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Abstract

This paper introduces powerful static input transformations which transform

the original system (process) into a transformed system which is easier to con-

trol. The transformed inputs (controller outputs) may be implemented in many

ways and under many names, for example, as ratio, feedforward and decoupling

control, or more generally as nonlinear computation blocks. These methods are

frequently used in industry, but are often introduced in an ad-hoc fashion. The

present paper provides a systematic method for deriving such control strategies

from a nonlinear process model. For a static model, the ideal transformed input

is simply the right-hand-side of the model equations. The resulting transformed

system is linear, decoupled and independent of disturbances. In some cases, use

of extra measurements simplify the input transformation by replacing model

equations. It is also possible to derive ideal transformed inputs from a dynamic

model, which turns out to be a special case of a nonlinear control approach

called feedback linearization. However, except for achieving linearization also

dynamically, the benefits of using feedback linearization are small compared to

using transformed inputs based on a static model. For implementation we need

to invert the input transformation, and for this we may use an exact model-

based inverse or an approximate feedback-based inverse. The latter leads to the

use of cascade control.
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1. Introduction

Industry frequently makes use of nonlinear static model-based “calculation

blocks”, “function blocks”, or “ratio elements” to provide feedforward action,

decoupling or linearization (adaptive gain), and Shinskey (1981) provides many

examples of this. The main motivation for this work is to provide a better5

theoretical basis for these model-based nonlinear control elements, which we

study in this paper in the context of nonlinear input transformations.
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Figure 1: Use of transformed inputs v. For example, the transformed input could be the ratio
v = g(u, d) = u

d
, and the “inverse input transformation” block which inverts this relationship

would then be u = g−1(v, d) = vd. The outer feedback controller C has the aim of correcting
for uncertainty, including for model error and unknown disturbances.

Let u denote the original (physical) input and let v denote the transformed

input (controller output) which depends on u and other variables. The main

idea is that the controller C (or in some cases the operator) sets the value of

the transformed input v rather than the physical input u, see Figure 1. In this

paper, we define the transformed input v as a nonlinear static function g of the

physical input u and other variables

v = g(u,w, y, d) (1)

Note that the specific function g is a design choice for the control engineer. The

variables are defined as follows:
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v = transformed inputs (controller outputs)10

u = original (physical) process inputs

d = measured disturbances

y = controlled process outputs (measured)

w = other measured dependent process variables (states).

In this paper, we do not include dynamic elements in the definition of the15

transformed input v, although dynamic elements are frequently used in indus-

trial practice (e.g.,Welfonder (1999)).

Nevertheless, even without dynamics, (1) provides a very generic definition

so let us state more clearly the objective of introducing the transformed input.

The transformed input v replaces the physical input u as the manipulated20

variable for control of the output y, with the aim of simplifying the control task

by including elements such as decoupling, linearization and feedforward action.

Shinskey (1981) (on page 119) writes in relation to selecting input and output

variables for the controller:

“There is no need to be limited to single measurable or manipulable25

variables. If a more meaningful variable happens to be a mathemati-

cal combination of two or more measurable or manipulable variables,

there is no reason why it cannot be used.”

Some simple examples of transformed inputs (controller outputs) are

v = u+ d

v =
u

d

v = u1 − u2

v =
u1

u2

v = w

(2a)

(2b)

(2c)

(2d)

(2e)
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Such transformed inputs are often introduced by engineers on simple physical

grounds. The transformed input v = u + d in (2a) may provide feedforward30

action from a measured disturbance d. It may be used, for example, for a case

where u and d represent two feedrates and we want to control the combined

flowrate u + d. The ratio v = u
d in (2b) may provide feedforward action and

linearization. It is typically used when u and d represent two feedrates and

we want to control the quality (e.g. composition) of the combined feed. A35

transformed variable with two inputs may provide decoupling, for example the

difference v = u1 − u2 in (2c) and the ratio v = u1

u2
in (2d).

The transformed input v = w in (2e) with w = F (measured flowrate) is

probably the most common of all in process control. Its implementation results

in a slave flow controller, where the physical input u is the valve position and the40

transformed input v is the flowrate F (or more precisely, v = Fs, the setpoint for

the flowrate). This particular transformed input (v = F ) and the use of slave

flow control is so common that in many cases people consider the flowrate F to

be the (physical) input u, and to simplify the expressions we will sometimes do

this in this paper.45

However, it is not enough to define the transformed input v, as in (1) and (2).

For implementation we need to invert the transformation, that is, to generate

from a given value of the controller output v = g(u,w, y, d), the corresponding

physical input u. Shinskey (1967, 1981) calls this “reversing the process model”.

There are two main ways of generating this inverse:50

A. Model-based inverse 1using the “exact inverse input transformation” u =

g−1(v, w, y, d); see Figure 1.

B. Feedback-based inverse using a cascade implementation with a slave con-

troller for v or w.

1In this paper, the notation g−1 means that we invert or reverse the static function g
between independent and dependent variables. For example, if the original function is v =
g(u, d), where u is the independent variable and v the dependent variable, then the solution
that results from solving v = g(u, d) with respect to u for a given v is written as u = g−1(v, d).

4



The model-based approach may be used for (2a)-(2d) above. For example,

for v = g(u, d) = u+ d in (2a) the exact model-based inverse becomes

u = g−1(v, d) = v − d (3)

However, a model-based inverse is sometimes not possible, because g(u,w, y, d)55

may not depend explicitly on u. For example, for the transformed input v = F

(flowrate), we have g(u,w, y, d) = w = F which is independent of the physical

input u. In this case, the inverse must be generated by feedback using a slave

flow controller.

In other cases, a model-based inverse may exist, but nevertheless we may60

use a feedback controller as a “trick” to generate an approximate inverse. In

the control literature, this trick is often referred to as “dynamic inversion” (Lee

et al., 2016).

In most cases, the selection of transformed inputs v is based on simple static

models, for example, from material or energy balances (Shinskey, 1967, 1981).65

However, the treatment of Shinskey is case-study based and in this paper, we

aim to show how to derive the transformed variables in a systematic manner.

Ideally, assuming no model error and that we measure all disturbances, these

“ideal transformed variables” result in a transformed system from v to y (see

Figure 1) that is linear, decoupled and independent of disturbances.70

We also show how this approach can be extended to dynamic models, and

this case is closely related to the theory of feedback linearization (Isidori, 1995),

which has a strong theoretical basis.

Throughout the paper we assume that we measure all the parameters that

enter the transformations, such as disturbances d and internal variables (states)75

w. This is often not true, so in practice there are two alternatives. The most

common is to simplify the expression for the ideal transformed variable, by keep-

ing only parts of the benefit of the input transformation, for example decoupling,

and leave the disturbance rejection to the outer feedback controller C. The other

approach is to use a soft sensor, estimator or observer (e.g., Kravaris & Chung80
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(1987), Bastin & Dochain (1990)) to estimate the non-measured variables d and

w.

Surprisingly, there does not seem to be any academic literature on the com-

mon industrial approach of Shinskey (1967, 1981) of using static models to derive

transformed inputs. On the other hand, for dynamic models, there is a large85

body of mathematical theory on variable transformations to transform nonlinear

differential equations into linear differential equations, which has been applied in

the control field. The most well-known approach is feedback linearization based

on mathematical concepts from Lie algebra (e.g., Isidori (1995); Khalil (2015);

Kravaris & Chung (1987); Henson & Seborg (1997)). This theory is closely re-90

lated to the input transformations for dynamic systems studied in this paper.

However, the theory of feedback linearization, although extensively taught in

nonlinear control classes, is rarely used in industrial practice, at least within

the field of process control. There are several reasons for this. One is that the

mathematics are seemingly complicated and there are restrictions in terms of95

the class of systems and the assumption of full state feedback. Another reason

is that, mainly for reasons of mathematical generality and simplicity, Isidori

(1995) selects the transformed inputs such that the resulting transformed linear

system is integrating, dy
dt = v. This means that the transformed system is at the

limit of instability, so the transformed inputs v cannot be kept constant. For ex-100

ample, with a fixed v, any unmeasured disturbance will result in an integrating

output y. Therefore, Isidori (1995) introduces an outer state feedback controller

as part of the solution. However, in many cases it is strongly desirable to be able

to fix v, at least on an intermediate time scale, and actually the transformation

into an integrating system is not necessary. For example, Kravaris & Chung105

(1987) and Bastin & Dochain (1990), who study process control applications,

use a formulation that gives a stable linear transformed system on the form

dy
dt = Ay+Bv (where the matrices A and B are tuning parameters), and this is

the approach taken in this paper. In a personal communication, Isidori (2020)

emphasizes that the decision to make the transformed system integrating was110

just chosen as an example, but this message has not made its way to many of
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the potential users of feedback linearization. For our purposes, the advantage

with the large body of literature on feedback linearization, is that this literature

provides a mathematical basis for issues related to the invertibility and stability

of the proposed transformations.115

The paper starts in Section 2 with a motivating mixing example on the

use of input transformations for decoupling. Next, in Section 3 we discuss in

more detail the two main approaches for implementing the transformed inputs,

which are exact model inversion and inversion by feedback (cascade control).

In Section 4, we show how to derive “ideal” model-based transformed inputs120

that provide linearization, decoupling and feedforward control. The model can

either be a static model or a low-order dynamic model. In the dynamic case, the

theory is closely related to the theory of feedback linearization. In Section 5 we

present several case studies. In Section 6, we discuss the results and study the

potential problem of internal instability. We also discuss the use of transformed125

outputs. In Section 7 we make our final conclusions and remarks.

We have attempted to keep the mathematical treatment at a quite low level,

so that the paper will be readable also for an industrial audience. One reason

is that we strongly believe that the results in this paper can be very useful in

industrial practice.130

2. Motivating case study: Decoupling of mixing process

The main reason for introducing transformed inputs v is to simplify the

control of the outputs y. In Section 4, we introduce systematic methods for

selecting “ideal” transformed input v that provide linearization, decoupling and

disturbance rejection. However, in many cases, engineers use simpler trans-135

formed inputs (Shinskey, 1981) that do not provide all these features. In this

section, we consider a simple motivating case study.

2.1. Example 1: Mixing process with flowrates as physical inputs

The mixing process in Figure 2 has two inlet streams, and initially we con-

sider for simplicity the two flowrates F1 and F2 [kg/s] as the physical inputs,
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V(m3)

u1 = F1

d1 = T1

u2 = F2

d2 = T2

y = [ F T ]
⊺

Figure 2: Flowsheet of mixing process.

(a) Traditional design with two separate han-
dles (u1 = F1, u2 = F2)

(b) Modern one-handle design where decou-
pling is achieved by the physical design (v1 =

F1 + F2 and vr =
F1
F2

).

Figure 3: Valve (faucet) designs for mixing hot and cold water.

rather than the valve positions. The inlet flows are mixed to get a given total

flow (F ) and quality (T ), which we want to control. Depending on the appli-

cation, T could represent temperature or composition. We will consider the

mixing of hot (F1) and cold (F2) water where T is temperature. The main

disturbances are the two inlet temperatures. Thus, we have:

u =

F1

F2

 ; y =

F
T

 ; d =

T1

T2


A real design of this process using a traditional faucet with two separate handles

(valves) is shown in Figure 3a. We know that this process is quite interactive.140

For example, to increase the temperature y2 = T while keeping a constant total

flow y1 = F , we need to increase the input u1 = F1 (hot water) while reducing

u2 = F2 (cold water) by the same amount.
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Input transformation for decoupling

To eliminate the interactions and make the process decoupled, we may use145

the alternative one-handle faucet in Figure 3b. Here, one direction of the handle

(usually up-down) is used for adjusting the total flow (F = F1 + F2), and

the other direction (usually left-right) is used for adjusting the temperature by

changing the ratio F1

F2
of hot and cold water. This corresponds to using the

transformed inputs v1 = F1 +F2 and vr = F1

F2
. The fact that these transformed150

inputs give decoupling is probably clear on physical grounds, and it can easily

be proven by making use of the mass and energy balances as shown later in

Example 3 (Section 5.1).

For the modern one-handle design in Figure 3b, the transformed variables

v1 and vr are implemented physically (mechanically). However, to implement

decoupling using the traditional two-handle design in Figure 3a, we need to

add in the control scheme a decoupling block to compute the physical inputs

(u) from the transformed inputs (v). With this digital rather than physical

decoupler, we may use the opportunity to replace the flow ratio vr = F1

F2
by the

normalized ratio v2 = F1

F1+F2
. The transformed inputs v = g(u) then become

v1 = F1 + F2 = u1 + u2

v2 =
F1

F1 + F2
=

u1

u1 + u2

(4a)

(4b)

Both ratios vr and v2 give decoupling and they are equivalent in the sense155

that fixing one keeps the other constant (since v2 = vr
vr+1 ). However, the nor-

malized ratio v2 in (4b) has some properties that makes it better for implemen-

tation. First, v2 is always in the range 0 to 1, whereas vr may vary between 0

and ∞. Second, as shown later in Example 3, the ratio v2 is a special case of

the ideal static transformed input (v0) and provides linearization. Third, the160

expression for the exact inverse in the decoupling block becomes very simple

with v2, see (5). Fourth, v2 avoids division by zero when F2 = 0, which may

be an advantage if we obtain the inverse by feedback control (Alternative B in
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Figure 6).

To find the exact inverse transformation (decoupling block), we solve the

expression v = g(u) for the transformed input in (4) with respect to u for a

given v, to derive u = g−1(v) where in this case

u1 = F1 = v1v2

u2 = F2 = v1 − v1v2

(5a)

(5b)

The nonlinear decoupling g−1 in (5) may be implemented in the block “inverse165

input transformation” in Figure 1 to provide a decoupled response from v to y

for the traditional two-handle design.

Note that the inverse transformation contains no divisions, which is impor-

tant to avoid division by zero. Furthermore, in this simple case, the equations

can easily be implemented using standard multiplication and subtraction ele-170

ments, for example, as shown in Figure 4.

×

+
−

v1

v2 u1 = v1v2

u2 = v1 − v1v2

Figure 4: Implementation of inverse transformation in (5) using standard multiplication and
subtraction elements. The two transformed inputs are the sum (v1) and the normalized ratio
(v2) of the two inputs (u1 and u2).

In Section 5.1) we will use a systematic procedure to derive a generalized

(ideal) version of the transformed inputs in (4), where disturbance rejection and

linearization are also included.

2.2. Example 2: Mixing process with valve positions as physical inputs175

We have so far assumed that the flow rates F1 and F2 are the physical inputs,

but in practice it is more likely that the valve positions z1 and z2 are the physical
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inputs and that the flowrates are extra measured variables w:

u =

z1
z2

 ; y =

F
T

 ; d =

T1

T2

 ; w =

F1

F2


We will now consider three ways of implementing this in order to retain a

decoupled transformed system from the transformed input v in (4) to the output

y.

V (m3)

y = [ F T ]
⊺

∆P ∆P

u = g−1(v, d)
u1 u2

TCFC

v2v1

ys1 = F s ys2 = T s

y1 = F y2 = T

Figure 5: Model-based inversion (Alternative A) for implementation of transformed inputs

v1 = F1+F2 and v2 = F1
F1+F2

for the mixing process when the physical inputs u are the valve

positions z. The inversion block u = g−1(v, d) is a combination of the inversions in (5) and
(7).

Alternative A (purely model-based inversion). The first option does not

make use of any measured flows (w). It is based on inverting the entire model,

including the valve model. A general block diagram for this option is shown in

Figure 1, and the corresponding flowsheet for this particular example is shown

in Figure 5. A typical valve equation is

F = kvfv(z)
√
∆P (6)

Here, F is the flow, z is the valve position, kv is the valve constant and ∆P is

pressure drop over the valve which is assumed to be a measured disturbance.

The valve characteristic fv(z) is assumed to be known. For a linear valve, we
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have fv(z) = z. Inverting the valve equation (6) gives

z = f−1
v

(
F

kv
√
∆P

)
(7)

For a linear valve, we get z = F
kv

√
∆p

. The resulting model-based inversion

may be implemented as shown in Figure 5, where the exact inverse block u =180

g−1(v, d) computes the valve positions u = z (physical input) by combining the

inversions in (5) and (7).

Specifically, (5) is used to calculate the flowrates F1 and F2, and (7) is used

to calculate the corresponding valve positions z1 and z2.

However, in practice, this model-based implementation may not work well,185

mainly because of uncertainty (error) in the valve characteristic fv(z) and the

valve constant kv, but also because of incorrect measurements of the pressure

drop disturbance (∆P ). Therefore, if the inlet flows (F1, F2) can be measured

with reasonable accuracy, it is better to use a feedback-based implementation

where the feedback corrects for model uncertainty. Two such implementations190

are discussed next.

V (m3)

F1 F2

y = [ F T ]
⊺

VC1

u1 = z1

v1 = F1 + F2

measured
VC2

u2 = z2

v2 = F1

F1+F2

measured

TCFC

vs2vs1

ys1 = F s ys2 = T s

y1 = F

measured

y2 = T

measured

Figure 6: Feedback inversion (Alternative B) for implementation of transformed inputs v1 =

F1 + F2 and v2 = F1
F1+F2

for the mixing process when the physical inputs u are the valve

positions z. This solution makes use of slave v-controllers (VC1 and VC2).

Alternative B (purely feedback-based inversion). The first option (Figure
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6) uses only feedback. The measured w-variables (flows F1 and F2) are used

to compute the actual value of the transformed input v (v1 = F1 + F2 and

v2 = F1

F1+F2
, and two slave v-controllers (VC1 and VC2) manipulate the physical195

inputs u (valve positions) to make v equal to the desired setpoints vs which are

computed by the two master controllers (FC and TC).

This alternative avoids the inverse block g−1, so instead the decoupling from

v to y is taken care of by the two slave v-controllers (VC1 and VC2). With

integral action in the the two v-controllers, decoupling will be exact at steady200

state.

However, decoupling will not be perfect dynamically, both because the slave

v-controllers are not infinitely fast and because of interactions between the loops.

To reduce interactions, we need to choose good variable pairings for VC1 and

VC2. In Figure 6, we have paired the total flow (v1 = F1 + F2) with z1 (which205

affects F1), and the ratio (v2) with z2 (which affects F2). This can be shown to

be the preferred pairing if F1 the larger flow.

Since interactions result in dynamic couplings from v to y with the purely

feedback-based implementation (Alternative B), one may question if there is any

benefit compared to the simplest scheme, which is to have no input transforma-210

tion (not shown in any figure), that is, letting the outer controller C (which are

the two controllers TC and FC in this case) manipulate directly the flows (F1

and F2) using two slave flow controllers.

The answer is that there there can indeed be a significant decoupling benefit

when we use input transformations with feedback control of v (Alternative B)215

if there are effective delays associated with the control of y (e.g., measurement

delays for F or T in our case), such that two slave v-controllers (VC1 and VC2)

can be significantly faster than outer controllers in C (TC and FC).

Alternative C (combined model- and feedback-based inversion). The best

option for this example is most likely to use the exact model-based inverse in220

(5) to compute the desired flowrates (F s
1 and F s

2 ) and combine this with two

slave flow (w = F ) controllers (FC1 and FC2) that generate by feedback the

corresponding valve positions (u1 = z1 and u2 = z2). This alternative is shown
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V(m3)

y = [ F T ]
⊺

FC1

u1 = z1

w1 = F1
FC2

u2 = z2

w2 = F2

ws = g−1(v)
ws

1 = F s
1 = v1v2 ws

2 = F s
2 = v1 − v1v2

TCFC

v2v1

y1 = F y2 = T

ys1 = F s ys2 = T s

Figure 7: Combined model and feedback inversion (Alternative C) for implementation of

transformed inputs v1 = F1 + F2 and v2 = F1
F1+F2

for the mixing process when the physical

inputs u are the valve positions z. This solution combines the exact inverse g−1(v) in (5) for
computing the flow setpoints F s

1 and F s
2 with two slave flow(w)-controllers (FC1 and FC2)

that generate the corresponding physical inputs u1 = z1and u2 = z2.

in the flowsheet in Figure 7. It combines the decoupling of the model-based

inversion in (5) with the linearization and disturbance rejection of the flow225

controllers. The two slave flow controllers, through the action of fast feedback,

indirectly generate the inverse in (7), and makes the process (almost) linear and

independent of disturbances in ∆p1 and ∆p2, at least as seen from slower time

scale of the outer controllers (TC and FC).

The next section generalizes the three alternative ways (A, B and C) of230

generating the inverse.

3. Implementation of transformed inputs

The transformed input v is defined as a nonlinear static function g that

depends on the original (physical) input u and other measured variables

v = g(u,w, y, d) (8)

All variables may be vectors. For the multivariable case, we will assume that

we have an equal number (n) of inputs u, outputs y and transformed inputs v.

14



Often the function g is independent of y and in many cases we do not have extra235

measurements w. Note that g may not depend explicitly on u, but it should

then depend indirectly on u through the measured variables w.

As mentioned in the introduction, the idea is that the outer controller C

or the operator sets the desired value (setpoint) vs of the transformed input v.

However, to implement v on the real process, we need to generate the corre-240

sponding physical input u. There are two main approaches for implementing

the physical input u:

A. Model-based implementation, see Figures 1 and 8a. With an exact in-

verse g−1, this gives exactly v = vs (assuming all variables are measured

perfectly and there is no model error).245

B. Feedback-based implementation, see Figure 8b. With integral action in

the slave controller Cv this gives v = vs after a dynamic transient.

We also discuss a third implementation (Figure 8c) which is a combination

of the two. The three alternatives are the same as the ones presented in Figures

5, 6 and 7 for Example 2, respectively.250

3.1. Alternative A: Model-based inversion (Figure 1 and Figure 8a)

The first approach is to invert the input transformation v = g(u,w, y, d) in

(8), by analytically or numerically finding the input u that corresponds to given

values of v, w, y and d. We can formally write the solution as

u = g−1(v, w, y, d) (9)

This gives the exact inverse g−1(v, w, y, d) if the inverse exists, if there is no

model uncertainty and if all variables w, y and d are measured perfectly.

3.2. Alternative B: Feedback inversion with slave v-controller (cascade control)

(Figure 8b)255

A dynamic approximation of the inverse input transformation may be gener-

ated using an inner (slave) feedback controller Cv as shown in Figure 8b. Here,
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+
− Controller C

u = g−1(v, w, y, d)
Inverse input
transformation

(static)

Process
(nonlinear)

ys e v u

d

y

w

(a) Alternative A. Model-based implementation of transformed input v = g(u,w, y, d).

The physical input u = g−1(v, w, y, d) is generated by a static (algebraic) calculation block
which inverts the transformed input model equations. The model-based implementation
generates the exact inverse for the case with no model error.

+
−

Controller C +
− Controller Cv

(fast)

v = g(u,w, y, d)
Input transformation

(static)

Process
(nonlinear)

ys e vs

v

u

d

y
w

(b) Alternative B. Feedback implementation of transformed input v = g(u,w, y, d) using
cascade control with a slave v-controller. The computed value of v is driven to its setpoint
vs by the inner (slave) feedback controller Cv which generates the physical input u. This
implementation generates an approximate inverse.

+
− Controller C

w = g−1(vs, y, d)
Inverse input
transformation

(static)

+
−

Controller Cw

(fast)
Process

(nonlinear)

ys e vs ws u

d

y

w

(c) Alternative C. Combined model-based and feedback implementation of transformed
input v = g(w, y, d) using slave w-controller. Commonly, Cw is a flow controller (w =
flowrate) and u is the valve position. This implementation generates an approximate
inverse.

Figure 8: Alternative implementations (red blocks) for inverting the input transformation
v = g(u,w, y, d), that is, of generating the physical input (u) from a given value of the
transformed input (v or vs).
Controllers C,Cv and Cw are usually single-loop PID controllers
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we compute the actual value v = g(u,w, y, d) from measurements of u, w, y

and d, and use the inner controller Cv to dynamically generate the input u

that makes v approach the desired value vs. The inner controller Cv may be260

tuned based on an experimental response from u to v. Usually, a PI-controller,

or even a pure I-controller, is sufficient. For the n × n multivariable case, one

usually designs n single-loop linear controllers for Cv, although it is possible to

use multivariable control, for example, to reduce dynamic interactions.

3.3. Alternative C: Combined feedback- and model-based inversion with slave265

w-controller (Figure 8c)

This combined implementation with an inner w-controller is of particular in-

terest for the case when v = g(w, y, d) does not depend explicitly on u and there

is only one measured w-variable associated with each input u. In addition to the

inner controller Cw for w, we also need a block that inverts the transformation270

g with respect to w, that is, which computes the setpoint ws = g−1(v, y, d).

Feedback implementation C (Figure 8c) has the advantage that we can in-

clude some model-based inversion, which may contribute to linearization, feed-

forward and decoupling. It also has the advantage that control of w (Alt. C) is

usually less interactive than control of v (Alt. B), which is a significant advan-275

tage for faster convergence with single-loop control. A feedback implementation

(alternatives B or C) is required if v does not explicitly depend on u. In other

cases, a feedback implementation may be used as a “trick” for numerically gen-

erating an approximate inverse. In the control literature, this trick is often

referred to as “dynamic inversion” (Lee et al., 2016). The reason for using this280

trick could be to avoid the complexity of deriving the inverse in (9) (see heat

exchanger example) or to avoid problems with singularities (Lee et al., 2016).

4. Derivation of ideal transformed inputs

Input transformations are in common use and as illustrated in the motivating

mixing example they may be very useful. However, the main question we want285

to answer in this paper is:
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Figure 9: With ideal transformed inputs the transformed system (with no uncertainty) is
linear and independent of disturbances. For a static process model, the transformed input
v = v0 = g(u,w, d) is given in (13) or (27). For a dynamic process model, the transformed
input v = vA = g(u,w, y, d) is given in (19) or (30). In most cases, the tuning parameters
(B0, A,B) are chosen such that the ideal transformed system is decoupled and gives y = v at
steady state. The inversion g−1 may alternatively be generated by feedback, see Figure 8c, but
in this case the ideal properties of the transformed system are achieved only after a dynamic
transient.

How do we derive good transformed inputs in a systematic manner?

Starting from a static or dynamic process model, we show in this section

how to derive ideal transformed inputs (denoted v0 and vA, respectively) which

ideally achieve linearization, decoupling and disturbance rejection, see Figure 9.290

We assume that we have an n×n control problem with n inputs u and n outputs

y, and we want to use the model equations to find n transformed inputs v. The

case with a static model is discussed in Section 4.1 and a dynamic model in

Section 4.2. Note that we may combine static and dynamic models as shown in

the mixing example in Section 5.1. In Section 4.3, we discuss that it is simpler295

in many cases to write the model in terms of extra measured state variables w,

because we can then replace model equations by measured variables.

4.1. Obtaining an ideal transformed system from a static process model

In the industrial literature, Shinskey (1981) shows by examples how to use

static process models to derive nonlinear feedforward and decoupling blocks300

which are similar to the input transformations derived below. However, he

provides no systematic approach, and very surprisingly, for the simple and im-

portant case of static systems, there seems to be no academic literature on how

to do derive static feedforward and decoupling blocks in a systematic manner.
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Possibly this is because the derivation is almost trivial, as shown in the next305

few lines. We will first consider the case with no measured states w, and we will

then generalize to include w-variables.

Consider a static process model with n independent equations written in the

following general form

0 = f(u, y, d) (10)

or even more generally as n+ nx equations in the form

0 = fx(u, x, y, d) (11)

where x represents additional internal variables (states). In the more general

case in (11), we assume that we can use the nx extra equations to eliminate the

internal variables x to get a model (at least formally) as given in (10).310

Since the model equations in (10) are assumed to be independent, they may

be solved with respect to y (at least formally) to get the static model on the

form y = f0(u, d). We then have the following general result.

Ideal transformed input based on static model. Consider a static

nonlinear model in the form

y = f0(u, d) (12)

Define from this the ideal static transformed input

v0 = B−1
0 f0(u, d)︸ ︷︷ ︸

g(u,d)

(13)

where the matrix B0 is free to choose. Assume that v0 can be exactly imple-

mented by solving (13) with respect to u to get the ideal input

u = g−1(v0, d) (14)

Then, assuming that the real system is static with model f0(u, d) (no model er-
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ror) and that we have perfect measurement of d, the transformed system becomes

y = B0v0 (15)

The transformed system in (15) is linear and independent of disturbances, and

for the multivariable case it is also decoupled if we select B0 to be a diagonal315

matrix.

Proof. The proof is trivial. From (13) we get f0(u, d) = B0v0 and substituting

this into (12) gives y = B0v0 in (15). The assumptions related to (14) are

necessary to be able to generate the corresponding ideal input u.

Note that we use the notation with a subscript 0 to show that v0 is an ideal320

transformed input derived from a static model.

Importantly, it may not be necessary to explicitly derive an expression for

y = f0(u, d) in (12). Rather, since the objective is to find the ideal input

u = g−1(v0, d) that gives the transformed system y = B0v0 in (15), it is in

some cases simpler to stay with the original model equations in (10) or (11),325

and rather than solving them with respect to y (for a given u), solve them

with respect to u for a given y = B0v0 to obtain the inverse transformation

u = g−1(v0, d). The solution to find the inverse g−1 can be either analytical or

numerical. A numerical solution may be necessary for complicated models, like

for the heat exchanger example discussed later and in Zotică et al. (2020).330

4.1.1. Choice of the tuning parameter B0

The choice of B0 is not critical, as it can be compensated by changing the

gain of the outer controller C. We usually choose

B0 = I (16)
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such that the ideal transformed input is simply the right-hand side of the model

equation,

v0 = f0(u, d) (17)

In this case the transformed system simply becomes y = v0, and it may be

tempting to think of the transformed input v0 as the setpoint for the output y,

but this is misleading because we usually have an outer feedback controller C

which has the “true” setpoint ys as one of its inputs, whereas v0 is the output335

from C (see Figure 1). Thus, it is better to think of v0 as the transformed

process input.

4.2. Obtaining ideal transformed input from a dynamic process model

We next examine the case where we have a dynamic process model as given

in (18). The derivation of the resulting ideal transformed input vA is closely340

related to the theory of feedback linearization for the special case of a low-order

model (with a relative order of 1).

Ideal transformed input based on dynamic model. Consider a non-

linear dynamic model in the form

dy

dt
= f(u, y, d) (18)

For the model in (18), the ideal transformed input is

vA = B−1(f(u, y, d)−Ay)︸ ︷︷ ︸
g(u,y,d)

(19)

Here, the matrices A and B are tuning parameters. Assume that vA can be

exactly implemented by solving (19) with respect to u to get

u = g−1(vA, y, d) (20)
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Then assuming no uncertainty (no model error for f(u, y, d) and perfect mea-

surements of d and y) the transformed system becomes

dy

dt
= Ay +BvA (21)

The transformed system in (21) is linear and independent of disturbances,

and for the multivariable (n× n) case, it is also decoupled if we select A and B

to be diagonal matrices.345

Proof. Substituting the transformed input in (19) into (18) gives (21). Note

that we have assumed that we can generate from the transformed input vA the

exact corresponding physical input u.

Note that we use the notation with a subscript A to show that vA is an

ideal transformed input derived based on a dynamic model and with a tuning350

parameter A.

It may seem that (18) represents a large class of dynamic models, but actu-

ally it is quite restrictive since we must assume that the number of differential

equations (states) n is equal to the number of inputs and outputs in the vec-

tors u and y. In particular, we assume that the input u directly affects the355

time derivative dy
dt of the controlled output y, which means that the relative

order from u to y is assumed to be 1. Specifically, for the scalar case (n = 1),

we assume that we can write the model for y using only one scalar differential

equation (18). Thus, for the scalar case we are restricted to a first-order system.

(However, if we allow the function f to depend on additional measured states360

w, then the class of systems is significantly larger. This is discussed in more

detail below.)

To guarantee invertibility in (20), it is possible to restrict the class of models

to guarantee that we always have a solution, as is done in the literature on exact

linearization. In particular, in this literature it is assumed that the model is

linear in the input u, that is, that we can write the right-hand side of (18) as
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shown in Khalil (2015) (p. 293).

f(u, y, d) = f1(y, d) + f2(y, d) u (22)

where the functions f1 and f2 must satisfy certain smoothness conditions. In-

terestingly, many process models are linear in the flows, so if we make use of

inner flow controllers then many process models satisfy (22). Nevertheless, we365

do not make this assumption in this paper, so the invertibility may need to be

studied separately for each application.

4.2.1. Choice of tuning parameter B

To get dynamic decoupling in (21) for the multivariable case, we need to

select both matrices B and A to be diagonal. Dynamic decoupling is desirable370

because the optimal outer controller C is then diagonal (single-loop controllers).

Otherwise, the choice of B is not critical as it may be compensated by changing

the gain in the feedback controller C.

One simple choice is B = I, which is often used in feedback linearization.

Alternatively, to keep the initial (high-frequency) gain from vi to yi equal to

that of the original system (from ui to yi) one may choose B = diag(B̃) =

diag(∂f/∂u)∗ where the differentiation is performed at the nominal operating

point ∗. However, in most of the examples in this paper we select

B = −A (23)

because this gives y = vA at steady state (where dy
dt = f(u, y, d) = 0). 2 With

the choice B = −A, the transformed input and corresponding transformed

2Interestingly, since y = IvA at steady state, where I is the identity matrix, the choice
B = −A gives decoupling at steady state even if A (and thus B) is not diagonal. However, to
also get dynamic decoupling, we must choose A to be diagonal.
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system become

vA = −A−1f(u, y, d) + y

dy

dt
= A(y − vA)

(24a)

(24b)

4.2.2. Choice of tuning parameter A

The choice of the parameter A is important as it determines the dynamics375

of the transformed system. However, the importance should not be overem-

phasized, since we can change the closed-loop dynamics by design of the outer

controller C. Note that we must choose A < 0 for the transformed system to

be stable. We discuss below three choices for the tuning parameter A.

1. Keep the original dynamics, A = Ã. In most cases we propose

selecting

A = Ã ≡
(
∂f

∂y

)
∗

(25)

where the derivative is evaluated at the nominal point ∗ of operation. This makes380

the dynamics of the transformed system equal to the linearized dynamics of the

original system. This choice also minimizes the effect of the measurements y on

the transformed variables vA (see Appendix). This seems reasonable because

the outer controller C in any cases makes use of the measurements y.

In the multivariable case, to obtain decoupling, we may choose A = diag(Ã).385

2. Make the transformed system faster: |A| > |Ã|. To speed up the

response from v to y, one may use larger magnitudes for the elements in A than

that resulting from (25). However, note that the presence of a time delay in the

measurement of y (or other dynamics that result in an effective delay) may give

instability if we choose the elements in A too large in magnitude. Alternatively,390

note that it is always possible to select A = Ã as in (25) and instead “speed

up” the response with the outer controller C, which can be designed based on

the experimental response from vA to y and for which established robust design

methods are available, for example, the SIMC PID-rules (Skogestad, 2003).
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3. Make the system integrating: A = 0. The choice A = 0 is recom-395

mended in the standard feedback linearization literature (Isidori, 1995). This

results in an integrating transformed system, dy
dt = BvA, where usually one se-

lects B = I, corresponding to selecting the transformed input as the right-hand

side of the differential equation model, vA = f(u, y, d). However, although being

very simple, we do not recommend the choice A = 0 for most process control400

applications. The main reason is that with A = 0, a system which was originally

stable is turned into an integrating transformed system. Thus, the transformed

system will not go to steady state without the outer controller C. In particular,

any unmeasured disturbances will cause the output y to change in a ramplike

fashion and drift away from its desired steady state. This drifting will only405

stop when the input u reaches its physical maximum or minimum constraint.

This is undesirable, because usually one wants to be able to operate the trans-

formed system without the outer controller C. Another reason for not selecting

A = 0 is that we generally want to use integral action in the outer controller

C to correct for uncertainty. With A = 0, the integrator in the transformed410

system poses additional performance limitations for disturbances at the plant

input (e.g., Skogestad (2003)). This performance limitation is not considered in

the feedback linearization literature because they assume state feedback, that

is, they assume C is a P-controller.

4.3. Transformed input in terms of measured state variables w415

The expressions for the ideal transformed inputs (v0 and vA) are the same

also when we include additional measured dependent variables w (states) in the

model equations (in f0 and f). This allows us to use simpler models, because

a measured w replaces a model equation for w. For example, a measured flow

w = F may replace a valve equation (6).420

Following the same derivations as above, we find that the expressions v =

g(u,w, y, d) for the ideal transformed inputs remain the same, except that we

add w in the argument list. Then, assuming that we measure d and w per-

fectly, have a perfect model, are able to generate the exact inverse g−1 and that
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the resulting transformed system is internally stable, the resulting transformed425

system becomes as before linear and independent of disturbances.

Ideal transformed input with w-variables for static case. Specifically,

for the static model

y = f0,w(u,w, d) (26)

the ideal transformed input becomes

v0 = B−1
0 f0,w(u,w, d)︸ ︷︷ ︸

g(u,w,d)

(27)

resulting in the transformed system

y = B0v0 (28)

Ideal transformed input with w-variables for dynamic case. Simi-

larly, for the dynamic model

dy

dt
= fw(u,w, y, d) (29)

the ideal transformed input becomes

vA = B−1(fw(u,w, y, d)−Ay)︸ ︷︷ ︸
g(u,w,y,d)

(30)

resulting in the transformed system

dy

dt
= Ay +BvA (31)

In most cases, we choose B0 = I and B = −A which give y = v0 and y = v at

steady state. Choosing A diagonal also gives decoupling for the dynamic case.
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4.3.1. Dynamics of transformed system with measured state (w) variables

If the w-variables depend dynamically on the inputs u, then the implicit feed-430

back through the measurements w will affect the dynamics of the transformed

system. In some cases, this may result in internal instability as discussed below.

For the static case, the dynamics of the transformed system (from v0 to y)

will no longer be the same as that of the original system (from u to y).

The reason is that the feedback from w through v0 may either speed up435

or slow down the response. Note that for the static case, we have no tuning

parameter to change the dynamics of the transformed system.

4.3.2. Possible unstable zero dynamics and internal instability

Note that we are essentially treating the variable w as a measured distur-

bance when deriving the transformed variables v0 and vA in (27) and (30). Is440

there any problem in doing this? Yes, there will be a problem with the exact

inverse, if the w-variables result in unstable zero dynamics3 in the dynamic map

from the physical input u to the transformed input v (which may be v0 or vA

or any other transformed input), The reason is that unstable zero dynamics

will result in internal instability for the transformed system if we implement445

the exact inverse u = g−1(v, w, y, d). This follows because the unstable zeros of

the original map become unstable poles of the inverse map. A simple example

is given in the discussion section. This means that the implementations with

the exact inverse (Alternative A) in Figure 8a may yield internal instability in

some cases. Fortunately, as argued in the discussion section, it is not very likely450

to happen in practice, because unstable zero dynamics require that the indirect

dependency of u on v through w is strong.

The internal instability can in any case be avoided if we use the alternative

implementation B in Figure 8b with a slave v-controller Cv, but Cv then needs

3Unstable zero dynamics go by many names. They are the same as RHP-zeros for linear
systems, and linear systems with RHP-zeros and/or time delay are also called non-minimum
phase systems. In the linear scalar case, RHP-zeros always give inverse response in the time
domain. More generally, for nonlinear systems the unstable zero dynamics from u to v corre-
spond to the unstable dynamics of the inverse map from v to u (Isidori, 1995).
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to be tuned sufficiently slow so that the unfavorable zero dynamics do not cause455

closed-loop instability. Thus, linearization, decoupling and disturbance rejection

will not be perfect dynamically in this case.

Note that these problems with unstable zero dynamics are fundamental and

do not arise because we use transformed inputs. In particular, for the ideal

transformed inputs (v0 and vA), the zero dynamics from u to v are the same as460

the zero dynamics from u to y. This follows because of the direct relationship

between v and y in this case, for example, y = v0 for the static case. Our

problem with internal stability with the exact inverse, is thus a special case of

the well-known fact that perfect control of the output y cannot be achieved for

a system with unstable zero dynamics (RHP-zeros in the linear case) from u465

to y, no matter how good the model is or what we measure (e.g., Skogestad &

Postlethwaite (2005)).

4.4. Ideal static transformed variable v0 applied to a dynamic system

If we apply v0 in (27) (derived from a static model) as a transformed input

to a dynamic system (but with the same static model), then with the choice470

B0 = I, the transformed system becomes y = v0 and we clearly get linearization,

decoupling and disturbance rejection at steady state.

But what happens dynamically? We cannot say anything in general, but

fortunately, if we apply v0 to the particular dynamic system in (29), then we

get perfect disturbance rejection also dynamically, if we initially are at steady475

state. This surprising fact, which is observed in several of the examples and

proved in the discussion in Section 6.3, holds because of the particular simple

dynamics assumed in (29). The assumption about being initially at steady state

is not limiting, because it is desirable that the system stays close its steady state

setpoint.480

Also note that when v0 is independent of w, i.e., we have v0 = f0(u, d), then

there is no feedback from the outputs or states, and the transformed dynamic

system (from v0 to y) retains the dynamics of the original system (from u to y)

without needing any tuning parameter. These two facts makes it very tempting
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for an engineer to apply v0 also to dynamic systems.485

However, there are some advantages of instead applying the dynamic trans-

formed input vA (30) to the dynamic system dy
dt = f(u,w, y, d). The main

advantage is that the transformed system from vA to y is linear dynamically,

whereas the transformed system from v0 to y is linear only at steady state.

This is seen in several of the examples. Second, for the case when the ideal490

static transformed input v0 depends on measured states w, the system dynam-

ics change because of the resulting feedback from w to u, but we have no pa-

rameter in v0 to affect it. On the other hand, when we use the ideal dynamic

transformed variable vA, we can choose the dynamics of the linear transformed

system through the parameter A.495

5. Examples

5.1. Example 3. Ideal transformed inputs for mixing process (Motivating Ex-

ample 1, continued)

Consider the mixing process in Figure 2 with the following inputs, outputs

and disturbances

u =

F1

F2

 ; y =

F
T

 ; d =

T1

T2

 (32)

This is the same process as in Example 1, where to obtain decoupling we

used engineering insight to propose a sum and a ratio of the flows as transformed500

inputs, see (4). In this section, we will derive the ideal transformed inputs using

systematic methods. Note that we assume that the flows F1 and F2 are the

physical inputs u, that is, we are implicitly assuming that we have two flow

controllers.

For simplicity, we assume that the mass m [kg] of the system is constant,

which is a good assumption in many cases. The dynamic mass balance dm
dt =
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F1 + F2 − F then gives by setting dm
dt = 0, the following static mass balance

F = F1 + F2 (33)

Assuming perfect mixing, the dynamic energy balance becomes

m
dT

dt
= F1T1 + F2T2–FT (34)

We have here assumed constant and equal heat capacities so that cP drops out of

the energy balance. Substituting the mass balance (33) into the energy balance

(34) and using the more general notation in (32), then gives the following model

equations for the mixing process

y1 = u1 + u2︸ ︷︷ ︸
f0,1(u,d)

dy2
dt

=
1

m
(u1(d1 − y2) + u2(d2 − y2))︸ ︷︷ ︸

f2(u,y,d)

(35a)

(35b)

505

5.1.1. Ideal transformed input v0 from static model

We first derive the ideal transformed inputs for a purely static model. By

setting mdy2

dt = 0 we derive from (35b) the following static equation for the

temperature y2 = T

y2 =
u1d1 + u2d2
u1 + u2︸ ︷︷ ︸
f0,2(u,d)

(36)

With the standard choice B0 = I, the ideal static transformed inputs v0 are

simply the right-hand side f0 of the static model equations. Thus, the ideal
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static transformed inputs for the mixing tank are

v0,1 = u1 + u2︸ ︷︷ ︸
g1(u)=f0,1(u,d)

v0,2 =
u1d1 + u2d2
u1 + u2︸ ︷︷ ︸

g2(u,d)=f0,2(u,d)

(37a)

(37b)

The static model for the transformed system becomes y = v0, or equivalently

y1 = F = v0,1 and y2 = T = v0,2. As expected, the transformed static system

is decoupled, independent of disturbances and linear (with gain equal to the510

identity matrix, I).

For implementation using the exact inverse, we need to invert the expressions

(37) for v0 = g(u, d) to find the physical inputs (flows) u. We get u = g−1(v0, d)

where

u1 =
v0,1(v0,2 − d2)

d1 − d2

u2 =
v0,1(d1 − v0,2)

d1 − d2

(38a)

(38b)

There is a singularity in the inverse transformation when the two inlet flows

have the same temperature, d1 = d2. This is not a limitation of the proposed

method, because it is then physically impossible to freely set the temperature

y1 = T of the mixed flow.515

5.1.2. Comparison with engineering-based variables from Motivating Example 1

Comparing the ideal static transformed inputs in (37) with the engineering-

based variables in (4), we see that v0,1 is the sum u1+u2 as before. The second

variable v0,2 is very similar to the ratio v2 = u1

u1+u2
in (4b), except that v0,2

includes feedforward action from disturbances d1 = T1 and d2 = T2.520

5.1.3. Applying the ideal static transformed input v0 to the dynamic system

What happens if we apply the static transformed input v0,2 to the dynamic

system in (36)? Substituting u1 and u2 from (38a) and (38b) into (35b) gives
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after a little algebra the following transformed dynamic system

y1 = v0,1

dy2
dt

=
v0,1
m

(v0,2 − y2)

(39a)

(39b)

We see that both disturbances d1 and d2 drop out, so the transformed system

in (39) based on v0,2 is independent of disturbances, also dynamically4. We note

that the transformed system in (39) is not truly decoupled, because we see from525

(39b) that v0,1 also affects output y2. However, for practical purposes, we have

decoupling, because if we start from a steady-state operating point, where we

have y2 = v0,2, then (39b) tells that a change in v0,1 will not affect y2.

5.1.4. Ideal transformed input vA from dynamic model

Actually, since the static transformed input v0 gives both disturbance re-530

jection and decoupling also for the dynamic process, there is little reason to

consider the dynamic transformed input vA, but we will do it for completeness

and comparison.

The first model equation is static, so the first transformed input is unchanged

v0,1 = u1 + u2 (40)

To derive the second ideal transformed input, we use the right-hand side f2(u, y, d)

of the dynamic energy balance in (35b), and from (24a) we derive

vA,2 = y2 −A−1f2(u, y, d)

= y2 −A−1 1

m
(u1(d1 − y2) + u2(d2 –y2))︸ ︷︷ ︸

g2(u,y,d)

(41a)

(41b)

4Generally, when we apply static transformed inputs v0 to a dynamic system of the form
dy
dt

= f(u, y, d), we need to make the assumption that the system is initially at steady state
to get perfect dynamic disturbances rejection. However, this assumption is not necessary for
this particular case since the disturbances drop out completely in the transformed system.
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Note that we have chosen B = −A which gives y2 = vA,2 at steady state. From

(40) and (41b) the inverse transformation becomes

u1 =
v0,1(y2 − d2)−Am(vA,2 − y2)

d1 − d2

u2 =
v0,1(d1 − y2) +Am(vA,2 − y2)

d1 − d2

(42a)

(42b)

The transformed system from the ideal transformed inputs v = [v0,1 vA,2] to

the outputs y = [y1 y2] then becomes

y1 = v0,1

dy2
dt

= A(y2 − vA,2)

(43a)

(43b)

which is decoupled, independent of disturbances and linear since A is a constant.

The constant A is a tuning parameter. To eliminate the feedback from the

output y2 = T to the transformed variable v2 in (41b) at the nominal operating

point, we choose A such that we keep the nominal linearized dynamics of the

original system, which from (25) gives

A =

(
∂f2
∂y2

)
∗
= −F ∗

m
= −v∗0,1

m
(44)

where F ∗ = u∗
1+u∗

2 = v∗0,1 is the nominal total flowrate. Note that the expression535

for the transformed system in (39b) in terms of v0,2 (static model) is very similar

to (43b) in terms of vA,2 (dynamic model) if we choose A as given in (44). The

main difference is that the transformed dynamic system (43b) for vA,2 is linear,

whereas the transformed dynamic system (39b) for v0,2 is nonlinear because of

the multiplication with the term v0,1.540

In summary, the only advantage of using the more complex variables vA

rather than v0 derived from a static model, is that the transformed system is

linear dynamically. This benefit is small compared to the added complexity,

for example, of having to select the tuning parameter A. Thus, most likely an
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engineer will prefer to use the static variables v0. If the disturbances d1 = T1 and545

d2 = T2 are not measured or do not change frequently, then this is equivalent

to the simple sum and ratio proposed in (4) in the Motivating example.

5.2. Example 4. Heated tank

F , T0

F , T

LC
Lsp

Q

m [kg]

Figure 10: Process flowsheet of tank heated with an electric coil.

Consider the continuous process in Figure 10 with an electric heater. As-

suming perfect mixing, constant heat capacity cP [kJ/°C] and constant mass

holdup m [kg], the energy balance gives the following dynamic model

dT

dt
= f(u, y, d) =

1

mcP
(FcP (T0 − T ) +Q) (45)

The objective is to control the outlet temperature y = T using the inlet flowrate

u = F [kg/s] as the manipulated input (we assume that we have a fast slave flow

controller so that we can consider u = F to be the physical input). Q and T0

(heat input and inlet temperature) are measured disturbances. Setting dT
dt = 0,

we derive the corresponding static model for the outlet temperature

T = f0(u, d) = T0 +
Q

FcP
(46)

From (27) and (30), the ideal transformed inputs v0 and vA, based on a static
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and dynamic model, respectively, become

v0 = f0(u, d) = T0 +
Q

FcP

vA = −A−1f(u, y, d) + y = −A−1

(
F

m
(T0 − T ) +

Q

mcP

)
+ T

(47a)

(47b)

We have here chosen the parameters B0 = I and B = −A so that we have at

steady state y = v0 and y = vA, respectively.550

If we apply these two transformed variables to the dynamic system in (45)

then the transformed dynamic system becomes for the two cases

dT

dt
=

F

m
(v0 − T )

dT

dt
= −A(vA − T )

(48a)

(48b)

For both cases, we find that the transformed system is independent of distur-

bances (in Q and T0). If we choose A = −
(

∂f
∂T

)
∗
= −F∗

m as recommended in

(25), then we see that transformed systems in terms of v0 and vA are identical

close to the nominal operating point (∗), but note that the transformed system

((47a)) in terms of v0 is nonlinear, whereas the transformed system ((47b)) in555

terms of vA is linear. However, the nonlinearity in (48a) is small unless F varies

a lot, so most likely an engineer will prefer to use the simpler static variable v0.

For implementation using the exact inverse in Figure 8a, we need to invert

the expression for the transformed input v to find the physical input u = F .

For v = v0, based on a static model, (47a) gives the inverse transformation

u = F =
Q

cp(v0 − T0)
(49)

We note that there is a singularity at v0 = T0. This may be a problem, because it

may happen that the outer controller C makes a large decrease in v0 (possibly to

speed up the response) so that v0 drops below T0. This will cause the input u to560

jump from a large positive value (in practice, with constraints, from u = umax)
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to a large negative value (in practice, to u = umin = 0). We simulated this

(not included), and found that it made the system drift away from the desired

steady state, and it did not recover. Fortunately, there are ways of handling the

singularity. One is to use logic and set u = umax when the computed value of565

u is negative. Another way is to use the cascade implementation in Figure 8b

with a slave v-controller.

A similar singularity occurs with the ideal transformed input vA. inverting

(47b) gives

u = F =
Q+AmcP (vA − y)

cp(y − T0)
(50)

The singularity at y = T0 may happen in situations with large dynamic varia-

tions in d = T0 or y = T , but can be handled in a similar way as mentioned for

v0.570

5.3. Example 5: Simple nonlinear level process

u = F1
F3 = k

√
k1V + p0

d1 = F2

y = V

Figure 11: Flowsheet of the nonlinear level process

We consider the control of level (volume) in a tank with two inflows and

one outflow, as shown in Figure 11. We assume that the level measurement is

delayed or infrequent, so we would like to make use of feedforward action from

measured disturbances.575

Assuming constant liquid density, we derive from the mass balance the fol-

lowing dynamic model

dV

dt
= F1 + F2 − F3 (51)

The variables are defined as:
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y = V = volume of fluid (measured)

u = F1 = inflow (manipulated)

d1 = F2 = inflow (measured disturbance)

F3 = outflow (not measured)580

d2 = p0 = pressure difference between before and after tank (measured).

We assume that the inflow u = F1 can be manipulated directly, for example,

because we have a fast slave flow controller. This is not an integrating process,

because the outflow F3 depends on the level (V ) and provides self-regulation.

The outflow is not measured, but from the Bernoulli equation we derive the

following model

F3 = Cv

√
ρgV/A+ p0 =

√
c1V + c2p0 (52)

where c1 = C2
vρg/A and c2 = C2

v are constants. The dynamic model then

becomes
dy

dt
= f(u, y, d) = u+ d1 −

√
c1y + c2d2 (53)

Transformed variable v0 based on static model.

Solving 0 = f(u, y, d) in (53) with respect to y gives the static model

y = f0(u, d) =
(u+ d1)

2–c2d2
c1

(54)

The ideal transformed variable (selecting B0 = 1) is the right-hand side of the

static model

v0 = f0(u, d) =
(u+ d1)

2–c2d2
c1

(55)

For a given v0, the corresponding input is given by the inverse transformation

u = f−1
0 (v0, d) =

√
c1v0 + c2d2–d1 (56)
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At steady state the transformed system is y = v0, so it is linear and indepen-

dent of the disturbances d1 and d2. What happens if we apply the ideal static

transformed input v0 to the dynamic system? Substituting (56) into (53) gives

the transformed dynamic system

dy

dt
=

√
c1v0 + c2d2 −

√
c1y + c2d2 (57)

Thus, the transformed dynamic system is independent of d1 but it depends on

d2. However, for practical purposes we have perfect disturbance rejection also

for d2. To see this, note that y = v0 at steady state. It then follows that if we585

are initially at steady state and we keep v0 constant, then from (57) we have

dy/dt = 0 for any disturbance d2. Thus, y will remain at v0 and we have perfect

disturbance rejection for d2 also dynamically.

To see this even more clearly, we linearize the transformed system model

(57) around the steady-state (where y∗ = v∗0) to get

d∆y

dt
=

c1

2
√

c1y∗ + c2d∗2
(∆v0 −∆y) (58)

where the ∆-variables represent deviations from the steady state. Note that d2

drops out in (58). Also note that F ∗
3 =

√
c1y∗ + c2d∗2 so the initial dynamic590

response will vary as a function of F ∗
3 and thus depend on the operating point.

Transformed variable vA based on dynamic model. For completeness and

comparison, we also here consider the ideal dynamic transformed input vA.

From (19), we have vA = B−1(f(u, y, d)–Ay). We choose B = −A so that

y = vA for the transformed system at steady state. With this choice we get

vA = y −A−1f(u, y, d) = y −A−1(u+ d1 −
√
c1y + c2d2)︸ ︷︷ ︸

g(u,y,d)

(59)
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and the resulting transformed dynamic system becomes as expected

dy

dt
= A(y − vA) (60)

The exact inverse of (59) gives the corresponding input

u = g−1(vA, y, d) = A(y − vA)− d1 +
√
c1y + c2d2 (61)

To eliminate the feedback from the y to vA at the nominal point, we may from

(25) choose

A =

(
∂f

∂y

)
∗
= − c1

2
√
c1y∗ + c2d∗2

(62)

As expected, the linearized transformed system (58) for v0 is identical to

dy/dt = A(y − vA) in (60) if we select A as in (62). However, there is an

important difference. With vA, the transformed system is linear dynamically

because A is a constant, whereas with v0 the dynamic response is nonlinear as595

the initial gain is inversely proportional to the value of the outflow F3. However,

the transformed system with v0 is linear at steady state, so if the outer loop

is slow, the dynamic nonlinearity will not matter. Thus, again an engineer

probably will most likely prefer the static transformed input v0, which also does

not depend on the delayed or infrequent measurement of the volume y.600

Transformed variable vA based on dynamic model for the case with measure-

ment of w = F2. From the examples so far, it seems that there is not much

benefit of using the ideal dynamic transformed input vA instead of the simpler

static transformed input v0. However, we here consider a case where this is not

true, simply because the system is integrating and thus has no steady state.605

Consider again control of level (volume V ) in Figure 11, with the same

dynamic model (51), but assume here that the outflow F2 is measured, that is,

w = F2.

If this measurement is fast and accurate, then it is better to use it rather then
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the model equation F3 = k
√
k1V + p0 which is inaccurate and also depends on

measuring the disturbance d2 = p0. Introducing w = F2, the dynamic model

dV
dt = F1 + F2 − F3 becomes

dy

dt
= fw(u,w, d1) = u+ d1 − w (63)

Note that the right-hand side (fw) is independent of y so this model is integrat-

ing with no steady-state value for y. Therefore, we cannot derive a corresponding

transformed input v0. Instead, we derive the ideal dynamic transformed input

vA. Selecting B = 1 and A = 0 in (30) gives the transformed input

vA = fw(u,w, d1) = u+ d1 − w (64)

which is simply the net inflow to the process. The transformed system becomes

dy/dt = vA, which is linear, integrating and independent of disturbances. Given

vA, we get from (64) that the corresponding input u = F1 is

u = vA − d1 + w (65)

Of course, we need an outer controller C to adjust vA and stabilize the inte-

grating transformed system, but otherwise the implementation is very simple.

Let us finally remark that it is possible to select vA = fw(u,w, d1)−Ay = u+

d1−w−Ay where A < 0. In this case, the transformed system dy/dt = vA+Ay

is stable, although the original system in (63) is integrating. However, selecting610

A ̸= 0 introduces feedback from y in the input transformation, which will come

in addition to the feedback from y in the outer controller C, which anyway

could be used to stabilize the system. Thus, in this case there is little benefit

of selecting a more complicated vA with A ̸= 0.
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d2 = T 0
1

d3 = F1

y = T1

w = T2

u = F2

d1 = T 0
2

Figure 12: Heat exchanger (Example 6) where the objective is to control the outlet tempera-
ture T1 of stream 1 (process side) by exchanging heat with stream 2 (utility side).

5.4. Example 6: Heat exchanger615

Temperature control using heat exchangers may benefit from the use of in-

put transformations, both to reduce nonlinearity and to introduce feedforward

control. Consider the process in Figure 12 where the objective is to control the

outlet temperature of stream 1 (which may be the process side) by exchanging

heat with stream 2 (which may be the utility side). We assume that the input

(manipulated variable) is the utility flowrate, u = F2. In summary, we have for

this example

u = F2, y = T1

Measured disturbances are the inlet temperatures and the flowrate of stream 1,

d = [T 0
1 T 0

2 F1]
⊺

In the simulations, we will also consider an unmeasured disturbance in the

UA-value, for example, caused by flow changes, fouling or gas bubbles in the

streams,

dunmeasured = UA

A possible extra measurement (in addition to F2) which depends on the input

u is the utility outlet temperature

w = T2
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The dynamic and steady-state behaviors of heat exchangers are highly nonlinear.

For example, for small values of u = F2 (relative to F1), the process gain k = dy
du

is large and relatively constant, but for large values of u = F2, the gain k

approaches 0 and makes it difficult to control y = T1. This is because we get

a pinch for T1 (constant value) with y = T1 approaching the inlet temperature620

T 0
2 .

An ideal countercurrent heat exchanger is modelled by partial differential

equations, but we use a cell model with n = 100 well-mixed cells on each

side; see (Reyes-Lúa et al., 2018) for model equations. In total, this gives

200 differential equations to represent the temperature dynamics, so this model

clearly cannot be written in the form dy
dt = f(u, y, d) in (18) which allows for

only one differential equation. This leads us to consider transformed inputs

based on a static model of the heat exchanger, which we will then apply to

the dynamic heat exchanger cell model. Thus, in this example, we analyze by

simulation the effect of model uncertainty. We will consider two transformed

inputs

v0 = f0(u, d)

v0,w = f0,w(u,w, d)

(66)

(67)

The first is the ideal transformed input v0 that follows from the detailed static

model y = f0(u, d). Note that this model does not depend on the measured state

variable w = T2 and use of the transformed variable v0 will therefore retain the

dynamics of the original system (the heat exchanger).625

The second transformed variable, v0,w, is inspired by an actual industrial

implementation, where we make use of the measured variable w = T2. This

allows us to use a much simpler model, without having to include a model for

the heat transfer. For example, whereas v0 depends on the UA-value, v0,w does

not use this information.630

Both transformed inputs are based on steady-state expressions for y = T1

and give y = vs at steady state. Thus, both transformed inputs will provide

perfect disturbance rejection and linearity at steady state. However, this as-
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sumes that the model parameters do not change and we have that v0 gives an

offset if we change the value of UA, whereas v0,w gives no offset because it uses635

the measurement w = T2 instead of a model equation where UA is included.

5.4.1. Ideal transformed input v0 based on full static model

We assume that the fluids do not change phase and have constant heat ca-

pacity (cp1, cp2). Assuming ideal countercurrent flow, the steady-state behavior

is then given by the following three equations for the heat transfer Q from

stream 1 to stream 2:

Q = F1cp1(T
0
1 –T1)

Q = F2cp2(T2–T
0
2 )

Q = UA

(
T 0
1 − T2

)
−

(
T1 − T 0

2

)
ln
(

T 0
1 −T2

T1−T 0
2

)
(68a)

(68b)

(68c)

This gives 3 equations in 3 unknowns (Q, T1, T2) which can be solved analyti-

cally to find the following analytic expression for T1 as a function of the input

and the disturbances (e.g., Soave & Barolo (2021))

y = T1 = T 0
1 + ϵ(T 0

2 − T 0
1 )︸ ︷︷ ︸

f0(u,d)

(69)

where

ϵ =
1–E

C − E

C =
F1cp1
F2cp2

E = exp

(
UA

(
1

F1cp1
–

1

F2cp2

))

From (69) the corresponding ideal static transformed input becomes

v0 = f0(u, d) = T 0
1 + ϵ(T 0

2 − T 0
1 ) (70)
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where it should be noted that ϵ is nonlinear function of F1, F2 and UA.

5.4.2. Transformed input v0,w based on parts of static model and measured state

w = T2640

The second transformed variable, v0,w, follows by using the measured state

w = T2 to replace the heat transfer equation (68c) for Q. We use (68a) to find

T1 = T 0
1 +

Q

F1cp1

and then we substitute Q using (68b) to get

y = T1 = T 0
1 +

F2cp2
F1cp1

(T 0
2 − T2)︸ ︷︷ ︸

f0,w(u,w,d)

(71)

From (71) the corresponding ideal static transformed input becomes

v0,w = f0,w(u,w, d) = T 0
1 +

F2cp2
F1cp1

(T 0
2 − T2) (72)

which depends on w = T2 but not on the UA-value. Note that the only variable

5.4.3. Implementation

For both transformed inputs, we will use the pure feedback-based implemen-

tation in Figure 8b with a slave v-controller (Cv). An alternative would be to

use an exact model-based inverse (analytical or numerical) to compute u = F2645

plus use a slave flow controller to implement F2 (Figure 8c). The use of the

slave v-controller avoids the flow controller, and has an additional advantage

in both cases. For v0, we avoid implementing a numerical solution to gener-

ate u = f−1
0 (v0, d), and instead we generate the inverse by the slave controller

Cv. For v0,w there is no problem in generating the exact inverse from (72) to650

compute u = F2, but with a v-controller we avoid worrying about the potential

internal instability or excessive inputs of using the exact inverse (although this

is not a problem in this case).
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The transformed input v0,w depends on the measured variable w = T2. This

feedback will change the dynamics, such that the dynamics of the transformed655

system will be different to that of the original system. On the other hand, the

use of v0 has no feedback from any output (y) or state (w), and the dynamics

will not change (except for the dynamics of the slave loop, which are negligible

in this case because the slave loop for v0 is fast).

For tuning the slave v0-controller, we note that the “process” (calculation660

block) from u = F2 to v0 in (70) is static, and a pure I-controller is recommended

(Skogestad, 2003). The tuning of the slave v0,w-controller is more difficult,

because w = T2 depends dynamically on u = F2 which results in an overshoot

in the dynamic response from u = F2 to v0,w (corresponding to a stable (LHP)

zero). For simplicity, we use I-controllers for both v0 and v0,w, tuned based on665

the initial gain, and with the same closed-loop time constant (τC = 10 s); see

Table 2.

5.4.4. Simulations

We consider a cooler with data as given in Table 1, and represented by a

dynamic process model with 200 states. The simulations in Figure 13 compare670

the two alternative transformed inputs (with the setpoint vs for v0 or v0,w set

at the desired value for y = T1). The results are also compared to the open-

loop (OL) response with no input transformation (with the input u = F2 kept

constant). The setpoint of the transformed input vs is initially at 297K and

changes to 302K at time t = 167min. The simulations show responses to step675

disturbances in F1, T
0
1 and T 0

2 (all measured) and to a step change in the heat

transfer parameter UA (unmeasured which introduces uncertainty).

From the response for the controlled variable (y = T1) in Figure 13a, we

see that there is a clear benefit of using transformed inputs. From the the-

ory, both transformed inputs give perfect control (y = v) at steady state for680

measured disturbances and this is confirmed by the simulations. However, dis-

turbance rejection is not perfect dynamically because the process dynamics are

quite complex and not described by a first-order model. For the unmeasured
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disturbance in UA (towards the end of the simulation in Figure 13a), we see,

as expected, that we get a steady-state offset for y = T1 when we use v0 (red685

curve) as the transformed input, but not when we use v0,w (blue curve) which

makes use of the state measurement w = T2.

Dynamically, we find for this example that the responses are best (fastest)

when we use v0 as the transformed input (red curves). The dynamics with

v0 are similar to the quite fast dynamics of the uncontrolled heat exchanger690

(green curves). This is expected because there is no feedback to v0 which can

change the dynamics. On the other hand, when we use v0,w (blue curves),

which contains an indirect feedback from w = T2, the dynamics for the return

to the steady state are much slower. The effect of this indirect feedback is case

dependent and in this case the feedback from w slows down the response. It695

does not help to change the tunings of the slave controller (Cv), because even

with a perfect inverse, the dynamics caused by the feedback from w = T2 will

be present. It may be possible to use the outer controller C to speed up the

response, but one must be careful because this may cause instability if there is

a measurement delay for y = T1.700

In summary, since the implementation of v0 based on the full static model

is complex and gives steady-state offset for disturbances in the UA-value, it is

likely that the simpler implementation using v0,w with a measured w = T2is

preferred in practice.

Additional examples, including a steam network, CSTR reactor and a pH705

control problem may be found in the PhD thesis of Zotica (2023) and in the

Master theses of Bjorvand (2020) and Kingstree (2021).

6. Discussion

6.1. Outer controller C for case with ideal transformed inputs

For the case with ideal transformed inputs (Figure 9), the transformed sys-710

tem includes in theory perfect disturbance rejection and perfect steady-state

setpoint tracking. For this reason all simulations in this paper are without the
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(a) Controlled variable y = T1
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(b) Physical input u = F2
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(c) State variable w = T2 (used for v0,w)
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(d) Transformed input v computed from (70)
and (72) (measurement to v-controller Cv)

Figure 13: Dynamic simulation of heat exchanger (Example 6) using the cascade implemen-
tation of the transformed input v with a controller Cv (Figure 8b). Two choices for the
transformed input, v0 and v0,w (with setpoint vs set equal to the setpoint for y), are com-
pared with the open-loop (OL) case with no input transformation (constant u).
The simulations are with no outer controller (C = 0) for the following step disturbances: F1

from 3 to 4 kg/s at t = 8min, T 0
2 from 293 to 288 K at t = 80min, T 0

1 from 343 to 328 K at
t = 117min, setpoint change in vs = ys from 297 to 302 K at t = 167min, and disturbance
in U from 150 to 100 W/m2/K at t = 217min.
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Table 1: Nominal operating conditions for the heat exchanger (Example 6) from (Skogestad,
2008)

Variable Value Unit
F1 3 kg/s
F2 5 kg/s
T s
1 297.2 K

T 0
2 293 K

T 0
1 343 K

U 150 W/m2/K
A 90 m2

V1 = V2 0.45 m3

cp1 1200 J/kgK
cp2 1500 J/kgK
ρ1 980 kg/m3

ρ2 890 kg/m3

Table 2: Slave v-controller (Cv) tunings for heat exchanger example

Transformed input KI τC [s]
v0 -0.125 10
v0,w -0.01 10

outer controller C, and to handle setpoint changes in ys we made direct changes

in the transformed input v. This was implemented simply by setting v = ys (or

vs = ys for the feedback implementations), since we in most of the examples715

choose the tuning parameters (B0 = I or B = −A for v0 or vA, respectively)

such that we have y = v at steady state.

In practice, an outer controller C that adjusts v is needed to handle model

uncertainty and unmodelled or unmeasured disturbances. In many cases, the

outer controller is a rather slow PI-controller and the ability to make fast set-

point changes for y may be lost. Thus, to retain the direct (and fast) effect from

the setpoint ys to the transformed input v, we may add feedforward action from

the setpoint ys. A simple solution is to use the following two degrees-of-freedom

controller C:

v(t) = v(t0) +Ksy
s(t)−Kcy(t) +KI

∫ t

t0

(ys(t)− y(t))dt (73)
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With ideal transformed inputs, we have y = v at steady state (with no model

error). In such cases, we may choose the “feedforward gain” to be Ks = I to

get the same initial setpoint response as for the transformed system without720

the outer controller C. On the other hand, Kc is usually smaller than I. For

example, we may choose Kc = 0 to get pure I-control in C. The integral gain

KI in C will correct for model error and unmeasured disturbances on a slower

time scale. The gain matrices Kc and KI should be diagonal because the ideal

transformed system from v to y is decoupled.725

6.2. Time scale separation for feedback implementation (alternative B)

The feedback implementation in Figure 8b (alternative B) generates only

an approximation of the exact inverse g−1 in Figures 8a and 9, but the error

can be neglected if the inner loop (with Cv) is sufficiently fast. By “sufficiently

fast” we mean that the time scale separation τc/τc,v is sufficiently large. Here,730

τc,v denotes the closed-loop time constant of the inner loop involving the slave

controller Cv, and τc denotes the closed-loop time constant for the outer loop

involving the master controller C. Note that the slave controller Cv gener-

ates the inverse by iteration, so reaching complete convergence (steady state)

will take infinite time. Assuming a linear first-order response, the approach735

to convergence (or steady state) within the desired overall response time τc is

(1− eτc/τc,v ). Thus, the approach to convergence increases from 63% to 95.0%

to 99.3 % as the time constant ratio τc/τc,v increases from 1 to 3 to 5. Since,

convergence (or steady state) for practical purposes is reached at 99.3%, this

gives the rule of thumb of requiring a time scale separation between the control740

layers of at least 5 (Skogestad & Postlethwaite, 2005).

If the time scale separation gets too small, typically 3 or less, the layers will

start interacting and we may experience undesired oscillatory behavior or even

instability (Baldea & Daoutidis, 2007). A larger value (larger than 5) allows

for robustness to process gain variations which may affect the closed-loop time745

constants of both the inner and master control loops. Therefore, a time scale

separation of 10 or larger is usually recommended in most practical cases. The
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limiting case of infinite time scale separation corresponds to ϵ =
τc,v
t → 0, which

is the singular perturbation condition in the mathematical literature.

The main fundamental limitation in having a fast response in the inner loop750

(and thus making τc,v small) is a possible unstable zero (or more generally an

effective delay) in the dynamic map gu from u to v for cases when v depends

on the output (state) variables w or y. This is discussed in more detail below.

However, note that unstable zero dynamics from u to v are not a particular

problem for the feedback implementation in Figure 8b, but rather it is a funda-755

mental limitation. To avoid excessive changes (spikes) in the value of u sent to

the process, in particular for the multivariable case, one may insert a filter for

the signal u that goes to the process (but not on the signal u that goes to the

block that computes v in Figure 8b, because we do not want to unnecessary de-

lay this dependency). For example, a first-order filter may be used, F = 1
τF s+1760

where τF is about 5 times larger than the closed-loop time constant τc,v for the

slave loop involving Cv.

6.3. Decoupling and disturbance rejection when ideal static transformed input

v0 is applied to the dynamic system in (18)

In many cases the process is dynamic, but nevertheless we may want to765

apply the ideal static transformed input v0 = f0(u,w, d) in (13) or (27), where

f0 is the right-hand side of the static process model. Note here that we have

here chosen B0 = I so that we have y = v0 at steady state.

When the transformed input v0 is applied to a dynamic process, we have that

the transformed system is linear, decoupled and independent of disturbances at

steady state. However, dynamically we generally do not know what happens;

the response may be nonlinear, coupled and dependent on disturbances. How-

ever, assume that we apply the static transformation v0 = f0(u,w, ..d) to the

particular dynamic system

dy

dt
= f(u,w, y, d)
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in (18) then we get perfect disturbance rejection and in many cases decoupling,

also dynamically, if we make the reasonable assumption that we are initially at770

steady state.. This is an important result, although the class of dynamic systems

dy
dt = f(u,w, y, d) in (18) is somewhat limited as it only includes low-order

dynamic models with as many differential equations as inputs u and outputs y.

To prove that we retain disturbance rejection for this class of dynamic sys-

tems, note that we at steady-state, where f(u,w, y, d) = 0, have the static

relationship y = f0(u,w, d). Assume now that we apply the ideal static trans-

formed input v0 = f0(u,w, d) to the dynamic system in (18). Furthermore,

assume that we generate the exact inverse u = f−1
0 (v0, w, d) and that the re-

sulting transformed dynamic system becomes

dy

dt
= ft(v0, w, y, d) (74)

An example of such a transformed system is given by (57) for the nonlinear level

process. Since we have y = v0 at steady state, and since dy/dt = 0 at steady775

state, we must have that ft = 0 when y = v0, independent of the value of d (and

w).

Assume now that we are initially at steady-state, so that we have y = v0

and thus ft = 0. Next, consider a disturbance d and assume that we keep

the transformed input v0 constant. Then, since we start from y = v0 and we780

keep v0 constant, we have that ft remains at 0 and from (75) we have that

dy
dt = 0, and the system will remain at steady state with y = v0. In conclusion,

we have perfect dynamic disturbance rejection for the dynamic model dy/dt =

f(u,w, y, d) in (18) with the use of ideal transformed variables v0 based on a

static model.785

However, if we are not initially at steady state then we will not have perfect

dynamic disturbance rejection with v0. For example, if we are in a transition

between steady states, due to a change in the transformed input v0 (made by

the outer controller), then an output yi which is not at steady-state, will not

be dynamically independent of disturbances. However, if the changes for v0790
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are infrequent or on a slow time scale, then for practical purposes we will have

perfect disturbance rejection when applying v0 to the dynamic system (18).

To prove that we in many cases have decoupling, note the equations (74) is

a set of equations of the form

dyi
dt

= ft,i(v0, w, y, d) (75)

We make the additional assumption that for each equation, ft,i = 0 when yi =

v0,i. This may not always hold, but it is satisfied for the models studied in this

paper. Next, consider a change in a single transformed input v0,i with all the795

other transformed inputs v0,j(j ̸= i) constant. Since we start from a steady

state with yj = v0,j and we keep v0,j constant, we then have that ft,j = 0 and

from (75) we have that dyj/dt = 0(j ̸= i). This means that we have a decoupled

response where only yi changes in response to the change in v0,i.

In summary, if we initially are at steady state, then v0 achieves disturbance800

rejection and in many cases decoupling, also dynamically. Thus, the main ad-

vantage of using vA (based on the dynamic model (18); similar to feedback

linearization) rather than v0 (based on a static model) when applied to the

dynamic system (75) is that vA linearizes the transformed system, also dynami-

cally. Since vA depends on y, this gives justification for referring to this approach805

as “feedback linearization”.

6.4. Chain of input transformations

The use of the exact inverse u = g−1(v, w, y, d) is limited to cases where the

relative order from the input u to the output y is 0 for the static model case

(v0) and 1 for the dynamic model case (vA). By introducing measured state810

variables w, we may extend the use of transformed inputs to systems of higher

relative order, but this will require the use of feedback (cascade) control for

performing the inversion, which implies that the inversion is not perfect as it

depends on the tuning of the slave controller (Cv).

However, if we have a dynamic model for how w depends on u, it is possible
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Figure 14: Chain of input transformations

in some cases to get exact inversion for systems of higher relative order by using

a chain of input transformations, or rather by a chain of inversions on the form

(see Figure 14)

v2 = g−1
1 (v1, y, d1), u = g−1

2 (v2, w, d2)

Here, v1 is the transformed input related to the control of y, whereas v2 is815

the transformed input related to the control of w. Note that g2 is based on a

dynamic model for w, for example, dw/dt = f2(u,w, d2) (process 2), whereas g1

may be based on either a dynamic or static model for y, for example, dy/dt =

f1(w, y, d1) or y = f0(w, d1) (process 1). With a chain of transformations we

can get perfect disturbance rejection for all disturbances at steady state. We820

can also get perfect dynamic disturbance rejection for disturbances that enter

the model in the same way as the input u, that is, for disturbances d2 with the

same relative order as the input, but not for disturbances d1 that have a lower

relative order than u.

For example, assume that we have a continuous process with two mixing825

tanks in series and we want to control the outlet temperature in the second

tank (y = T2) using the heat input to the first tank (u = Q1). Also assume

that we have an extra state measurement of the temperature in the first tank

(w = T1). In this case the relative order from u to y is 2 and perfect disturbance

rejection is not possible for disturbances d1 directly affecting y (e.g., from an-830

other inlet stream to tank 2). However, since the relative order from u to w is

1, it is possible, by using a chain of transformations, to get perfect control for

disturbances d2 directly affecting w (e.g., the inlet feed temperature to tank 1).

A more detailed treatment of a similar example is given in the Master Thesis of
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Kingstree (2021).835

6.5. Comparison with feedback linearization

The use of ideal transformed inputs vA based on a dynamic model is a special

case of feedback linearization to systems of relative order 1 from u to y. For the

scalar case (with one input u and one output v) it only allows for one nonlinear

differential equation, dy
dt = f(u, y, d) and it transforms it into a first-order linear840

system, dy
dt = Ay + BvA. Nevertheless, we have shown in this paper that this

may be very useful for practical applications in process control.

Compared to the traditional feedback linearization literature, we have put

the main emphasis on the nice properties of vA related to feedforward control

and decoupling. In the feedback linearization literature, the main emphasis is845

usually on the linearization effect. In any case, an important advantage of the

feedback linearization literature is that it provides a rich theoretical basis for

introducing the transformed variables vA.

Feedback linearization allows for considering higher-order system with m

nonlinear differential equations (m state variables x), and it transforms it into a850

m’th order chain of m first-order systems from v to y. Actually, in the feedback

linearization literature, it is often assumed to be a chain of linear integrators, but

for process control applications it is better to generalize and use a chain of linear

first-order systems. However, even with this generalization, there are few, if any,

reports of using such chains in practice. There are some reasons for this. First,855

the feedback linearization theory assumes that all the states x are measured,

which is often not satisfied in process control applications. Second, even if we

can measure all the states, the resulting derivation and implementation tend to

become complicated, and may not be worth the effort.

An alternative approach, which is simpler but somewhat less general than860

feedback linearization, is to to use a chain of input transformations, as mentioned

above, based on using a model for the measured state variables w. However,

also this implementation gets rather complex, and other model-based control

methods, like nonlinear model predictive control (MPC), may be better for
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more complicated dynamic models.865

6.6. Comparison with nonlinear MPC

MPC provides a generic model-based framework for handling complex con-

trol problems that require linearization, decoupling and feedforward control.

There are some similarities between nonlinear MPC and the use of ideal trans-

formed inputs. Both methods are based on “open-loop” (feedforward) thinking870

and feedback from the measurements y is only introduced more indirectly. An

advantage with MPC is that it includes weights that makes it possible to deviate

from the exact inverse to address more directly the overall control problem to

get a trade-off between output performance, input usage and robustness. Thus,

with MPC, we are not forced to use exact model inversion, which is the basis of875

the input transformations and also of feedback linearization. MPC also allows

for a much larger class of dynamic models. Constraints on inputs and outputs

may also be included more directly with MPC.

On the other hand, the ideal input transformations used in this paper have

the advantage that they are more explicit and potentially simpler to under-880

stand and implement, especially when based on physical static models. They

can easily be simplified to include only decoupling or only parts of the distur-

bance rejection. They can also easily be combined with conventional feedback

controllers C (e.g., single-loop PID controllers) which may used to correct for

model error and unmeasured disturbances. Unlike MPC, input transformations885

can be easily implemented within the standard DCS or PLC control platforms

used at chemical processing facilities.

A second more fundamental advantage of input transformations is that we

may easily use extra measured variables (states) w to replace model equations.

This is generally more difficult with MPC, except for cases where w is treated as890

a measured disturbance, which means that we neglect the dependency of w on

u. With transformed inputs, we have the possibility of generating the input u

by feedback using a cascade implementation (Figure 8b). We then do not need

to explicitly know how the measured state w depends on the input u as this
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goes into the response from u to v, which we may obtain experimentally and895

use to tune the slave feedback controller Cv. Note that we only need a simple

dynamic model (e.g., first-order plus delay) to tune Cv and it does not to be

exact as the inversion (from v to u) is handled by feedback.

For example, this makes it possible with transformed inputs to replace a

valve equation by a flow measurement. This is not possible with MPC.900

Generally, with MPC, the measurement w of a state x can only be exploited

if we have a model equation that relates the state x to the input u. The mea-

surement w is then used to correct the prediction by the model, for example,

using a Kalman filter. Thus, we cannot easily substitute model equations by

measured states w with MPC.905

For the heat exchanger case study, it is not clear how we with MPC can use

the measurement w = T2 to eliminate the heat transfer equation (68c) (involving

the UA-value). At least it cannot be done if MPC is based on an experimental

model (which is used for most MPC applications) because we cannot here treat

T2 as a measured disturbance. With transformed inputs, we could do this by910

introducing the transformed input v0w in (72) which depends on w = T2.

6.7. Transformed outputs

It is also possible to define transformed outputs

z = h(y, w, d) (76)

where y are the outputs that we want to control at a given setpoint yS and

h is a static function of our choice. When we introduce transformed outputs

z, the transformed input vz will be in terms of z rather than y, that is, vz =915

gz(u,w, z, d). Two alternative implementations are shown in Figure 15.

However, we have already shown that we, by use of transformed inputs v

alone, can make the transformed system from v to y linear, decoupled and

independent of disturbances. There is therefore no fundamental advantage of

introducing transformed outputs. However, in some cases the use of transformed920
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outputs z may simplify the implementation of the transformed inputs u and this

may be an important advantage. One example is to introduce the enthalpy z =

H(T, . . . ) as a transformed output when the objective is to control temperature

y = T (Zotica et al., 2022). The reason is that the model may be formulated

much simpler in terms of z = H rather than in terms of y = T , leading to a925

much simpler expression for the ideal transformed input vz = gz(u,w, z, d) for

z than for the transformed input v = g(u,w, y, d) for y.

h(ys, w, d) +
− C g−1

z (v, w, z, d) Process

h(y, w, d)

ys zs e v u

d

y

z

w

z

(a) General implementation of transformed output z

+
− C h(v, w, d) g−1

z (vz0, w, d) Process
ys e v vz0 u

d

y

w

(b) Alternative implementation of transformed output z when the ideal transformed input
vz0 is based on a static model for z = f0(u,w, d), that is, vz0 = f0(u,w, d).

Figure 15: System with both transformed input v and transformed output z = h(y, w, d)

6.8. Internal instability with exact inversion

For the exact implementation of the transformed input v, we must for a

given value of v, y, w and d, invert the static map v = g(u,w, y, d) to generate

(analytically or numerically) the corresponding value of u

u = g−1(v, w, y, d) (77)

Note that (77) is a purely static expression and therefore by itself does not

contain any instabilities. However, when generating the inverse in (77) we are930

in effect treating w and y as measured disturbances, whereas they in reality
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depend on u. This dependency may generate internal instability because of the

feedback generated when the static inverse u = g−1(v, w, y, d) in (77) is applied

to the real dynamic system. We use the term internal instability because the

map from the transformed input v to the output y may appear to be stable,935

but this may not be true if we consider the input u, and this “hidden” internal

instability will eventually appear also in y, either because of model error or

because infinite inputs u are not physically realizable.

For the analysis that follows, there is no difference between the variables w

and y, so to simplify we will for now assume that the transformed input v is940

independent of y.

We have the following general result: Let v = gu(u, d) represent the dynamic

map from u to v when the internal variables w in the static map v = g(u,w, d)

have been eliminated by using a dynamic model w = gw(u, d) for how w depends

on u. That is, gu(u, d) = g(u, gw(u, d), d). We then get internal instability when945

we apply the exact inverse u = g−1(v, w, d) if the map gu(u, d) contains unsta-

ble zero dynamics (RHP-zeros in the linear case). This result follows trivially

because the inverse will have unstable poles at the unstable zeros of gu.

6.8.1. Example: Simple linear system with unstable zeros

As a simple example, consider the system (seemingly static)

y = u+ w + d (78)

for which we from propose from (27) (with B0 = I) to use as the ideal trans-

formed input the right-hand-side of (78)

v = g(u,w, d) = u+ w + d (79)
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For implementation, (79) may be solved with respect to u to get the “inverse

input transformation”

u = g−1(v, w, d) = v–w − d (80)

This may be implemented as in Figure 8a and it gives the (ideal) transformed

system

y = v (81)

which has no dynamics and therefore appears to be stable. So far we have not

said anything about how w depends on u. In effect, we have treated w as a

measured disturbance and we have counteracted the effect of w on v by use

of the “feedforward controller” (inverse) in (80). However, there is a poten-

tial “hidden” instability because of the dynamic response from u to w. As an

example, assume that it is first-order with a steady state gain of -2

w = gw(s) =
−2u

4s+ 1
or

dw

dt
= −0.25(2u+ w) (82)

Note from (79) that the direct static effect of u on v has a gain of 1, whereas

from (82) the indirect dynamic effect of u on v (through w) has a steady-state

gain of -2, that is, it is larger an in the opposite direction. The combined effect

causes an unstable (RHP) zero from u to v. To see this, eliminate w from (79)

using (82) to get

v = gu(u, d) =
4s− 1

4s+ 1
u+ d (83)

which has an unstable (RHP) zero at z = 1/4. This gives internal instability if

we use the exact inverse in 79. To see this, solve (83) with respect to u to get

u =
4s+ 1

4s− 1
(v–d) (84)
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which as expected is unstable due to the unstable (RHP) pole at p = 1/4. The

response from v to w is also unstable

w =
−2

4s− 1
(v − d) (85)

The two instabilities in Eqs. 84 and 85 cancel each other when put into (78) to950

give y = v. The system from v to y therefore appears to be stable, but this is

not true if we consider the input u.

6.8.2. Linear stability analysis of transformed system

We now want to discuss more generally how we may get instability when

applying the exact inverse transformation (Figure 8a). We allow for any trans-955

formed input v = g(u,w, y, d), not only the ones derived systematically from a

model as shown in Section 4. For simplicity we consider linear systems. Nonlin-

ear systems may have additional stability problems, but the local stability can

be assessed from a linear analysis.

When is the transformed system stable? We know from the examples above960

that it is not sufficient to study the stability from v to y because of the possibility

for internal instability when the transformed input depends on the dependent

(state) variables w. Therefore, to eliminate the issue of internal stability, we

will consider the stability of the “closed-loop” map from v to u, which will be

unstable if we have internal instability, e.g., see (84). By “closed-loop” we mean965

that we have included the effect of feedback through the dependent variables w

and y.

For the analysis that follows, there is no difference between the variables

w and y, so to simplify we will for now assume that the transformed input is

independent of y

v = g(u,w, d) (86)

Here all the variables may be vectors. The transformation in (86) is static so it
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can be linearized to give

dv = Kudu+Kwdw +Kddd (87)

The linearized process dynamics from u to w can be written

dw = Gw(s)du (88)

We here set dd = 0 since d does not matter for local (linear) stability consider-

ations. Substituting (88) into (87) gives the response from u to v

dv = (Ku +KwG
w(s))du = (I + Lw(s))Kudu (89)

where

Lw = KwG
w(s)K−1

u (90)

Physically, Lw(s) represents the ratio of the indirect effect KwG
w(through w)

and the direct effect Ku of u on the transformed input v. Solving (89) respect

to the input u gives the “closed-loop” input that achieves the desired perfect

control of v

du = K−1
u (I + Lw(s))

−1dv (91)

Mathematically, we note that the linearized transformed system in (91) corre-

sponds to the closed-loop response from dv to du of a system with negative

feedback and a loop transfer function Lw(s). This is very useful because of the970

existence of stability conditions for such systems (e.g. Skogestad & Postleth-

waite (2005). These stability conditions include the small gain theorem as well

as the more general Bode stability condition.

The small gain theorem says that we have stability if the norm of Lw is less

than 1 (e.g., |Lw(jω)| is less than 1 at all frequencies if we use the H-infinity975

norm). For a scalar system, this says that if the indirect effect KwG
w of u on

v (via w) is less in magnitude than the direct effect Ku, then the transformed
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system is internally stable, that is, there are no unstable zeros in the map from

u to v. This is a useful condition which yields significant insight. However,

the small gain theorem gives only a sufficient condition for stability, but not980

necessary. The Bode stability condition is tighter because it provides a necessary

and sufficient conditions for stability.

Consider again the example in (79) and (82). From (79) we have Ku = 1,

Kw = 1, and thus Lw(s) = Gw(s) = − 2
4s+1 . The steady-state gain |Lw(0)| = 2

is larger than 1, but from the small gain theorem we cannot conclude that the985

system is unstable. However, the Bode condition says that we need to look at

the gain at the frequency where the phase shift is −180o. Since the steady state

gain of Lw(s) is negative we have that phase shift at steady state is −180o. Thus

|Lw(jw180)| = |Lw(0)| = 2 and we conclude from the Bode stability condition

that the transformed system is (internally) unstable, as expected.990

6.8.3. Relationship between internal stability and stable zero dynamics for out-

put y (for systematic transformed inputs v0 and vA)

We consider here the special case when the ideal transformed input has been

derived from a model using (27) or (30). We can then instead look at the zero

dynamics for the output y (rather than for v). This follows because y and v995

are directly related in this case. In the static case, we have from (15) that the

transformed system is y = B0v0 (even dynamically for the case when w depends

dynamically on u). Similarly, for the dynamic case, we see from (21) that vA

and y are directly related. In particular, the zero dynamics will be the same. It

then follows, that to have stability of the transformed system when v is derived1000

using Eqs. 13 or 19 we must require that the map from the physical input u

to the output y has stable zero dynamics, that is, the process has stable zero

dynamics (Isidori, 1995).

7. Summary and conclusion

In this paper we use the concept of transformed inputs v = g(u,w, y, d) to1005

provide a systematic approach to analyze, implement and derive model-based
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nonlinear calculation blocks and cascade control schemes which are frequently

used in practice for industrial processes.

The starting point is often a nonlinear static model, y = f0(u, d). From

(13) with B0 = I, the ideal static transformed input is simply the right-hand1010

side of the model, v0 = f0, that is, we have g = f0 where we note that g in

the static case does not depend on the outputs y. For the ideal case, where

all disturbances d that enter the model are measured and there is no model

error, this gives at steady state the transformed system y = v0, which is linear,

decoupled and independent of disturbances.1015

In practical cases, the ideal transformed inputs v0 may be used as a starting

point to suggest simpler transformed inputs v. In such cases, some of the ideal

properties are lost, but the transformed input v may still be very useful and

greatly simplify the design of the outer controller C, which in any case is needed

to handle model uncertainty and unknown or uncertain disturbances.1020

For implementation, we need to invert the transformation g to generate the

physical input u = g−1(v0, . . . ). In some cases, we may use the exact model-

based inverse in Figure 8a, but if the equations are complex, we may use feedback

control as a “trick” to solve the equations by using the cascade implementation

in Figure 8b with a slave v-controller.1025

The model may often be written in a simpler form, y = f0w(u,w, d), by

replacing parts of the model by a measured dependent variable (state) w. The

most common is to use a measured flow to replace a valve-like equation, like (6)

or (52), or to use a measured temperature to replace the energy balance or parts

of it. In such cases, the cascade implementation in Figure 8b is often preferred1030

to invert the transformation v0 = f0w(u,w, d). First, it may happen that the

function f0w does not depend explicitly on the input u and then it is not possible

to use a model-based inverse. Second, there is a potential problem with internal

instability if we use the model-based inverse, but instability will not be occur

with the cascade implementation because the tuning of the inner controller Cv1035

is based on the experimental response from u to v0 . Internal stability with

the exact inverese occurs if the indirect (dynamic) effect of u on v0 through w
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is large compared to the direct (static) effect of u on v0, such that the overall

response from u to v0 has unstable zero dynamics (inverse response in the linear

scalar case). This is not very common, and with an ideal transformed input1040

v0 it only happens when the original system response from the input u to the

output y has unstable zero dynamics (inverse response). In such cases, control

of y is fundamentally difficult with any control approach.

It is also possible to derive ideal transformed inputs, vA, based on a dy-

namic model, dy
dt = f(u, y, d); see (30). This approach is closely related to the1045

theory of feedback linearization. At first sight, this seems to be a much more

powerful approach than with the static variables v0, as it gives a transformed

system dy
dt = Ay + BvA which is linear, decoupled and independent of distur-

bances, also dynamically. However, the benefit is usually small. First, the class

of dynamic systems described by dy
dt = f(u, y, d) is limited. For example, for a1050

single-input single-output processes, it allows for only one differential equation

with no direct effect from the input u to the output y (that is, no zeros are

allowed). Second, we have found that the ideal static transformed input v0 per-

forms almost as well as vA for this class of systems. In particular, it maintains

perfect dynamic disturbance rejection if the system initially is at steady state.1055

Third, a disadvantage with vA is that it is more complex and requires choosing

a reasonable value for the tuning parameter A. Simply setting A = 0, as is

normally recommended in feedback linearization, is normally not a good choice

as the resulting transformed system is drifting for unknown disturbances. The

main advantage with vA compared to v0 is that it linearizes the system dynam-1060

ically, which may simplify the design of the outer controller C in some cases.

In summary, we recommend that the engineer starts with static models when

deriving transformed inputs.

The use of ideal transformed inputs v may in theory produce no offset at

steady state (y = v), but this is based on feedforward control and assumes1065

an exact model and perfect measurements of the disturbances. This is not

realistic, so we generally need to add an outer controller C which manipulates

v to control the output y. Single-loop PID-controllers are usually sufficient
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because the response from v to y is linear and decoupled, at least at steady

state. The objective of the outer controller is to correct for errors in the model1070

and measurements and to reject unmeasured or unmodelled disturbances. The

outer controller should include integral action to get offset-free control at steady

state.

We have stressed the need to keep things simple. This is usually not an

objective in academic papers, but in practice simplicity is important for many1075

reasons. First, it makes it possible to build a control system of smaller parts

(blocks) which may designed and tuned independently. Second, it is easier to

understand and modify by engineers and operators, and it reduces errors in the

implementation.
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Appendix A. Tuning parameter A for ideal dynamic transformed in-1145

puts vA.

Consider the nonlinear system model dy
dt = f(u, y, d), which can be linearized

to get

dy

dt
= df = Ãdy + B̃du+ B̃ddd (A.1)

where the ∼ variables correspond to the linearized dynamics of the original

system. We have that Ã = (∂f/∂y)∗, B̃ = (∂f/∂u)∗ and B̃d = (∂f/∂d)∗. where

the evaluation of the derivatives is performed at the nominal point of operation,

denoted by ∗. Recall from (24b) that the dynamics of the transformed system are1150

given by dy
dt = Ay+BvA. Thus, if we choose A = Ã then the transformed system

will locally (close to the nominal operating point ∗) have the same dynamics as

the original system in (A.1).

Furthermore, from (19) the linearized transformed input becomes

dvA = B−1(df −Ady) = B−1(B̃du+ B̃ddd) (A.2)

and we find that dvA is independent of dy.

Thus, with the choice for A in (25), there is no feedback from y on the1155

transformed input vA at the nominal point.

For the multivariable case, to get a decoupled response, we may choose A

equal to the diagonal elements of the A-matrix of the original system

A = diag(Ã) = diag

(
∂f

∂y

)
∗

(A.3)

For the multivariable case, this will not exactly keep the original dynamics

and there will be some feedback from y to v at the nominal point. However,

it provides a good comprise between decoupling and minimizing the feedback

from y. In any case, the exact value for A should not be overemphasized, since1160

we can change the closed-loop dynamics by design of the outer controller C.
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