique.

V. CONCLUSION

In many real-world scenarios, obtaining a completely
accurate model of a system can be challenging, and often
measurement data is only available. In this paper, we propose
a method that utilizes this measurement data to build a
nonlinear neural dynamical model of the system.

The developed neural model may not be completely
accurate, but we show that it is still possible to achieve
optimal control policies using an RL-based MPC framework.
RL-MPC uses a combination of reinforcement learning and
model predictive control to learn and improve the overall
closed loop performance even when the model is incomplete
or inaccurate.

This approach has significant potential for practical appli-
cations in various fields where accurate models are difficult to

2https://github.com/TUM-AAS/ml-casadi



0 50 100 150 200 250 300 350 400
0.0

2.0

4.0

6.0

8.0

10.0

0 50 100 150 200 250 300 350 400
0.0

2.0

4.0

6.0

8.0

10.0

(a)

Time (s)

2

4

6

8

10

12

h
1

[m
]

y

ŷ

0 1000 2000 3000 4000

Time (s)

2

4

6

u
[V

]

u

(b)

Fig. 2: (a) CTS Benchmark: Open-loop trajectories of the trained neural model (red) and real system (black).
(b) CTS Benchmark: Simulated closed-loop control trajectories demonstrating RL based MPC with neural dynamical model.
The upper pane depicts the reference (dashed black) alongside the controlled state h2, while the lower panel shows the
measured state h1.

obtain or not available. The use of neural networks and RL-
based MPC can offer a reliable and adaptive control strategy
that can learn and improve based on the system’s feedback.

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control engineering practice, vol. 11, pp. 733–
764, 2003.

[2] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

[3] S. Gros and M. Zanon, “Data-driven economic NMPC using reinforce-
ment learning,” IEEE Transactions on Automatic Control, vol. 65, pp.
636–648, 2019.

[4] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of
nonlinear dynamics for model predictive control in the low-data limit,”
Proceedings of the Royal Society A, vol. 474, p. 20180335, 2018.

[5] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven
model predictive control with stability and robustness guarantees,”
IEEE Transactions on Automatic Control, vol. 66, pp. 1702–1717,
2020.

[6] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, pp.
28–99, 2019.

[7] E.-W. Bai and F. Giri, “Introduction to block-oriented nonlinear
systems,” Block-oriented Nonlinear System Identification, pp. 3–11,
2010.

[8] S. Chen, S. A. Billings, and P. Grant, “Non-linear system identification
using neural networks,” International journal of control, vol. 51, pp.
1191–1214, 1990.

[9] T. W. Chow and Y. Fang, “A recurrent neural-network-based real-time
learning control strategy applying to nonlinear systems with unknown
dynamics,” IEEE transactions on industrial electronics, vol. 45, pp.
151–161, 1998.

[10] J. de Jesús Rubio and W. Yu, “Nonlinear system identification with
recurrent neural networks and dead-zone kalman filter algorithm,”
Neurocomputing, vol. 70, pp. 2460–2466, 2007.

[11] M. Forgione, A. Muni, D. Piga, and M. Gallieri, “On the adaptation
of recurrent neural networks for system identification,” arXiv preprint
arXiv:2201.08660, 2022.

[12] E. Skomski, S. Vasisht, C. Wight, A. Tuor, J. Drgoňa, and D. Vrabie,
“Constrained block nonlinear neural dynamical models,” 2021 Amer-
ican Control Conference (ACC), pp. 3993–4000, 2021.

[13] D. P. Bertsekas, “Dynamic programming and optimal control, volume
1 of optimization and computation series,” Athena Scientific, Belmont,
MA, USA, 3rd edition, vol. 2, 2005.

[14] S. Adhau, V. V. Naik, and S. Skogestad, “Constrained neural networks
for approximate nonlinear model predictive control,” 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 295–300, 2021.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[17] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, pp. 789–814, 2000.

[18] M. Schoukens and J. P. Noël, “Three benchmarks addressing open
challenges in nonlinear system identification,” IFAC-PapersOnLine,
vol. 50, pp. 446–451, 2017.

[19] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
pp. 1–36, 2019.

[20] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

[21] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scara-
muzza, and M. Ryll, “Real-time neural mpc: Deep learning model
predictive control for quadrotors and agile robotic platforms,” IEEE
Robotics and Automation Letters, vol. 8, pp. 2397–2404, 2023.

[22] R. Relan, K. Tiels, A. Marconato, and J. Schoukens, “An unstructured
flexible nonlinear model for the cascaded water-tanks benchmark,”
IFAC-PapersOnLine, vol. 50, pp. 452–457, 2017.

[23] G. Birpoutsoukis, P. Z. Csurcsia, and J. Schoukens, “Efficient multi-
dimensional regularization for volterra series estimation,” Mechanical
Systems and Signal Processing, vol. 104, pp. 896–914, 2018.

[24] A. Svensson and T. B. Schön, “A flexible state–space model for
learning nonlinear dynamical systems,” Automatica, vol. 80, pp. 189–
199, 2017.


