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a b s t r a c t

This paper introduces powerful static input transformations which transform the original system
(process) into a transformed system which is easier to control. The transformed inputs (controller
outputs) may be implemented in many ways and under many names, for example, as ratio, feedforward
and decoupling control, or more generally as nonlinear computation blocks. These methods are
frequently used in industry, but are often introduced in an ad-hoc fashion. The present paper provides
a systematic method for deriving such control strategies from a nonlinear process model. For a static
model, the ideal transformed input is simply the right-hand-side of the model equations. The resulting
transformed system is linear, decoupled and independent of disturbances. In some cases, use of extra
measurements simplify the input transformation by replacing model equations. It is also possible to
derive ideal transformed inputs from a dynamic model, which turns out to be a special case of a
nonlinear control approach called feedback linearization. However, except for achieving linearization
also dynamically, the benefits of using feedback linearization are small compared to using transformed
inputs based on a static model. For implementation we need to invert the input transformation, and
for this we may use an exact model-based inverse or an approximate feedback-based inverse. The
latter leads to the use of cascade control.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Industry frequently makes use of nonlinear static model-based
‘calculation blocks’’, ‘‘function blocks’’, or ‘‘ratio elements’’ to
rovide feedforward action, decoupling or linearization (adaptive
ain), and Shinskey [1] provides many examples of this. The main
otivation for this work is to provide a better theoretical basis for

hese model-based nonlinear control elements, which we study in
his paper in the context of nonlinear input transformations.

Let u denote the original (physical) input and let v denote
the transformed input (controller output) which depends on u
nd other variables. The main idea is that the controller C (or in
ome cases the operator) sets the value of the transformed input
rather than the physical input u, see Fig. 1. In this paper, we

define the transformed input v as a nonlinear static function g of
the physical input u and other variables

v = g(u, w, y, d) (1)

Note that the specific function g is a design choice for the control
engineer. The variables are defined as follows:

v = transformed inputs (controller outputs)
u = original (physical) process inputs
d = measured disturbances
y = controlled process outputs (measured)

= other measured dependent process variables (states).

In this paper, we do not include dynamic elements in the
definition of the transformed input v, although dynamic elements
are frequently used in industrial practice (e.g., [2]).

Nevertheless, even without dynamics, (1) provides a very
generic definition so let us state more clearly the objective of
introducing the transformed input.

The transformed input v replaces the physical input u as the
manipulated variable for control of the output y, with the aim of sim-
plifying the control task by including elements such as decoupling,
linearization and feedforward action.
 t
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Shinskey [1] (on page 119) writes in relation to selecting input
and output variables for the controller:

‘‘There is no need to be limited to single measurable or ma-
nipulable variables. If a more meaningful variable happens to
be a mathematical combination of two or more measurable
or manipulable variables, there is no reason why it cannot be
used’’.

Some simple examples of transformed inputs (controller out-
puts) are

v = u + d (2a)

v =
u
d

(2b)

v = u1 − u2 (2c)

=
u1

u2
(2d)

= w (2e)

Such transformed inputs are often introduced by engineers on
simple physical grounds. The transformed input v = u+d in (2a)
ay provide feedforward action from a measured disturbance d.

t may be used, for example, for a case where u and d represent
two feedrates and we want to control the combined flowrate
u + d. The ratio v =

u
d in (2b) may provide feedforward action

and linearization. It is typically used when u and d represent two
feedrates and we want to control the quality (e.g. composition) of
the combined feed. A transformed variable with two inputs may
provide decoupling, for example the difference v = u1 − u2 in
(2c) and the ratio v =

u1
u2

in (2d).
The transformed input v = w in (2e) with w = F (measured

lowrate) is probably the most common of all in process control.
ts implementation results in a slave flow controller, where the
hysical input u is the valve position and the transformed input
is the flowrate F (or more precisely, v = Fs, the setpoint for

he flowrate). This particular transformed input (v = F ) and
he use of slave flow control is so common that in many cases
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Fig. 1. Use of transformed inputs v. For example, the transformed input could
e the ratio v = g(u, d) =

u
d , and the ‘‘inverse input transformation’’ block which

inverts this relationship would then be u = g−1(v, d) = vd. The outer feedback
ontroller C has the aim of correcting for uncertainty, including for model error
nd unknown disturbances.

eople consider the flowrate F to be the (physical) input u, and to
implify the expressions we will sometimes do this in this paper.
However, it is not enough to define the transformed input

, as in (1) and (2). For implementation we need to invert the
ransformation, that is, to generate from a given value of the
ontroller output v = g(u, w, y, d), the corresponding physical
nput u. Shinskey [1,3] calls this ‘‘reversing the process model’’.
here are two main ways of generating this inverse:

A. Model-based inverse1 using the ‘‘exact inverse input trans-
formation’’ u = g−1(v, w, y, d); see Fig. 1.

B. Feedback-based inverse using a cascade implementation
with a slave controller for v or w.

The model-based approach may be used for (2a)–(2d) above.
or example, for v = g(u, d) = u+d in (2a) the exact model-based
nverse becomes

= g−1(v, d) = v − d (3)

However, a model-based inverse is sometimes not possible,
ecause g(u, w, y, d) may not depend explicitly on u. For ex-
mple, for the transformed input v = F (flowrate), we have
(u, w, y, d) = w = F which is independent of the physical input
. In this case, the inverse must be generated by feedback using
slave flow controller.
In other cases, a model-based inverse may exist, but neverthe-

ess we may use a feedback controller as a ‘‘trick’’ to generate an
pproximate inverse. In the control literature, this trick is often
eferred to as ‘‘dynamic inversion’’ [4].

In most cases, the selection of transformed inputs v is based
n simple static models, for example, from material or energy
alances [1,3]. However, the treatment of Shinskey is case-study
ased and in this paper, we aim to show how to derive the
ransformed variables in a systematic manner. Ideally, assuming
o model error and that we measure all disturbances, these ‘‘ideal
ransformed variables’’ result in a transformed system from v

o y (see Fig. 1) that is linear, decoupled and independent of
isturbances.
We also show how this approach can be extended to dynamic

odels, and this case is closely related to the theory of feedback
inearization [5], which has a strong theoretical basis.

Throughout the paper we assume that we measure all the
arameters that enter the transformations, such as disturbances
and internal variables (states) w. This is often not true, so

n practice there are two alternatives. The most common is to
implify the expression for the ideal transformed variable, by

1 In this paper, the notation g−1 means that we invert or reverse the static
function g between independent and dependent variables. For example, if the
original function is v = g(u, d), where u is the independent variable and v the
ependent variable, then the solution that results from solving v = g(u, d) with
espect to u for a given v is written as u = g−1(v, d).
115
keeping only parts of the benefit of the input transformation,
for example decoupling, and leave the disturbance rejection to
the outer feedback controller C . The other approach is to use
a soft sensor, estimator or observer (e.g., [6,7]) to estimate the
non-measured variables d and w.

Surprisingly, there does not seem to be any academic liter-
ature on the common industrial approach of Shinskey [1,3] of
using static models to derive transformed inputs. On the other
hand, for dynamic models, there is a large body of mathematical
theory on variable transformations to transform nonlinear differ-
ential equations into linear differential equations, which has been
applied in the control field. The most well-known approach is
feedback linearization based on mathematical concepts from Lie
algebra (e.g., [5,6,8,9]). This theory is closely related to the input
transformations for dynamic systems studied in this paper. How-
ever, the theory of feedback linearization, although extensively
taught in nonlinear control classes, is rarely used in industrial
practice, at least within the field of process control. There are
several reasons for this. One is that the mathematics are seem-
ingly complicated and there are restrictions in terms of the class
of systems and the assumption of full state feedback. Another
reason is that, mainly for reasons of mathematical generality and
simplicity, Isidori [5] selects the transformed inputs such that the
resulting transformed linear system is integrating, dy

dt = v. This
eans that the transformed system is at the limit of instability,
o the transformed inputs v cannot be kept constant. For example,
ith a fixed v, any unmeasured disturbance will result in an

ntegrating output y. Therefore, Isidori [5] introduces an outer
tate feedback controller as part of the solution. However, in
any cases it is strongly desirable to be able to fix v, at least on an

ntermediate time scale, and actually the transformation into an
ntegrating system is not necessary. For example, [6,7], who study
rocess control applications, use a formulation that gives a stable
inear transformed system on the form dy

dt = Ay + Bv (where the
matrices A and B are tuning parameters), and this is the approach
taken in this paper. In a personal communication, Isidori [10]
emphasizes that the decision to make the transformed system
integrating was just chosen as an example, but this message has
not made its way to many of the potential users of feedback lin-
earization. For our purposes, the advantage with the large body of
literature on feedback linearization, is that this literature provides
a mathematical basis for issues related to the invertibility and
stability of the proposed transformations.

The paper starts in Section 2 with a motivating mixing exam-
ple on the use of input transformations for decoupling. Next, in
Section 3 we discuss in more detail the two main approaches for
implementing the transformed inputs, which are exact model in-
version and inversion by feedback (cascade control). In Section 4,
we show how to derive ‘‘ideal’’ model-based transformed inputs
that provide linearization, decoupling and feedforward control.
The model can either be a static model or a low-order dynamic
model. In the dynamic case, the theory is closely related to the
theory of feedback linearization. In Section 5 we present several
case studies. In Section 6, we discuss the results and study the po-
tential problem of internal instability. We also discuss the use of
transformed outputs. In Section 7 we make our final conclusions
and remarks.

We have attempted to keep the mathematical treatment at a
quite low level, so that the paper will be readable also for an
industrial audience. One reason is that we strongly believe that
the results in this paper can be very useful in industrial practice.

2. Motivating case study: Decoupling of mixing process

The main reason for introducing transformed inputs v is to
simplify the control of the outputs y. In Section 4, we introduce



S. Skogestad, C. Zotică and N. Alsop Journal of Process Control 122 (2023) 113–133

s
p
e
t
a

2

w
a
f
w
r
o
d

u

w

v

s
l
d
a

a

Fig. 2. Flowsheet of mixing process.

ystematic methods for selecting ‘‘ideal’’ transformed input v that
rovide linearization, decoupling and disturbance rejection. How-
ver, in many cases, engineers use simpler transformed inputs [1]
hat do not provide all these features. In this section, we consider
simple motivating case study.

.1. Example 1: Mixing process with flowrates as physical inputs

The mixing process in Fig. 2 has two inlet streams, and initially
e consider for simplicity the two flowrates F1 and F2 [kg/s]
s the physical inputs, rather than the valve positions. The inlet
lows are mixed to get a given total flow (F ) and quality (T ), which
e want to control. Depending on the application, T could rep-
esent temperature or composition. We will consider the mixing
f hot (F1) and cold (F2) water where T is temperature. The main
isturbances are the two inlet temperatures. Thus, we have:

=

[
F1
F2

]
; y =

[
F
T

]
; d =

[
T1
T2

]
A real design of this process using a traditional faucet with two
separate handles (valves) is shown in Fig. 3(a). We know that
this process is quite interactive. For example, to increase the
temperature y2 = T while keeping a constant total flow y1 = F ,
e need to increase the input u1 = F1 (hot water) while reducing

u2 = F2 (cold water) by the same amount.

Input transformation for decoupling
To eliminate the interactions and make the process decoupled,

we may use the alternative one-handle faucet in Fig. 3(b). Here,
one direction of the handle (usually up–down) is used for adjust-
ing the total flow (F = F1 + F2), and the other direction (usually
left–right) is used for adjusting the temperature by changing the
ratio F1

F2
of hot and cold water. This corresponds to using the

transformed inputs v1 = F1 + F2 and vr =
F1
F2
. The fact that these

transformed inputs give decoupling is probably clear on physical
grounds, and it can easily be proven by making use of the mass
and energy balances as shown later in Example 3 (Section 5.1).

For the modern one-handle design in Fig. 3(b), the transformed
variables v1 and vr are implemented physically (mechanically).
However, to implement decoupling using the traditional two-
handle design in Fig. 3(a), we need to add in the control scheme
a decoupling block to compute the physical inputs (u) from the
transformed inputs (v). With this digital rather than physical
decoupler, we may use the opportunity to replace the flow ratio
vr =

F1
F2

by the normalized ratio v2 =
F1

F1+F2
. The transformed

inputs v = g(u) then become

v1 = F1 + F2 = u1 + u2 (4a)

2 =
F1

F + F
=

u1

u + u
(4b)
1 2 1 2
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Both ratios vr and v2 give decoupling and they are equivalent
in the sense that fixing one keeps the other constant (since
v2 =

vr
vr+1 ). However, the normalized ratio v2 in (4b) has some

properties that makes it better for implementation. First, v2 is
always in the range 0 to 1, whereas vr may vary between 0
and ∞. Second, as shown later in Example 3, the ratio v2 is a
pecial case of the ideal static transformed input (v0) and provides
inearization. Third, the expression for the exact inverse in the
ecoupling block becomes very simple with v2, see (5). Fourth, v2
voids division by zero when F2 = 0, which may be an advantage

if we obtain the inverse by feedback control (Alternative B in
Fig. 6).

To find the exact inverse transformation (decoupling block),
we solve the expression v = g(u) for the transformed input in
(4) with respect to u for a given v, to derive u = g−1(v) where in
this case

u1 = F1 = v1v2 (5a)

u2 = F2 = v1 − v1v2 (5b)

The nonlinear decoupling g−1 in (5) may be implemented in
the block ‘‘inverse input transformation’’ in Fig. 1 to provide a
decoupled response from v to y for the traditional two-handle
design.

Note that the inverse transformation contains no divisions,
which is important to avoid division by zero. Furthermore, in
this simple case, the equations can easily be implemented using
standard multiplication and subtraction elements, for example, as
shown in Fig. 4.

In Section 5.1 we will use a systematic procedure to derive a
generalized (ideal) version of the transformed inputs in (4), where
disturbance rejection and linearization are also included.

2.2. Example 2: Mixing process with valve positions as physical
inputs

We have so far assumed that the flow rates F1 and F2 are the
physical inputs, but in practice it is more likely that the valve
positions z1 and z2 are the physical inputs and that the flowrates
are extra measured variables w:

u =

[
z1
z2

]
; y =

[
F
T

]
; d =

[
T1
T2

]
; w =

[
F1
F2

]
We will now consider three ways of implementing this in

order to retain a decoupled transformed system from the trans-
formed input v in (4) to the output y.

Alternative A (purely model-based inversion). The first option
does not make use of any measured flows (w). It is based on
inverting the entire model, including the valve model. A general
block diagram for this option is shown in Fig. 1, and the corre-
sponding flowsheet for this particular example is shown in Fig. 5.
A typical valve equation is

F = kv fv(z)
√

∆P (6)

Here, F is the flow, z is the valve position, kv is the valve constant
and ∆P is pressure drop over the valve which is assumed to be
measured disturbance. The valve characteristic fv(z) is assumed

to be known. For a linear valve, we have fv(z) = z. Inverting the
valve Eq. (6) gives

z = f −1
v

(
F

kv

√
∆P

)
(7)

For a linear valve, we get z =
F

kv
√

∆p . The resulting model-based
inversion may be implemented as shown in Fig. 5, where the
exact inverse block u = g−1(v, d) computes the valve positions
u = z (physical input) by combining the inversions in (5) and (7).
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Fig. 4. Implementation of inverse transformation in (5) using standard multipli-
cation and subtraction elements. The two transformed inputs are the sum (v1)
and the normalized ratio (v2) of the two inputs (u1 and u2).

Fig. 5. Model-based inversion (Alternative A) for implementation of transformed
nputs v1 = F1 + F2 and v2 =

F1
F1+F2

for the mixing process when the physical
nputs u are the valve positions z. The inversion block u = g−1(v, d) is a
ombination of the inversions in (5) and (7).

Specifically, (5) is used to calculate the flowrates F1 and F2, and
7) is used to calculate the corresponding valve positions z1 and
2.
However, in practice, this model-based implementation may

ot work well, mainly because of uncertainty (error) in the valve
haracteristic fv(z) and the valve constant kv , but also because of
ncorrect measurements of the pressure drop disturbance (∆P).
Therefore, if the inlet flows (F1, F2) can be measured with reason-
able accuracy, it is better to use a feedback-based implementation
where the feedback corrects for model uncertainty. Two such
implementations are discussed next.

Alternative B (purely feedback-based inversion). The first option
(Fig. 6) uses only feedback. The measured w-variables (flows F1
and F2) are used to compute the actual value of the transformed
input v (v1 = F1+F2 and v2 =

F1
F1+F2

), and two slave v-controllers

(VC1 and VC2) manipulate the physical inputs u (valve positions)
to make v equal to the desired setpoints vs which are computed
by the two master controllers (FC and TC).
117
Fig. 6. Feedback inversion (Alternative B) for implementation of transformed
inputs v1 = F1 + F2 and v2 =

F1
F1+F2

for the mixing process when the physical
inputs u are the valve positions z. This solution makes use of slave v-controllers
(VC1 and VC2).

This alternative avoids the inverse block g−1, so instead the
decoupling from v to y is taken care of by the two slave
v-controllers (VC1 and VC2). With integral action in the two
v-controllers, decoupling will be exact at steady state.

However, decoupling will not be perfect dynamically, both
because the slave v-controllers are not infinitely fast and because
of interactions between the loops. To reduce interactions, we
need to choose good variable pairings for VC1 and VC2. In Fig. 6,
we have paired the total flow (v1 = F1+F2) with z1 (which affects
F1), and the ratio (v2) with z2 (which affects F2). This can be shown
to be the preferred pairing if F1 the larger flow.

Since interactions result in dynamic couplings from v to ywith
he purely feedback-based implementation (Alternative B), one
ay question if there is any benefit compared to the simplest
cheme, which is to have no input transformation (not shown in
ny figure), that is, letting the outer controller C (which are the
wo controllers TC and FC in this case) manipulate directly the
lows (F1 and F2) using two slave flow controllers.

The answer is that there can indeed be a significant decoupling
enefit when we use input transformations with feedback control
f v (Alternative B) if there are effective delays associated with
he control of y (e.g., measurement delays for F or T in our
ase), such that two slave v-controllers (VC1 and VC2) can be
ignificantly faster than outer controllers in C (TC and FC).
Alternative C (combined model- and feedback-based inversion).

he best option for this example is most likely to use the exact
odel-based inverse in (5) to compute the desired flowrates

F s
1 and F s

2) and combine this with two slave flow (w = F )
ontrollers (FC1 and FC2) that generate by feedback the corre-
ponding valve positions (u = z and u = z ). This alternative
1 1 2 2
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Fig. 7. Combined model and feedback inversion (Alternative C) for implemen-
tation of transformed inputs v1 = F1 + F2 and v2 =

F1
F1+F2

for the mixing process
when the physical inputs u are the valve positions z. This solution combines
the exact inverse g−1(v) in (5) for computing the flow setpoints F s

1 and F s
2 with

wo slave flow(w)-controllers (FC1 and FC2) that generate the corresponding
hysical inputs u1 = z1 and u2 = z2 .

s shown in the flowsheet in Fig. 7. It combines the decoupling
f the model-based inversion in (5) with the linearization and
isturbance rejection of the flow controllers. The two slave flow
ontrollers, through the action of fast feedback, indirectly gener-
te the inverse in (7), and makes the process (almost) linear and
ndependent of disturbances in ∆p1 and ∆p2, at least as seen from
lower time scale of the outer controllers (TC and FC).
The next section generalizes the three alternative ways (A, B

nd C) of generating the inverse.

. Implementation of transformed inputs

The transformed input v is defined as a nonlinear static func-
ion g that depends on the original (physical) input u and other
easured variables

= g(u, w, y, d) (8)

ll variables may be vectors. For the multivariable case, we will
ssume that we have an equal number (n) of inputs u, outputs y
nd transformed inputs v. Often the function g is independent of
and in many cases we do not have extra measurements w. Note
hat g may not depend explicitly on u, but it should then depend
ndirectly on u through the measured variables w.

As mentioned in the introduction, the idea is that the outer
ontroller C or the operator sets the desired value (setpoint) vs

f the transformed input v. However, to implement v on the real
rocess, we need to generate the corresponding physical input
. There are two main approaches for implementing the physical
nput u:

A. Model-based implementation, see Figs. 1 and 8(a). With
an exact inverse g−1, this gives exactly v = vs (assuming
all variables are measured perfectly and there is no model
error).

B. Feedback-based implementation, see Fig. 8(b). With inte-
gral action in the slave controller Cv this gives v = vs after
a dynamic transient.

We also discuss a third implementation (Fig. 8(c)) which is a
ombination of the two. The three alternatives are the same as
he ones presented in Figs. 5–7 for Example 2, respectively.
118
.1. Alternative A: Model-based inversion (Figs. 1 and 8(a))

The first approach is to invert the input transformation
v = g(u, w, y, d) in (8), by analytically or numerically finding the
nput u that corresponds to given values of v, w, y and d. We can
ormally write the solution as

= g−1(v, w, y, d) (9)

This gives the exact inverse g−1(v, w, y, d) if the inverse exists,
f there is no model uncertainty and if all variables w, y and d are
easured perfectly.

.2. Alternative B: Feedback inversion with slave v-controller (cas-
ade control) (Fig. 8(b))

A dynamic approximation of the inverse input transforma-
ion may be generated using an inner (slave) feedback controller
v as shown in Fig. 8(b). Here, we compute the actual value

= g(u, w, y, d) from measurements of u, w, y and d, and
se the inner controller Cv to dynamically generate the input
that makes v approach the desired value vs. The inner con-

roller Cv may be tuned based on an experimental response from
to v. Usually, a PI-controller, or even a pure I-controller, is

ufficient. For the n × n multivariable case, one usually designs
single-loop linear controllers for Cv , although it is possible

o use multivariable control, for example, to reduce dynamic
nteractions.

.3. Alternative C: Combined feedback- and model-based inversion
ith slave w-controller (Fig. 8(c))

This combined implementation with an inner w-controller is
f particular interest for the case when v = g(w, y, d) does
ot depend explicitly on u and there is only one measured w-
ariable associated with each input u. In addition to the inner
ontroller Cw for w, we also need a block that inverts the transfor-
ation g with respect to w, that is, which computes the setpoint
s
= g−1(v, y, d).
Feedback implementation C (Fig. 8(c)) has the advantage that

e can include some model-based inversion, which may con-
ribute to linearization, feedforward and decoupling. It also has
he advantage that control of w (Alt. C) is usually less interactive
han control of v (Alt. B), which is a significant advantage for
aster convergence with single-loop control. A feedback imple-
entation (alternatives B or C) is required if v does not explicitly
epend on u. In other cases, a feedback implementation may
e used as a ‘‘trick’’ for numerically generating an approximate
nverse. In the control literature, this trick is often referred to as
‘dynamic inversion’’ [4]. The reason for using this trick could be
o avoid the complexity of deriving the inverse in (9) (see heat
xchanger example) or to avoid problems with singularities [4].

. Derivation of ideal transformed inputs

Input transformations are in common use and as illustrated in
he motivating mixing example they may be very useful. How-
ver, the main question we want to answer in this paper is:

How do we derive good transformed inputs in a systematic
manner?

Starting from a static or dynamic process model, we show in
his section how to derive ideal transformed inputs (denoted v0
nd vA, respectively) which ideally achieve linearization, decou-
ling and disturbance rejection, see Fig. 9. We assume that we
ave an n × n control problem with n inputs u and n outputs y,
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Fig. 8. Alternative implementations (red blocks) for inverting the input transformation v = g(u, w, y, d), that is, of generating the physical input (u) from a given
value of the transformed input (v or vs). Controllers C, Cv and Cw are usually single-loop PID controllers.
p

i

w

0

and we want to use the model equations to find n transformed
inputs v. The case with a static model is discussed in Section 4.1
and a dynamic model in Section 4.2. Note that we may combine
static and dynamic models as shown in the mixing example
in Section 5.1. In Section 4.3, we discuss that it is simpler in
many cases to write the model in terms of extra measured state
variables w, because we can then replace model equations by
measured variables.

4.1. Obtaining an ideal transformed system from a static process
model

In the industrial literature, Shinskey [1] shows by examples
how to use static process models to derive nonlinear feedforward
and decoupling blocks which are similar to the input trans-
formations derived below. However, he provides no systematic
approach, and very surprisingly, for the simple and important
case of static systems, there seems to be no academic literature
on how to do derive static feedforward and decoupling blocks
in a systematic manner. Possibly this is because the derivation
is almost trivial, as shown in the next few lines. We will first
consider the case with no measured states w, and we will then
generalize to include w-variables.
119
Fig. 9. With ideal transformed inputs the transformed system (with no uncer-
tainty) is linear and independent of disturbances. For a static process model, the
transformed input v = v0 = g(u, w, d) is given in (13) or (27). For a dynamic
rocess model, the transformed input v = vA = g(u, w, y, d) is given in (19)

or (30). In most cases, the tuning parameters (B0, A, B) are chosen such that
the ideal transformed system is decoupled and gives y = v at steady state. The
nversion g−1 may alternatively be generated by feedback, see Fig. 8(b), but in
this case the ideal properties of the transformed system are achieved only after
a dynamic transient.

Consider a static process model with n independent equations
ritten in the following general form

= f (u, y, d) (10)
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r even more generally as n + nx equations in the form

= fx(u, x, y, d) (11)

here x represents additional internal variables (states). In the
ore general case in (11), we assume that we can use the nx extra
quations to eliminate the internal variables x to get a model (at
east formally) as given in (10).

Since the model equations in (10) are assumed to be indepen-
ent, they may be solved with respect to y (at least formally) to
et the static model on the form y = f0(u, d). We then have the
ollowing general result.

Ideal transformed input based on static model. Consider a
tatic nonlinear model in the form

= f0(u, d) (12)

efine from this the ideal static transformed input

0 = B−1
0 f0(u, d)  

g(u,d)

(13)

here the matrix B0 is free to choose. Assume that v0 can be exactly
implemented by solving (13) with respect to u to get the ideal input

u = g−1(v0, d) (14)

Then, assuming that the real system is static with model f0(u, d)
no model error) and that we have perfect measurement of d, the
ransformed system becomes

= B0v0 (15)

he transformed system in (15) is linear and independent of distur-
ances, and for the multivariable case it is also decoupled if we select
0 to be a diagonal matrix.

roof. The proof is trivial. From (13) we get f0(u, d) = B0v0
nd substituting this into (12) gives y = B0v0 in (15). The
ssumptions related to (14) are necessary to be able to generate
he corresponding ideal input u. □

Note that we use the notation with a subscript 0 to show that
0 is an ideal transformed input derived from a static model.
Importantly, it may not be necessary to explicitly derive an

xpression for y = f0(u, d) in (12). Rather, since the objective is
o find the ideal input u = g−1(v0, d) that gives the transformed
ystem y = B0v0 in (15), it is in some cases simpler to stay
ith the original model equations in (10) or (11), and rather than
olving them with respect to y (for a given u), solve them with
espect to u for a given y = B0v0 to obtain the inverse trans-
ormation u = g−1(v0, d). The solution to find the inverse g−1

an be either analytical or numerical. A numerical solution may
e necessary for complicated models, like for the heat exchanger
xample discussed later and in [11].

.1.1. Choice of the tuning parameter B0
The choice of B0 is not critical, as it can be compensated by

hanging the gain of the outer controller C . We usually choose

0 = I (16)

uch that the ideal transformed input is simply the right-hand
ide of the model equation,

0 = f0(u, d) (17)

n this case the transformed system simply becomes y = v0,
nd it may be tempting to think of the transformed input v0 as
he setpoint for the output y, but this is misleading because we
sually have an outer feedback controller C which has the ‘‘true’’
etpoint ys as one of its inputs, whereas v0 is the output from C
see Fig. 1). Thus, it is better to think of v0 as the transformed
rocess input.
 s

120
.2. Obtaining ideal transformed input from a dynamic process
odel

We next examine the case where we have a dynamic process
odel as given in (18). The derivation of the resulting ideal

ransformed input vA is closely related to the theory of feedback
inearization for the special case of a low-order model (with a
elative order of 1).

Ideal transformed input based on dynamic model. Consider
nonlinear dynamic model in the form

dy
dt

= f (u, y, d) (18)

For the model in (18), the ideal transformed input is

vA = B−1(f (u, y, d) − Ay)  
g(u,y,d)

(19)

Here, the matrices A and B are tuning parameters. Assume that vA
can be exactly implemented by solving (19) with respect to u to get

u = g−1(vA, y, d) (20)

Then assuming no uncertainty (no model error for f (u, y, d) and
perfect measurements of d and y) the transformed system becomes
dy
dt

= Ay + BvA (21)

The transformed system in (21) is linear and independent of dis-
urbances, and for the multivariable (n×n) case, it is also decoupled
f we select A and B to be diagonal matrices.

roof. Substituting the transformed input in (19) into (18) gives
21). Note that we have assumed that we can generate from
he transformed input vA the exact corresponding physical input
. □

Note that we use the notation with a subscript A to show
hat vA is an ideal transformed input derived based on a dynamic
odel and with a tuning parameter A.
It may seem that (18) represents a large class of dynamic

odels, but actually it is quite restrictive since we must assume
hat the number of differential equations (states) n is equal to
he number of inputs and outputs in the vectors u and y. In
articular, we assume that the input u directly affects the time
erivative dy

dt of the controlled output y, which means that the
relative order from u to y is assumed to be 1. Specifically, for the
scalar case (n = 1), we assume that we can write the model for y
sing only one scalar differential (18). Thus, for the scalar case we
re restricted to a first-order system. (However, if we allow the
unction f to depend on additional measured states w, then the
lass of systems is significantly larger. This is discussed in more
etail below.)
To guarantee invertibility in (20), it is possible to restrict the

lass of models to guarantee that we always have a solution, as
s done in the literature on exact linearization. In particular, in
his literature it is assumed that the model is linear in the input
, that is, that we can write the right-hand side of (18) as shown
n [8] (p. 293).

(u, y, d) = f1(y, d) + f2(y, d) u (22)

here the functions f1 and f2 must satisfy certain smoothness
onditions. Interestingly, many process models are linear in the
lows, so if we make use of inner flow controllers then many
rocess models satisfy (22). Nevertheless, we do not make this
ssumption in this paper, so the invertibility may need to be
tudied separately for each application.
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.2.1. Choice of tuning parameter B
To get dynamic decoupling in (21) for the multivariable case,

e need to select both matrices B and A to be diagonal. Dynamic
ecoupling is desirable because the optimal outer controller C is

then diagonal (single-loop controllers). Otherwise, the choice of
B is not critical as it may be compensated by changing the gain
in the feedback controller C .

One simple choice is B = I , which is often used in feedback
linearization. Alternatively, to keep the initial (high-frequency)
gain from vi to yi equal to that of the original system (from ui
to yi) one may choose B = diag(B̃) = diag(∂ f /∂u)∗ where the
differentiation is performed at the nominal operating point ∗.
However, in most of the examples in this paper we select

B = −A (23)

because this gives y = vA at steady state (where dy
dt = f (u, y, d) =

).2 With the choice B = −A, the transformed input and corre-
ponding transformed system become

A = −A−1f (u, y, d) + y (24a)
dy
dt

= A(y − vA) (24b)

.2.2. Choice of tuning parameter A
The choice of the parameter A is important as it determines the

ynamics of the transformed system. However, the importance
hould not be overemphasized, since we can change the closed-
oop dynamics by design of the outer controller C . Note that we
ust choose A < 0 for the transformed system to be stable. We
iscuss below three choices for the tuning parameter A.
1. Keep the original dynamics, A = Ã. In most cases we

ropose selecting

= Ã ≡

(
∂ f
∂y

)
∗

(25)

where the derivative is evaluated at the nominal point ∗ of oper-
ation. This makes the dynamics of the transformed system equal
to the linearized dynamics of the original system. This choice also
minimizes the effect of the measurements y on the transformed
variables vA (see Appendix). This seems reasonable because the
outer controller C in any cases makes use of the measurements
y.

In the multivariable case, to obtain decoupling, we may choose
A = diag(Ã).

2. Make the transformed system faster: |A| > |Ã|. To speed
up the response from v to y, one may use larger magnitudes
for the elements in A than that resulting from (25). However,
note that the presence of a time delay in the measurement of
y (or other dynamics that result in an effective delay) may give
instability if we choose the elements in A too large in magnitude.
Alternatively, note that it is always possible to select A = Ã
as in (25) and instead ‘‘speed up’’ the response with the outer
controller C , which can be designed based on the experimental
response from vA to y and for which established robust design
methods are available, for example, the SIMC PID-rules [12].

3. Make the system integrating: A = 0. The choice A = 0
is recommended in the standard feedback linearization litera-
ture [5]. This results in an integrating transformed system, dy

dt =

vA, where usually one selects B = I , corresponding to selecting
he transformed input as the right-hand side of the differential
quation model, vA = f (u, y, d). However, although being very

2 Interestingly, since y = IvA at steady state, where I is the identity matrix,
he choice B = −A gives decoupling at steady state even if A (and thus B) is
ot diagonal. However, to also get dynamic decoupling, we must choose A to
e diagonal.
121
simple, we do not recommend the choice A = 0 for most process
control applications. The main reason is that with A = 0, a
system which was originally stable is turned into an integrating
transformed system. Thus, the transformed system will not go
to steady state without the outer controller C . In particular, any
unmeasured disturbances will cause the output y to change in
ramplike fashion and drift away from its desired steady state.
his drifting will only stop when the input u reaches its physical
aximum or minimum constraint. This is undesirable, because
sually one wants to be able to operate the transformed system
ithout the outer controller C . Another reason for not selecting
= 0 is that we generally want to use integral action in the

uter controller C to correct for uncertainty. With A = 0, the
integrator in the transformed system poses additional perfor-
mance limitations for disturbances at the plant input (e.g., [12]).
This performance limitation is not considered in the feedback
linearization literature because they assume state feedback, that
is, they assume C is a P-controller.

4.3. Transformed input in terms of measured state variables w

The expressions for the ideal transformed inputs (v0 and vA)
are the same also when we include additional measured depen-
dent variables w (states) in the model equations (in f0 and f ). This
allows us to use simpler models, because a measured w replaces
a model equation for w. For example, a measured flow w = F
may replace a valve Eq. (6).

Following the same derivations as above, we find that the
expressions v = g(u, w, y, d) for the ideal transformed inputs
remain the same, except that we add w in the argument list.
Then, assuming that we measure d and w perfectly, have a perfect
model, are able to generate the exact inverse g−1 and that the
resulting transformed system is internally stable, the resulting
transformed system becomes as before linear and independent
of disturbances.

Ideal transformed input with w-variables for static case.
pecifically, for the static model

= f0,w(u, w, d) (26)

he ideal transformed input becomes

0 = B−1
0 f0,w(u, w, d)  

g(u,w,d)

(27)

resulting in the transformed system

y = B0v0 (28)

Ideal transformed input with w-variables for dynamic case.
Similarly, for the dynamic model

dy
dt

= fw(u, w, y, d) (29)

the ideal transformed input becomes

vA = B−1(fw(u, w, y, d) − Ay)  
g(u,w,y,d)

(30)

resulting in the transformed system

dy
dt

= Ay + BvA (31)

n most cases, we choose B0 = I and B = −A which give
= v0 and y = v at steady state. Choosing A diagonal also gives
ecoupling for the dynamic case.
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.3.1. Dynamics of transformed system with measured state (w)
variables

If the w-variables depend dynamically on the inputs u, then
the implicit feedback through the measurements w will affect
the dynamics of the transformed system. In some cases, this may
result in internal instability as discussed below.

For the static case, the dynamics of the transformed system
(from v0 to y) will no longer be the same as that of the original
system (from u to y).

The reason is that the feedback from w through v0 may either
peed up or slow down the response. Note that for the static
ase, we have no tuning parameter to change the dynamics of
he transformed system.

.3.2. Possible unstable zero dynamics and internal instability
Note that we are essentially treating the variable w as a

easured disturbance when deriving the transformed variables
0 and vA in (27) and (30). Is there any problem in doing this?
es, there will be a problem with the exact inverse, if the w-

variables result in unstable zero dynamics3 in the dynamic map
rom the physical input u to the transformed input v (which
ay be v0 or vA or any other transformed input), The reason

s that unstable zero dynamics will result in internal instability
or the transformed system if we implement the exact inverse

= g−1(v, w, y, d). This follows because the unstable zeros of
he original map become unstable poles of the inverse map. A
imple example is given in the discussion section. This means
hat the implementations with the exact inverse (Alternative A) in
ig. 8(a) may yield internal instability in some cases. Fortunately,
s argued in the discussion section, it is not very likely to happen
n practice, because unstable zero dynamics require that the
ndirect dependency of u on v through w is strong.

The internal instability can in any case be avoided if we use the
lternative implementation B in Fig. 8(b) with a slave v-controller
v , but Cv then needs to be tuned sufficiently slow so that the
nfavorable zero dynamics do not cause closed-loop instability.
hus, linearization, decoupling and disturbance rejection will not
e perfect dynamically in this case.
Note that these problems with unstable zero dynamics are

undamental and do not arise because we use transformed inputs.
n particular, for the ideal transformed inputs (v0 and vA), the zero
ynamics from u to v are the same as the zero dynamics from u to
. This follows because of the direct relationship between v and y
n this case, for example, y = v0 for the static case. Our problem
ith internal stability with the exact inverse, is thus a special case
f the well-known fact that perfect control of the output y cannot
e achieved for a system with unstable zero dynamics (RHP-zeros
n the linear case) from u to y, no matter how good the model is
r what we measure (e.g., [13]).

.4. Ideal static transformed variable v0 applied to a dynamic system

If we apply v0 in (27) (derived from a static model) as a
ransformed input to a dynamic system (but with the same static
odel), then with the choice B0 = I , the transformed system
ecomes y = v0 and we clearly get linearization, decoupling and
isturbance rejection at steady state.
But what happens dynamically? We cannot say anything in

eneral, but fortunately, if we apply v0 to the particular dynamic
ystem in (29), then we get perfect disturbance rejection also

3 Unstable zero dynamics go by many names. They are the same as RHP-zeros
or linear systems, and linear systems with RHP-zeros and/or time delay are also
alled non-minimum phase systems. In the linear scalar case, RHP-zeros always
ive inverse response in the time domain. More generally, for nonlinear systems
he unstable zero dynamics from u to v correspond to the unstable dynamics
of the inverse map from v to u [5].
122
dynamically, if we initially are at steady state. This surprising fact,
which is observed in several of the examples and proved in the
discussion in Section 6.3, holds because of the particular simple
dynamics assumed in (29). The assumption about being initially
at steady state is not limiting, because it is desirable that the
system stays close its steady state setpoint.

Also note that when v0 is independent of w, i.e., we have
v0 = f0(u, d), then there is no feedback from the outputs or states,
and the transformed dynamic system (from v0 to y) retains the
dynamics of the original system (from u to y) without needing
any tuning parameter. These two facts makes it very tempting
for an engineer to apply v0 also to dynamic systems.

However, there are some advantages of instead applying the
dynamic transformed input vA (30) to the dynamic system dy

dt =

(u, w, y, d). The main advantage is that the transformed system
rom vA to y is linear dynamically, whereas the transformed
ystem from v0 to y is linear only at steady state. This is seen in
everal of the examples. Second, for the case when the ideal static
ransformed input v0 depends on measured states w, the system
ynamics change because of the resulting feedback from w to u,
ut we have no parameter in v0 to affect it. On the other hand,
hen we use the ideal dynamic transformed variable vA, we can
hoose the dynamics of the linear transformed system through
he parameter A.

. Examples

.1. Example 3. Ideal transformed inputs for mixing process (Moti-
ating Example 1, continued)

Consider the mixing process in Fig. 2 with the following inputs,
utputs and disturbances

=

[
F1
F2

]
; y =

[
F
T

]
; d =

[
T1
T2

]
(32)

This is the same process as in Example 1, where to obtain
ecoupling we used engineering insight to propose a sum and a
atio of the flows as transformed inputs, see (4). In this section,
e will derive the ideal transformed inputs using systematic
ethods. Note that we assume that the flows F1 and F2 are the
hysical inputs u, that is, we are implicitly assuming that we have
wo flow controllers.

For simplicity, we assume that the massm [kg] of the system is
onstant, which is a good assumption in many cases. The dynamic
ass balance dm

dt = F1 + F2 − F then gives by setting dm
dt = 0, the

following static mass balance

F = F1 + F2 (33)

ssuming perfect mixing, the dynamic energy balance becomes

dT
dt

= F1T1 + F2T2 − −FT (34)

e have here assumed constant and equal heat capacities so that
P drops out of the energy balance. Substituting the mass balance
33) into the energy balance (34) and using the more general
otation in (32), then gives the following model equations for the
ixing process

y1 = u1 + u2  
f0,1(u,d)

(35a)

dy2
dt

=
1
m

(u1(d1 − y2) + u2(d2 − y2))  
f2(u,y,d)

(35b)
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.1.1. Ideal transformed input v0 from static model
We first derive the ideal transformed inputs for a purely static

odel. By setting m dy2
dt = 0 we derive from (35b) the following

static equation for the temperature y2 = T

y2 =
u1d1 + u2d2

u1 + u2  
f0,2(u,d)

(36)

With the standard choice B0 = I , the ideal static transformed
nputs v0 are simply the right-hand side f0 of the static model
quations. Thus, the ideal static transformed inputs for the mixing
ank are

0,1 = u1 + u2  
g1(u)=f0,1(u,d)

(37a)

0,2 =
u1d1 + u2d2

u1 + u2  
g2(u,d)=f0,2(u,d)

(37b)

The static model for the transformed system becomes y = v0,
or equivalently y1 = F = v0,1 and y2 = T = v0,2. As ex-
ected, the transformed static system is decoupled, independent
f disturbances and linear (with gain equal to the identity matrix,
).

For implementation using the exact inverse, we need to invert
he expressions (37) for v0 = g(u, d) to find the physical inputs
flows) u. We get u = g−1(v0, d) where

1 =
v0,1(v0,2 − d2)

d1 − d2
(38a)

2 =
v0,1(d1 − v0,2)

d1 − d2
(38b)

There is a singularity in the inverse transformation when the two
inlet flows have the same temperature, d1 = d2. This is not a
imitation of the proposed method, because it is then physically
mpossible to freely set the temperature y1 = T of the mixed
low.

.1.2. Comparison with engineering-based variables from Motivat-
ng Example 1

Comparing the ideal static transformed inputs in (37) with the
ngineering-based variables in (4), we see that v0,1 is the sum
1 + u2 as before. The second variable v0,2 is very similar to the
atio v2 =

u1
u1+u2

in (4b), except that v0,2 includes feedforward
ction from disturbances d1 = T1 and d2 = T2.

.1.3. Applying the ideal static transformed input v0 to the dynamic
ystem

What happens if we apply the static transformed input v0,2 to
he dynamic system in (36)? Substituting u1 and u2 from (38a)
nd (38b) into (35b) gives after a little algebra the following
ransformed dynamic system

y1 = v0,1 (39a)
dy2
dt

=
v0,1

m
(v0,2 − y2) (39b)

We see that both disturbances d1 and d2 drop out, so the
ransformed system in (39) based on v0,2 is independent of distur-
ances, also dynamically.4 We note that the transformed system

4 Generally, when we apply static transformed inputs v0 to a dynamic system

f the form dy
dt = f (u, y, d), we need to make the assumption that the system is

initially at steady state to get perfect dynamic disturbances rejection. However,
this assumption is not necessary for this particular case since the disturbances
drop out completely in the transformed system.
 t
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in (39) is not truly decoupled, because we see from (39b) that v0,1
also affects output y2. However, for practical purposes, we have
decoupling, because if we start from a steady-state operating
point, where we have y2 = v0,2, then (39b) tells that a change
in v0,1 will not affect y2.

5.1.4. Ideal transformed input vA from dynamic model
Actually, since the static transformed input v0 gives both dis-

turbance rejection and decoupling also for the dynamic process,
there is little reason to consider the dynamic transformed input
vA, but we will do it for completeness and comparison.

The first model equation is static, so the first transformed
input is unchanged

v0,1 = u1 + u2 (40)

To derive the second ideal transformed input, we use the right-
hand side f2(u, y, d) of the dynamic energy balance in (35b), and
from (24a) we derive

vA,2 = y2 − A−1f2(u, y, d) (41a)

= y2 − A−1 1
m

(u1(d1 − y2) + u2(d2 − −y2))  
g2(u,y,d)

(41b)

Note that we have chosen B = −A which gives y2 = vA,2 at steady
state. From (40) and (41b) the inverse transformation becomes

u1 =
v0,1(y2 − d2) − Am(vA,2 − y2)

d1 − d2
(42a)

2 =
v0,1(d1 − y2) + Am(vA,2 − y2)

d1 − d2
(42b)

The transformed system from the ideal transformed inputs v =

v0,1 vA,2] to the outputs y = [y1 y2] then becomes

y1 = v0,1 (43a)
dy2
dt

= A(y2 − vA,2) (43b)

which is decoupled, independent of disturbances and linear since
A is a constant.

The constant A is a tuning parameter. To eliminate the feed-
back from the output y2 = T to the transformed variable v2
in (41b) at the nominal operating point, we choose A such that
we keep the nominal linearized dynamics of the original system,
which from (25) gives

A =

(
∂ f2
∂y2

)
∗

= −
F∗

m
= −

v∗

0,1

m
(44)

here F∗
= u∗

1 + u∗

2 = v∗

0,1 is the nominal total flowrate.
ote that the expression for the transformed system in (39b) in
erms of v0,2 (static model) is very similar to (43b) in terms of
A,2 (dynamic model) if we choose A as given in (44). The main
ifference is that the transformed dynamic system (43b) for vA,2
s linear, whereas the transformed dynamic system (39b) for v0,2
s nonlinear because of the multiplication with the term v0,1.

In summary, the only advantage of using the more complex
ariables vA rather than v0 derived from a static model, is that
he transformed system is linear dynamically. This benefit is small
ompared to the added complexity, for example, of having to
elect the tuning parameter A. Thus, most likely an engineer will
refer to use the static variables v0. If the disturbances d1 = T1
nd d2 = T2 are not measured or do not change frequently, then
his is equivalent to the simple sum and ratio proposed in (4) in
he Motivating example.
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Fig. 10. Process flowsheet of tank heated with an electric coil.

.2. Example 4. Heated tank

Consider the continuous process in Fig. 10 with an electric
eater. Assuming perfect mixing, constant heat capacity cP [kJ/°C]
nd constant mass holdup m [kg], the energy balance gives the
ollowing dynamic model
dT
dt

= f (u, y, d) =
1

mcP
(FcP (T0 − T ) + Q ) (45)

he objective is to control the outlet temperature y = T using
he inlet flowrate u = F [kg/s] as the manipulated input (we
ssume that we have a fast slave flow controller so that we can
onsider u = F to be the physical input). Q and T0 (heat input and
nlet temperature) are measured disturbances. Setting dT

dt = 0, we
derive the corresponding static model for the outlet temperature

T = f0(u, d) = T0 +
Q
FcP

(46)

rom (27) and (30), the ideal transformed inputs v0 and vA, based
n a static and dynamic model, respectively, become

v0 = f0(u, d) = T0 +
Q
FcP

(47a)

A = −A−1f (u, y, d) + y = −A−1
(

F
m

(T0 − T ) +
Q
mcP

)
+ T

(47b)

We have here chosen the parameters B0 = I and B = −A so that
e have at steady state y = v0 and y = vA, respectively.
If we apply these two transformed variables to the dynamic

system in (45) then the transformed dynamic system becomes
for the two cases
dT
dt

=
F
m

(v0 − T ) (48a)

dT
dt

= −A(vA − T ) (48b)

For both cases, we find that the transformed system is indepen-
ent of disturbances (in Q and T0). If we choose A = −

(
∂ f
∂T

)
∗

=

F∗

m as recommended in (25), then we see that transformed
systems in terms of v0 and vA are identical close to the nominal
perating point (∗), but note that the transformed system ((47a))
n terms of v0 is nonlinear, whereas the transformed system
(47b)) in terms of vA is linear. However, the nonlinearity in (48a)
s small unless F varies a lot, so most likely an engineer will prefer
o use the simpler static variable v0.

For implementation using the exact inverse in Fig. 8(a), we
eed to invert the expression for the transformed input v to find
he physical input u = F . For v = v0, based on a static model,
47a) gives the inverse transformation

= F =
Q

(49)

cp(v0 − T0)
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Fig. 11. Flowsheet of the nonlinear level process.

We note that there is a singularity at v0 = T0. This may be
a problem, because it may happen that the outer controller C
makes a large decrease in v0 (possibly to speed up the response)
so that v0 drops below T0. This will cause the input u to jump
from a large positive value (in practice, with constraints, from
u = umax) to a large negative value (in practice, to u = umin = 0).
We simulated this (not included), and found that it made the
system drift away from the desired steady state, and it did not
recover. Fortunately, there are ways of handling the singularity.
One is to use logic and set u = umax when the computed value of
u is negative. Another way is to use the cascade implementation
in Fig. 8(b) with a slave v-controller.

A similar singularity occurs with the ideal transformed input
vA. Inverting (47b) gives

u = F =
Q + AmcP (vA − y)

cp(y − T0)
(50)

he singularity at y = T0 may happen in situations with large
dynamic variations in d = T0 or y = T , but can be handled in a
similar way as mentioned for v0.

5.3. Example 5: Simple nonlinear level process

We consider the control of level (volume) in a tank with two
inflows and one outflow, as shown in Fig. 11. We assume that the
level measurement is delayed or infrequent, so we would like to
make use of feedforward action from measured disturbances.

Assuming constant liquid density, we derive from the mass
balance the following dynamic model

dV
dt

= F1 + F2 − F3 (51)

he variables are defined as:

y = V = volume of fluid (measured)
u = F1 = inflow (manipulated)
d1 = F2 = inflow (measured disturbance)

F3 = outflow (not measured)
d2 = p0 = pressure difference between before and after tank
measured).

e assume that the inflow u = F1 can be manipulated directly,
for example, because we have a fast slave flow controller. This
is not an integrating process, because the outflow F3 depends
n the level (V ) and provides self-regulation. The outflow is
ot measured, but from the Bernoulli equation we derive the
ollowing model

3 = Cv

√
ρgV/A + p0 =

√
c1V + c2p0 (52)

where c1 = C2
v ρg/A and c2 = C2

v are constants. The dynamic
model then becomes
dy

= f (u, y, d) = u + d1 −

√
c1y + c2d2 (53)
dt
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Transformed variable v0 based on static model. Solving 0 =

(u, y, d) in (53) with respect to y gives the static model

= f0(u, d) =
(u + d1)2 − c2d2

c1
(54)

he ideal transformed variable (selecting B0 = 1) is the right-
hand side of the static model

v0 = f0(u, d) =
(u + d1)2 − c2d2

c1
(55)

or a given v0, the corresponding input is given by the inverse
ransformation

= f −1
0 (v0, d) =

√
c1v0 + c2d2 − d1 (56)

t steady state the transformed system is y = v0, so it is linear
nd independent of the disturbances d1 and d2. What happens if
e apply the ideal static transformed input v0 to the dynamic sys-
em? Substituting (56) into (53) gives the transformed dynamic
ystem
dy
dt

=

√
c1v0 + c2d2 −

√
c1y + c2d2 (57)

hus, the transformed dynamic system is independent of d1 but it
epends on d2. However, for practical purposes we have perfect

disturbance rejection also for d2. To see this, note that y = v0 at
steady state. It then follows that if we are initially at steady state
and we keep v0 constant, then from (57) we have dy

dt = 0 for
ny disturbance d2. Thus, y will remain at v0 and we have perfect
isturbance rejection for d2 also dynamically.
To see this even more clearly, we linearize the transformed

ystem model (57) around the steady-state (where y∗
= v∗

0 ) to
et
d∆y
dt

=
c1

2
√
c1y∗ + c2d∗

2

(∆v0 − ∆y) (58)

where the ∆-variables represent deviations from the steady state.
Note that d2 drops out in (58). Also note that F∗

3 =
√
c1y∗ + c2d∗

2
o the initial dynamic response will vary as a function of F∗

3 and
thus depend on the operating point.

Transformed variable vA based on dynamic model. For complete-
ness and comparison, we also here consider the ideal dynamic
transformed input vA. From (19), we have vA = B−1(f (u, y, d) −

Ay). We choose B = −A so that y = vA for the transformed system
at steady state. With this choice we get

vA = y − A−1f (u, y, d) = y − A−1(u + d1 −

√
c1y + c2d2)  

g(u,y,d)

(59)

nd the resulting transformed dynamic system becomes as ex-
ected
dy
dt

= A(y − vA) (60)

he exact inverse of (59) gives the corresponding input

= g−1(vA, y, d) = A(y − vA) − d1 +

√
c1y + c2d2 (61)

o eliminate the feedback from the y to vA at the nominal point,
e may from (25) choose

=

(
∂ f
∂y

)
∗

= −
c1

2
√
c1y∗ + c2d∗

2

(62)

As expected, the linearized transformed system (58) for v0
s identical to dy

dt = A(y − vA) in (60) if we select A as in
(62). However, there is an important difference. With vA, the
transformed system is linear dynamically because A is a constant,
whereas with v the dynamic response is nonlinear as the initial
0
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gain is inversely proportional to the value of the outflow F3.
owever, the transformed system with v0 is linear at steady state,

so if the outer loop is slow, the dynamic nonlinearity will not
matter. Thus, again an engineer probably will most likely prefer
the static transformed input v0, which also does not depend on
the delayed or infrequent measurement of the volume y.

Transformed variable vA based on dynamic model for the case
with measurement of w = F2. From the examples so far, it
seems that there is not much benefit of using the ideal dynamic
transformed input vA instead of the simpler static transformed
input v0. However, we here consider a case where this is not true,
simply because the system is integrating and thus has no steady
state.

Consider again control of level (volume V ) in Fig. 11, with the
same dynamic model (51), but assume here that the outflow F2
is measured, that is,

w = F2.

If this measurement is fast and accurate, then it is better to use
it rather then the model equation F3 = k

√
k1V + p0 which is

inaccurate and also depends on measuring the disturbance d2 =

0. Introducing w = F2, the dynamic model dV
dt = F1 + F2 − F3

ecomes
dy
dt

= fw(u, w, d1) = u + d1 − w (63)

ote that the right-hand side (fw) is independent of y so this
odel is integrating with no steady-state value for y. Therefore,
e cannot derive a corresponding transformed input v0. Instead,
e derive the ideal dynamic transformed input vA. Selecting B =

and A = 0 in (30) gives the transformed input

A = fw(u, w, d1) = u + d1 − w (64)

hich is simply the net inflow to the process. The transformed
ystem becomes dy

dt = vA, which is linear, integrating and in-
dependent of disturbances. Given vA, we get from (64) that the
corresponding input u = F1 is

u = vA − d1 + w (65)

f course, we need an outer controller C to adjust vA and stabilize
the integrating transformed system, but otherwise the implemen-
tation is very simple.

Let us finally remark that it is possible to select vA = fw(u, w,
d1) − Ay = u + d1 − w − Ay where A < 0. In this case, the
transformed system dy

dt = vA + Ay is stable, although the original
system in (63) is integrating. However, selecting A ̸= 0 introduces
feedback from y in the input transformation, which will come in
addition to the feedback from y in the outer controller C , which
anyway could be used to stabilize the system. Thus, in this case
there is little benefit of selecting a more complicated vA with
A ̸= 0.

5.4. Example 6: Heat exchanger

Temperature control using heat exchangers may benefit from
the use of input transformations, both to reduce nonlinearity
and to introduce feedforward control. Consider the process in
Fig. 12 where the objective is to control the outlet temperature
of stream 1 (which may be the process side) by exchanging heat
with stream 2 (which may be the utility side). We assume that
the input (manipulated variable) is the utility flowrate, u = F2. In
summary, we have for this example

u = F2, y = T1

Measured disturbances are the inlet temperatures and the
flowrate of stream 1,

d = [T 0 T 0 F ]
⊺

1 2 1
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Fig. 12. Heat exchanger (Example 6) where the objective is to control the outlet
temperature T1 of stream 1 (process side) by exchanging heat with stream 2
(utility side).

In the simulations, we will also consider an unmeasured dis-
turbance in the UA-value, for example, caused by flow changes,
fouling or gas bubbles in the streams,

dunmeasured = UA

A possible extra measurement (in addition to F2) which depends
n the input u is the utility outlet temperature

= T2

he dynamic and steady-state behaviors of heat exchangers are
ighly nonlinear. For example, for small values of u = F2 (relative

to F1), the process gain k =
dy
du is large and relatively constant, but

or large values of u = F2, the gain k approaches 0 and makes it
ifficult to control y = T1. This is because we get a pinch for T1
constant value) with y = T1 approaching the inlet temperature
T 0
2 .
An ideal countercurrent heat exchanger is modeled by partial

differential equations, but we use a cell model with n = 100 well-
mixed cells on each side; see [14] for model equations. In total,
this gives 200 differential equations to represent the temperature
dynamics, so this model clearly cannot be written in the form
dy
dt = f (u, y, d) in (18) which allows for only one differential
equation. This leads us to consider transformed inputs based on
a static model of the heat exchanger, which we will then apply
to the dynamic heat exchanger cell model. Thus, in this example,
we analyze by simulation the effect of model uncertainty. We will
consider two transformed inputs

v0 = f0(u, d) (66)

v0,w = f0,w(u, w, d) (67)

The first is the ideal transformed input v0 that follows from the
detailed static model y = f0(u, d). Note that this model does not
depend on the measured state variable w = T2 and use of the
ransformed variable v0 will therefore retain the dynamics of the
riginal system (the heat exchanger).
The second transformed variable, v0,w , is inspired by an actual

ndustrial implementation, where we make use of the measured
ariable w = T2. This allows us to use a much simpler model,

without having to include a model for the heat transfer. For
example, whereas v0 depends on the UA-value, v0,w does not use
this information.

Both transformed inputs are based on steady-state expressions
for y = T1 and give y = vs at steady state. Thus, both transformed
inputs will provide perfect disturbance rejection and linearity at
steady state. However, this assumes that the model parameters
do not change and we have that v0 gives an offset if we change
the value of UA, whereas v0,w gives no offset because it uses the
measurement w = T2 instead of a model equation where UA is

included.
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5.4.1. Ideal transformed input v0 based on full static model
We assume that the fluids do not change phase and have

constant heat capacity (cp1, cp2). Assuming ideal countercurrent
flow, the steady-state behavior is then given by the following
three equations for the heat transfer Q from stream 1 to stream
2:

Q = F1cp1(T 0
1 − T1) (68a)

Q = F2cp2(T2 − T 0
2 ) (68b)

Q = UA

(
T 0
1 − T2

)
−

(
T1 − T 0

2

)
ln

(
T01 −T2
T1−T02

) (68c)

This gives 3 equations in 3 unknowns (Q , T1, T2) which can be
solved analytically to find the following analytic expression for T1
as a function of the input and the disturbances (e.g., [15])

y = T1 = T 0
1 + ϵ(T 0

2 − T 0
1 )  

f0(u,d)

(69)

where

ϵ =
1 − E
C − E

C =
F1cp1
F2cp2

E = exp
(
UA

(
1

F1cp1
−

1
F2cp2

))
From (69) the corresponding ideal static transformed input be-
comes

v0 = f0(u, d) = T 0
1 + ϵ(T 0

2 − T 0
1 ) (70)

here it should be noted that ϵ is a nonlinear function of F1, F2
nd UA.

.4.2. Transformed input v0,w based on parts of static model and
easured state w = T2
The second transformed variable, v0,w , follows by using the

measured state w = T2 to replace the heat transfer Eq. (68c) for
Q . We use (68a) to find

T1 = T 0
1 +

Q
F1cp1

and then we substitute Q using (68b) to get

y = T1 = T 0
1 +

F2cp2
F1cp1

(T 0
2 − T2)  

f0,w (u,w,d)

(71)

From (71) the corresponding ideal static transformed input be-
comes

v0,w = f0,w(u, w, d) = T 0
1 +

F2cp2
F1cp1

(T 0
2 − T2) (72)

which depends on w = T2 but not on the UA-value.

5.4.3. Implementation
For both transformed inputs, we will use the pure feedback-

based implementation in Fig. 8(b) with a slave v-controller (Cv).
An alternative would be to use an exact model-based inverse
(analytical or numerical) to compute u = F2 plus use a slave
flow controller to implement F2 (Fig. 8(c)). The use of the slave
v-controller avoids the flow controller, and has an additional ad-
vantage in both cases. For v0, we avoid implementing a numerical
solution to generate u = f −1

0 (v0, d), and instead we generate the
inverse by the slave controller C . For v there is no problem
v 0,w
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n generating the exact inverse from (72) to compute u = F2,
but with a v-controller we avoid worrying about the potential
internal instability or excessive inputs of using the exact inverse
(although this is not a problem in this case).

The transformed input v0,w depends on the measured variable
w = T2. This feedback will change the dynamics, such that the
dynamics of the transformed system will be different to that of
the original system. On the other hand, the use of v0 has no
eedback from any output (y) or state (w), and the dynamics will
ot change (except for the dynamics of the slave loop, which are
egligible in this case because the slave loop for v0 is fast).
For tuning the slave v0-controller, we note that the ‘‘process’’

calculation block) from u = F2 to v0 in (70) is static, and a pure
I-controller is recommended [12]. The tuning of the slave v0,w-
controller is more difficult, because w = T2 depends dynamically
on u = F2 which results in an overshoot in the dynamic response
from u = F2 to v0,w (corresponding to a stable (LHP) zero). For
simplicity, we use I-controllers for both v0 and v0,w , tuned based
on the initial gain, and with the same closed-loop time constant
(τC = 10 s); see Table 2.

5.4.4. Simulations
We consider a cooler with data as given in Table 1, and

represented by a dynamic process model with 200 states. The
simulations in Fig. 13 compare the two alternative transformed
inputs (with the setpoint vs for v0 or v0,w set at the desired
value for y = T1). The results are also compared to the open-
loop (OL) response with no input transformation (with the input
u = F2 kept constant). The setpoint of the transformed input vs is
initially at 297K and changes to 302K at time t = 167min. The
simulations show responses to step disturbances in F1, T 0

1 and T 0
2

(all measured) and to a step change in the heat transfer parameter
UA (unmeasured which introduces uncertainty).

From the response for the controlled variable (y = T1) in
Fig. 13(a), we see that there is a clear benefit of using transformed
inputs. From the theory, both transformed inputs give perfect
control (y = v) at steady state for measured disturbances and this
is confirmed by the simulations. However, disturbance rejection
is not perfect dynamically because the process dynamics are
quite complex and not described by a first-order model. For the
unmeasured disturbance in UA (towards the end of the simulation
in Fig. 13(a)), we see, as expected, that we get a steady-state offset
for y = T1 when we use v0 (red curve) as the transformed input,
but not when we use v0,w (blue curve) which makes use of the
state measurement w = T2.

Dynamically, we find for this example that the responses are
best (fastest) when we use v0 as the transformed input (red
curves). The dynamics with v0 are similar to the quite fast dy-
namics of the uncontrolled heat exchanger (green curves). This
is expected because there is no feedback to v0 which can change
the dynamics. On the other hand, when we use v0,w (blue curves),
which contains an indirect feedback from w = T2, the dynamics
for the return to the steady state are much slower. The effect
of this indirect feedback is case dependent and in this case the
feedback from w slows down the response. It does not help to
change the tunings of the slave controller (Cv), because even with
a perfect inverse, the dynamics caused by the feedback from w =

T2 will be present. It may be possible to use the outer controller
C to speed up the response, but one must be careful because this
may cause instability if there is a measurement delay for y = T1.

In summary, since the implementation of v0 based on the
full static model is complex and gives steady-state offset for
disturbances in the UA-value, it is likely that the simpler imple-
mentation using v0,w with a measured w = T2 is preferred in
practice.

Additional examples, including a steam network, CSTR reactor
and a pH control problem may be found in the PhD thesis of Zot-
ica [17] and in the Master theses of Bjorvand [18] and Kingstree
[19].
 s
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Table 1
Nominal operating conditions for the heat exchanger (Example 6) from [16].
Variable Value Unit

F1 3 kg/s
F2 5 kg/s
T s
1 297.2 K

T 0
2 293 K

T 0
1 343 K

U 150 W/m2/K
A 90 m2

V1 = V2 0.45 m3

cp1 1200 J/kg K
cp2 1500 J/kg K
ρ1 980 kg/m3

ρ2 890 kg/m3

Table 2
Slave v-controller (Cv) tunings for heat exchanger example.
Transformed input KI τC [s]

v0 −0.125 10
v0,w −0.01 10

6. Discussion

6.1. Outer controller C for case with ideal transformed inputs

For the case with ideal transformed inputs (Fig. 9), the trans-
formed system includes in theory perfect disturbance rejection
and perfect steady-state setpoint tracking. For this reason all
simulations in this paper are without the outer controller C , and
to handle setpoint changes in ys we made direct changes in the
transformed input v. This was implemented simply by setting
v = ys (or vs

= ys for the feedback implementations), since we
n most of the examples choose the tuning parameters (B0 = I or
B = −A for v0 or vA, respectively) such that we have y = v at
steady state.

In practice, an outer controller C that adjusts v is needed to
andle model uncertainty and unmodeled or unmeasured dis-
urbances. In many cases, the outer controller is a rather slow
I-controller and the ability to make fast setpoint changes for y
ay be lost. Thus, to retain the direct (and fast) effect from the
etpoint ys to the transformed input v, we may add feedforward
ction from the setpoint ys. A simple solution is to use the
ollowing two degrees-of-freedom PI-controller C:

(t) = v(t0) + Ksys(t) − Kcy(t) + KI

∫ t

t0

(ys(t) − y(t))dt (73)

With ideal transformed inputs, we have y = v at steady state
with no model error). In such cases, we may choose the ‘‘feedfor-
ard gain’’ to be Ks = I to get the same initial setpoint response
s for the transformed system without the outer controller C . On
he other hand, Kc is usually smaller than I . For example, we may
hoose Kc = 0 to get pure I-control in C . The integral gain KI in
will correct for model error and unmeasured disturbances on a

lower time scale. The gain matrices Kc and KI should be diagonal
ecause the ideal transformed system from v to y is decoupled.

.2. Time scale separation for feedback implementation (alternative
)

The feedback implementation in Fig. 8(b) (alternative B) gen-
rates only an approximation of the exact inverse g−1 in Figs. 8(a)
nd 9, but the error can be neglected if the inner loop (with Cv)
s sufficiently fast. By ‘‘sufficiently fast’’ we mean that the time
cale separation τ /τ is sufficiently large. Here, τ denotes the
c c,v c,v
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Fig. 13. Dynamic simulation of heat exchanger (Example 6) using the cascade implementation of the transformed input v with a controller Cv (Fig. 8(b)). Two choices
or the transformed input, v0 and v0,w (with setpoint vs set equal to the setpoint for y), are compared with the open-loop (OL) case with no input transformation
constant u). The simulations are with no outer controller (C = 0) for the following step disturbances: F1 from 3 to 4 kg/s at t = 8min, T 0

2 from 293 to 288 K at
= 80min, T 0

1 from 343 to 328 K at t = 117min, setpoint change in vs
= ys from 297 to 302 K at t = 167min, and disturbance in U from 150 to 100 W/m2/K at

= 217min.
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losed-loop time constant of the inner loop involving the slave
ontroller Cv , and τc denotes the closed-loop time constant for
he outer loop involving the master controller C . Note that the
lave controller Cv generates the inverse by iteration, so reaching
omplete convergence (steady state) will take infinite time. As-
uming a linear first-order response, the approach to convergence
or steady state) within the desired overall response time τc is
1 − eτc/τc,v ). Thus, the approach to convergence increases from
3% to 95.0% to 99.3% as the time constant ratio τc/τc,v increases
rom 1 to 3 to 5. Since, convergence (or steady state) for practical
urposes is reached at 99.3%, this gives the rule of thumb of
equiring a time scale separation between the control layers of
t least 5 [13].
If the time scale separation gets too small, typically 3 or less,

he layers will start interacting and we may experience undesired
scillatory behavior or even instability [20]. A larger value (larger
han 5) allows for robustness to process gain variations which
ay affect the closed-loop time constants of both the inner and
aster control loops. Therefore, a time scale separation of 10
r larger is usually recommended in most practical cases. The
imiting case of infinite time scale separation corresponds to ϵ =
τc,v
t → 0, which is the singular perturbation condition in the
athematical literature.
The main fundamental limitation in having a fast response in

he inner loop (and thus making τc,v small) is a possible unstable
ero (or more generally an effective delay) in the dynamic map
u from u to v for cases when v depends on the output (state)
ariables w or y. This is discussed in more detail below.
However, note that unstable zero dynamics from u to v are not

particular problem for the feedback implementation in Fig. 8(b),
ut rather it is a fundamental limitation. To avoid excessive
hanges (spikes) in the value of u sent to the process, in particular
 d
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or the multivariable case, one may insert a filter for the signal
that goes to the process (but not on the signal u that goes to

he block that computes v in Fig. 8(b), because we do not want
o unnecessary delay this dependency). For example, a first-order
ilter may be used, F =

1
τF s+1 where τF is about 5 times larger than

he closed-loop time constant τc,v for the slave loop involving Cv .

.3. Decoupling and disturbance rejection when ideal static trans-
ormed input v0 is applied to the dynamic system in (18)

In many cases the process is dynamic, but nevertheless we
ay want to apply the ideal static transformed input v0 =

0(u, w, d) in (13) or (27), where f0 is the right-hand side of the
tatic process model. Note here that we have here chosen B0 = I
o that we have y = v0 at steady state.
When the transformed input v0 is applied to a dynamic pro-

ess, we have that the transformed system is linear, decoupled
nd independent of disturbances at steady state. However, dy-
amically we generally do not know what happens; the response
ay be nonlinear, coupled and dependent on disturbances. How-
ver, assume that we apply the static transformation v0 =

0(u, w, ..d) to the particular dynamic system
dy
dt

= f (u, w, y, d)

n (18) then we get perfect disturbance rejection and in many cases
ecoupling, also dynamically, if we make the reasonable assumption
hat we are initially at steady state.. This is an important result,
lthough the class of dynamic systems dy

dt = f (u, w, y, d) in (18) is
omewhat limited as it only includes low-order dynamic models
ith as many differential equations as inputs u and outputs y.
To prove that we retain disturbance rejection for this class of

ynamic systems, note that we at steady-state, where f (u, w, y, d)
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0, have the static relationship y = f0(u, w, d). Assume now that
e apply the ideal static transformed input v0 = f0(u, w, d) to

the dynamic system in (18). Furthermore, assume that we gen-
erate the exact inverse u = f −1

0 (v0, w, d) and that the resulting
transformed dynamic system becomes
dy
dt

= ft (v0, w, y, d) (74)

n example of such a transformed system is given by (57) for the
onlinear level process. Since we have y = v0 at steady state,

and since dy
dt = 0 at steady state, we must have that ft = 0 when

= v0, independent of the value of d (and w).
Assume now that we are initially at steady-state, so that we

have y = v0 and thus ft = 0. Next, consider a disturbance d and
ssume that we keep the transformed input v0 constant. Then,

since we start from y = v0 and we keep v0 constant, we have
that ft remains at 0 and from (75) we have that dy

dt = 0, and the
ystem will remain at steady state with y = v0. In conclusion,
e have perfect dynamic disturbance rejection for the dynamic
odel dy

dt = f (u, w, y, d) in (18) with the use of ideal transformed
variables v0 based on a static model.

However, if we are not initially at steady state then we will not
have perfect dynamic disturbance rejection with v0. For example,
if we are in a transition between steady states, due to a change
in the transformed input v0 (made by the outer controller), then
an output yi which is not at steady-state, will not be dynamically
independent of disturbances. However, if the changes for v0 are
infrequent or on a slow time scale, then for practical purposes we
will have perfect disturbance rejection when applying v0 to the
dynamic system (18).

To prove that we in many cases have decoupling, note the
Eqs. (74) is a set of equations of the form
dyi
dt

= ft,i(v0, w, y, d) (75)

We make the additional assumption that for each equation, ft,i = 0
when yi = v0,i. This may not always hold, but it is satisfied
for the models studied in this paper. Next, consider a change
in a single transformed input v0,i with all the other transformed
nputs v0,j(j ̸= i) constant. Since we start from a steady state with
yj = v0,j and we keep v0,j constant, we then have that ft,j = 0 and
rom (75) we have that dyj

dt = 0(j ̸= i). This means that we have
decoupled response where only yi changes in response to the
hange in v0,i.
In summary, if we initially are at steady state, then v0 achieves

isturbance rejection and in many cases decoupling, also dy-
amically. Thus, the main advantage of using vA (based on the
ynamic model (18); similar to feedback linearization) rather
han v0 (based on a static model) when applied to the dynamic
ystem (75) is that vA linearizes the transformed system, also
ynamically. Since vA depends on y, this gives justification for
eferring to this approach as ‘‘feedback linearization’’.

.4. Chain of input transformations

The use of the exact inverse u = g−1(v, w, y, d) is limited to
ases where the relative order from the input u to the output y is
 b

129
for the static model case (v0) and 1 for the dynamic model case
(vA). By introducing measured state variables w, we may extend
the use of transformed inputs to systems of higher relative order,
but this will require the use of feedback (cascade) control for
performing the inversion, which implies that the inversion is not
perfect as it depends on the tuning of the slave controller (Cv).

However, if we have a dynamic model for how w depends on
u, it is possible in some cases to get exact inversion for systems
of higher relative order by using a chain of input transformations,
or rather by a chain of inversions on the form (see Fig. 14)

v2 = g−1
1 (v1, y, d1), u = g−1

2 (v2, w, d2)

Here, v1 is the transformed input related to the control of y,
whereas v2 is the transformed input related to the control of w.
Note that g2 is based on a dynamic model for w, for example,
dw
dt = f2(u, w, d2) (process 2), whereas g1 may be based on either
a dynamic or static model for y, for example, dy

dt = f1(w, y, d1)
or y = f0(w, d1) (process 1). With a chain of transformations we
can get perfect disturbance rejection for all disturbances at steady
state. We can also get perfect dynamic disturbance rejection for
disturbances that enter the model in the same way as the input
u, that is, for disturbances d2 with the same relative order as the
nput, but not for disturbances d1 that have a lower relative order
han u.

For example, assume that we have a continuous process with
wo mixing tanks in series and we want to control the outlet
emperature in the second tank (y = T2) using the heat input to
the first tank (u = Q1). Also assume that we have an extra state
easurement of the temperature in the first tank (w = T1). In this

case the relative order from u to y is 2 and perfect disturbance
ejection is not possible for disturbances d1 directly affecting y
e.g., from another inlet stream to tank 2). However, since the
elative order from u to w is 1, it is possible, by using a chain of
transformations, to get perfect control for disturbances d2 directly
affecting w (e.g., the inlet feed temperature to tank 1). A more
detailed treatment of a similar example is given in the Master
Thesis of Kingstree [19].

6.5. Comparison with feedback linearization

The use of ideal transformed inputs vA based on a dynamic
model is a special case of feedback linearization to systems of
relative order 1 from u to y. For the scalar case (with one input
u and one output v) it only allows for one nonlinear differential
equation, dy

dt = f (u, y, d) and it transforms it into a first-order
linear system, dy

dt = Ay + BvA. Nevertheless, we have shown in
this paper that this may be very useful for practical applications
in process control.

Compared to the traditional feedback linearization literature,
we have put the main emphasis on the nice properties of vA
elated to feedforward control and decoupling. In the feedback
inearization literature, the main emphasis is usually on the lin-
arization effect. In any case, an important advantage of the feed-
ack linearization literature is that it provides a rich theoretical
asis for introducing the transformed variables v .
A
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Feedback linearization allows for considering higher-order
system with m nonlinear differential equations (m state variables
x), and it transforms it into a m’th order chain of m first-order
systems from v to y. Actually, in the feedback linearization lit-
erature, it is often assumed to be a chain of linear integrators,
but for process control applications it is better to generalize and
use a chain of linear first-order systems. However, even with this
generalization, there are few, if any, reports of using such chains
in practice. There are some reasons for this. First, the feedback
linearization theory assumes that all the states x are measured,
which is often not satisfied in process control applications. Sec-
ond, even if we can measure all the states, the resulting derivation
and implementation tend to become complicated, and may not be
worth the effort.

An alternative approach, which is simpler but somewhat less
general than feedback linearization, is to use a chain of input
transformations, as mentioned above, based on using a model
for the measured state variables w. However, also this imple-
mentation gets rather complex, and other model-based control
methods, like nonlinear model predictive control (MPC), may be
better for more complicated dynamic models.

6.6. Comparison with nonlinear MPC

MPC provides a generic model-based framework for handling
complex control problems that require linearization, decoupling
and feedforward control. There are some similarities between
nonlinear MPC and the use of ideal transformed inputs. Both
methods are based on ‘‘open-loop’’ (feedforward) thinking and
feedback from the measurements y is only introduced as a cor-
rection. An advantage with MPC is that it includes weights that
makes it possible to deviate from the exact inverse to address
more directly the overall control problem to get a trade-off be-
tween output performance, input usage and robustness. Thus,
with MPC, we are not forced to use exact model inversion, which
is the basis of the input transformations and also of feedback
linearization. MPC also allows for a much larger class of dynamic
models. Constraints on inputs and outputs may also be included
more directly with MPC.

On the other hand, the ideal input transformations used in this
paper have the advantage that they are more explicit and po-
tentially simpler to understand and implement, especially when
based on physical static models. They can easily be simplified to
include only decoupling or only parts of the disturbance rejection.
They can also easily be combined with conventional feedback
controllers C (e.g., single-loop PID controllers) which may used
to correct for model error and unmeasured disturbances. Unlike
MPC, input transformations can be easily implemented within
the standard DCS or PLC control platforms used at chemical
processing facilities.

A second more fundamental advantage of input transforma-
tions is that we may easily use extra measured variables (states)
w to replace model equations. This is generally more difficult
with MPC, except for cases where w is treated as a measured
isturbance, which means that we neglect the dependency of w

on u. With transformed inputs, we have the possibility of gen-
erating the input u by feedback using a cascade implementation
(Fig. 8(b)). We then do not need to explicitly know how the
measured state w depends on the input u as this goes into the
response from u to v, which we may obtain experimentally and
use to tune the slave feedback controller Cv . Note that we only
eed a simple dynamic model (e.g., first-order plus delay) to tune
v and it does not to be exact as the inversion (from v to u) is
andled by feedback.
For example, this makes it possible with transformed inputs

o replace a valve equation by a flow measurement. This is not
ossible with MPC.
130
Generally, with MPC, the measurement w of a state x can only
e exploited if we have a model equation that relates the state
to the input u. The measurement w is then used to correct the
rediction by the model, for example, using a Kalman filter. Thus,
e cannot easily substitute model equations by measured states
with MPC.
For the heat exchanger case study, it is not clear how we with

PC can use the measurement w = T2 to eliminate the heat
ransfer Eq. (68c) (involving the UA-value). At least it cannot be
one if MPC is based on an experimental model (which is used
or most MPC applications) because we cannot here treat T2 as a
easured disturbance. With transformed inputs, we could do this
y introducing the transformed input v0w in (72) which depends
n w = T2.

.7. Transformed outputs

It is also possible to define transformed outputs

= h(y, w, d) (76)

here y are the outputs that we want to control at a given
etpoint yS and h is a static function of our choice. When we
ntroduce transformed outputs z, the transformed input vz will
e in terms of z rather than y, that is, vz = gz(u, w, z, d). Two
lternative implementations are shown in Fig. 15.
However, we have already shown that we, by use of trans-

ormed inputs v alone, can make the transformed system from v
o y linear, decoupled and independent of disturbances. There is
herefore no fundamental advantage of introducing transformed
utputs. However, in some cases the use of transformed outputs z
ay simplify the implementation of the transformed inputs u and

his may be an important advantage. One example is to introduce
he enthalpy z = H(T , . . . ) as a transformed output when the
bjective is to control temperature y = T [21]. The reason is
hat the model may be formulated much simpler in terms of
= H rather than in terms of y = T , leading to a much simpler
xpression for the ideal transformed input vz = gz(u, w, z, d) for
than for the transformed input v = g(u, w, y, d) for y.

.8. Internal instability with exact inversion

For the exact implementation of the transformed input v, we
ust for a given value of v, y, w and d, invert the static map
= g(u, w, y, d) to generate (analytically or numerically) the

orresponding value of u

= g−1(v, w, y, d) (77)

ote that (77) is a purely static expression and therefore by itself
oes not contain any instabilities. However, when generating the
nverse in (77) we are in effect treating w and y as measured
isturbances, whereas they in reality depend on u. This depen-
ency may generate internal instability because of the feedback
enerated when the static inverse u = g−1(v, w, y, d) in (77) is
pplied to the real dynamic system. We use the term internal
nstability because the map from the transformed input v to the
utput y may appear to be stable, but this may not be true if
e consider the input u, and this ‘‘hidden’’ internal instability
ill eventually appear also in y, either because of model error
r because infinite inputs u are not physically realizable.
For the analysis that follows, there is no difference between

he variables w and y, so to simplify we will for now assume that
he transformed input v is independent of y.

We have the following general result: Let v = gu(u, d) repre-
ent the dynamic map from u to v when the internal variables w
n the static map v = g(u, w, d) have been eliminated by using
dynamic model w = gw(u, d) for how w depends on u. That is,



S. Skogestad, C. Zotică and N. Alsop Journal of Process Control 122 (2023) 113–133

g

c
r
p

6

y

f
i

v

F
t

u

T
t

y

w
f
e
c
t
i
e
−

w

N
w
w

o
z
g

v

w
i

Fig. 15. System with both transformed input v and transformed output z = h(y, w, d).
u

T
p
a
u

6

s
(

t
w

c

t

H
i

d

T

d

u(u, d) = g(u, gw(u, d), d). We then get internal instability when
we apply the exact inverse u = g−1(v, w, d) if the map gu(u, d)
ontains unstable zero dynamics (RHP-zeros in the linear case). This
esult follows trivially because the inverse will have unstable
oles at the unstable zeros of gu.

.8.1. Example: Simple linear system with unstable zeros
As a simple example, consider the system (seemingly static)

= u + w + d (78)

or which we from propose from (27) (with B0 = I) to use as the
deal transformed input the right-hand-side of (78)

= g(u, w, d) = u + w + d (79)

or implementation, (79) may be solved with respect to u to get
he ‘‘inverse input transformation’’

= g−1(v, w, d) = v − w − d (80)

his may be implemented as in Fig. 8(a) and it gives the (ideal)
ransformed system

= v (81)

hich has no dynamics and therefore appears to be stable. So
ar we have not said anything about how w depends on u. In
ffect, we have treated w as a measured disturbance and we have
ounteracted the effect of w on v by use of the ‘‘feedforward con-
roller’’ (inverse) in (80). However, there is a potential ‘‘hidden’’
nstability because of the dynamic response from u to w. As an
xample, assume that it is first-order with a steady state gain of
2

= gw(s) =
−2u
4s + 1

or
dw
dt

= −0.25(2u + w) (82)

ote from (79) that the direct static effect of u on v has a gain of 1,
hereas from (82) the indirect dynamic effect of u on v (through
) has a steady-state gain of −2, that is, it is larger and in the
pposite direction. The combined effect causes an unstable (RHP)
ero from u to v. To see this, eliminate w from (79) using (82) to
et

= gu(u, d) =
4s − 1
4s + 1

u + d (83)

hich has an unstable (RHP) zero at z = 1/4. This gives internal
nstability if we use the exact inverse in (79). To see this, solve
131
(83) with respect to u to get

=
4s + 1
4s − 1

(v − d) (84)

which as expected is unstable due to the unstable (RHP) pole at
p = 1/4. The response from v to w is also unstable

w =
−2

4s − 1
(v − d) (85)

he two instabilities in Eqs. (84) and (85) cancel each other when
ut into (78) to give y = v. The system from v to y therefore
ppears to be stable, but this is not true if we consider the input
.

.8.2. Linear stability analysis of transformed system
We now want to discuss more generally how we may get in-

tability when applying the exact inverse transformation
Fig. 8(a)). We allow for any transformed input v = g(u, w, y, d),
not only the ones derived systematically from a model as shown
in Section 4. For simplicity we consider linear systems. Nonlinear
systems may have additional stability problems, but the local
stability can be assessed from a linear analysis.

When is the transformed system stable? We know from the
examples above that it is not sufficient to study the stability from
v to y because of the possibility for internal instability when the
ransformed input depends on the dependent (state) variables
. Therefore, to eliminate the issue of internal stability, we will
onsider the stability of the ‘‘closed-loop’’ map from v to u, which
will be unstable if we have internal instability, e.g., see (84).
By ‘‘closed-loop’’ we mean that we have included the effect of
feedback through the dependent variables w and y.

For the analysis that follows, there is no difference between
he variables w and y, so to simplify we will for now assume that
the transformed input is independent of y

v = g(u, w, d) (86)

ere all the variables may be vectors. The transformation in (86)
s static so it can be linearized to give

v = Kudu + Kwdw + Kddd (87)

he linearized process dynamics from u to w can be written

w = Gw(s)du (88)
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e here set dd = 0 since d does not matter for local (lin-
ear) stability considerations. Substituting (88) into (87) gives the
response from u to v

dv = (Ku + KwGw(s))du = (I + Lw(s))Kudu (89)

where

Lw = KwGw(s)K−1
u (90)

Physically, Lw(s) represents the ratio of the indirect effect KwGw

(through w) and the direct effect Ku of u on the transformed input
v. Solving (89) respect to the input u gives the ‘‘closed-loop’’ input
that achieves the desired perfect control of v

du = K−1
u (I + Lw(s))−1dv (91)

Mathematically, we note that the linearized transformed system
in (91) corresponds to the closed-loop response from dv to du of a
system with negative feedback and a loop transfer function Lw(s).
This is very useful because of the existence of stability conditions
for such systems (e.g. [13]). These stability conditions include the
small gain theorem as well as the more general Bode stability
condition.

The small gain theorem says that we have stability if the norm
of Lw is less than 1 (e.g., |Lw(jω)| is less than 1 at all frequencies if
we use the H-infinity norm). For a scalar system, this says that if
the indirect effect KwGw of u on v (via w) is less in magnitude than
the direct effect Ku, then the transformed system is internally stable,
that is, there are no unstable zeros in the map from u to v. This is
a useful condition which yields significant insight. However, the
small gain theorem gives only a sufficient condition for stability,
but not necessary. The Bode stability condition is tighter because
it provides a necessary and sufficient conditions for stability.

Consider again the example in (79) and (82). From (79) we
have Ku = 1, Kw = 1, and thus Lw(s) = Gw(s) = −

2
4s+1 . The

steady-state gain |Lw(0)| = 2 is larger than 1, but from the small
gain theorem we cannot conclude that the system is unstable.
However, the Bode condition says that we need to look at the gain
at the frequency where the phase shift is −180◦. Since the steady
state gain of Lw(s) is negative we have that phase shift at steady
state is −180◦. Thus |Lw(jw180)| = |Lw(0)| = 2 and we conclude
from the Bode stability condition that the transformed system is
(internally) unstable, as expected.

6.8.3. Relationship between internal stability and stable zero dy-
namics for output y (for systematic transformed inputs v0 and
A)
We consider here the special case when the ideal transformed

nput has been derived from a model using (27) or (30). We
an then instead look at the zero dynamics for the output y
rather than for v). This follows because y and v are directly
elated in this case. In the static case, we have from (15) that the
ransformed system is y = B0v0 (even dynamically for the case
hen w depends dynamically on u). Similarly, for the dynamic
ase, we see from (21) that vA and y are directly related. In
articular, the zero dynamics will be the same. It then follows,
hat to have stability of the transformed system when v is derived
sing Eqs. (13) or (19) we must require that the map from the
hysical input u to the output y has stable zero dynamics, that is,
he process has stable zero dynamics [5].

. Summary and conclusion

In this paper we use the concept of transformed inputs v =

(u, w, y, d) to provide a systematic approach to analyze, imple-
ent and derive model-based nonlinear calculation blocks and
ascade control schemes which are frequently used in practice

or industrial processes.

132
The starting point is often a nonlinear static model, y =

0(u, d). From (13) with B0 = I , the ideal static transformed
input is simply the right-hand side of the model, v0 = f0, that
s, we have g = f0 where we note that g in the static case
does not depend on the outputs y. For the ideal case, where all
disturbances d that enter the model are measured and there is no
model error, this gives at steady state the transformed system y =

0, which is linear, decoupled and independent of disturbances.
In practical cases, the ideal transformed inputs v0 may be

sed as a starting point to suggest simpler transformed inputs
. In such cases, some of the ideal properties are lost, but the
ransformed input v may still be very useful and greatly sim-
lify the design of the outer controller C , which in any case is
eeded to handle model uncertainty and unknown or uncertain
isturbances.
For implementation, we need to invert the transformation g

o generate the physical input u = g−1(v0, . . . ). In some cases,
e may use the exact model-based inverse in Fig. 8(a), but if the
quations are complex, we may use feedback control as a ‘‘trick’’
o solve the equations by using the cascade implementation in
ig. 8(b) with a slave v-controller.
The model may often be written in a simpler form, y =

0w(u, w, d), by replacing parts of the model by a measured de-
endent variable (state) w. The most common is to use a mea-
ured flow to replace a valve-like equation, like (6) or (52), or
o use a measured temperature to replace the energy balance or
arts of it. In such cases, the cascade implementation in Fig. 8(b)
s often preferred to invert the transformation v0 = f0w(u, w, d).
irst, it may happen that the function f0w does not depend explic-
tly on the input u and then it is not possible to use a model-based
nverse. Second, there is a potential problem with internal insta-
ility if we use the model-based inverse, but instability will not
e occur with the cascade implementation because the tuning of
he inner controller Cv is based on the experimental response
rom u to v0. Internal stability with the exact inverse occurs
f the indirect (dynamic) effect of u on v0 through w is large
ompared to the direct (static) effect of u on v0, such that the
verall response from u to v0 has unstable zero dynamics (inverse
esponse in the linear scalar case). This is not very common, and
ith an ideal transformed input v0 it only happens when the
riginal system response from the input u to the output y has
nstable zero dynamics (inverse response). In such cases, control
f y is fundamentally difficult with any control approach.
It is also possible to derive ideal transformed inputs, vA, based

n a dynamic model, dy
dt = f (u, y, d); see (30). This approach is

closely related to the theory of feedback linearization. At first
sight, this seems to be a much more powerful approach than with
the static variables v0, as it gives a transformed system dy

dt = Ay+

BvA which is linear, decoupled and independent of disturbances,
also dynamically. However, the benefit is usually small. First, the
class of dynamic systems described by dy

dt = f (u, y, d) is limited.
or example, for a single-input single-output processes, it allows
or only one differential equation with no direct effect from the
nput u to the output y (that is, no zeros are allowed). Second, we
ave found that the ideal static transformed input v0 performs
lmost as well as vA for this class of systems. In particular, it
aintains perfect dynamic disturbance rejection if the system

nitially is at steady state. Third, a disadvantage with vA is that
t is more complex and requires choosing a reasonable value for
he tuning parameter A. Simply setting A = 0, as is normally
ecommended in feedback linearization, is normally not a good
hoice as the resulting transformed system will be drifting for
nknown disturbances. The main advantage with vA compared

to v0 is that it linearizes the system dynamically, which may
simplify the design of the outer controller C in some cases. In
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ummary, we recommend that the engineer starts with static
odels when deriving transformed inputs.
The use of ideal transformed inputs v may in theory produce

o offset at steady state (y = v), but this is based on feedforward
control and assumes an exact model and perfect measurements of
the disturbances. This is not realistic, so we generally need to add
an outer controller C which manipulates v to control the output
. Single-loop PID-controllers are usually sufficient because the
esponse from v to y is linear and decoupled, at least at steady
tate. The objective of the outer controller is to correct for er-
ors in the model and measurements and to reject unmeasured
r unmodeled disturbances. The outer controller should include
ntegral action to get offset-free control at steady state.

We have stressed the need to keep things simple. This is usu-
lly not an objective in academic papers, but in practice simplicity
s important for many reasons. First, it makes it possible to build
control system of smaller parts (blocks) which may designed
nd tuned independently. Second, it is easier to understand and
odify by engineers and operators, and it reduces errors in the

mplementation.
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ppendix. Tuning parameter A for ideal dynamic transformed
nputs vA

Consider the nonlinear system model dy
dt = f (u, y, d), which

an be linearized to get
dy
dt

= df = Ãdy + B̃du + B̃ddd (A.1)

here the ∼ variables correspond to the linearized dynamics of
he original system. We have that Ã = (∂ f /∂y)∗, B̃ = (∂ f /∂u)∗
nd B̃d = (∂ f /∂d)∗. where the evaluation of the derivatives is
erformed at the nominal point of operation, denoted by ∗. Recall
rom (24b) that the dynamics of the transformed system are given
y dy

dt = Ay+BvA. Thus, if we choose A = Ã then the transformed
ystem will locally (close to the nominal operating point ∗) have
the same dynamics as the original system in (A.1).

Furthermore, from (19) the linearized transformed input be-
comes

dvA = B−1(df − Ady) = B−1(B̃du + B̃ddd) (A.2)

and we find that dvA is independent of dy.
133
Thus, with the choice for A in (25), there is no feedback from
y on the transformed input vA at the nominal point.

For the multivariable case, to get a decoupled response, we
ay choose A equal to the diagonal elements of the A-matrix of

the original system

A = diag(Ã) = diag
(

∂ f
∂y

)
∗

(A.3)

For the multivariable case, this will not exactly keep the original
dynamics and there will be some feedback from y to v at the
nominal point. However, it provides a good comprise between
decoupling and minimizing the feedback from y. In any case, the
xact value for A should not be overemphasized, since we can
hange the closed-loop dynamics by design of the outer controller
.
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