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Abstract 
Optimal economic operation of chemical plants requires control of active constraints, 
which may change because of disturbances. In addition, one should ensure optimality 
with respect to the unconstrained degrees of freedom by driving the reduced cost gradient 
to zero. One solution is to use on-line optimizing control, but the preferred approach in 
industry is to use decentralized control and selectors whenever possible. In this paper, we 
consider a new framework based on identifying the cost gradient projections that can be 
left uncontrolled when each specific constraint becomes active, leading to a decentralized 
logic. The proposed framework is applied to the optimal operation of the Williams-Otto 
reactor, which has two degrees of freedom and two constraints. The projection matrix, 
which depends on the gradient of the constraints, is assumed constant, resulting in a 
simple control structure. The approach works well in simulations and it switches between 
the four active constraint regions. 
 
Keywords: optimal operation, feedback optimizing control, decentralized control, 
selectors. 

1. Introduction 
In spite of the potential economic benefits, real-time optimization (RTO) is less used in 
industry than one may expect. There are several reasons for this, and one is that standard 
RTO applications operate on a slow time scale, such that for cases with frequent 
disturbances, optimal operation is not satisfactorily achieved. An appealing solution is to 
move some of the optimization problem into the control layer design, which operates on 
a much faster time scale. This means that one should find controlled variables (CVs) that, 
when controlled to constant setpoints, result in minimal economic loss. This is the idea 
of self-optimizing control (Skogestad, 2000), which consists of obtaining these CVs as a 
combination of the available measurements. Another class of feedback optimizing 
strategies aim to estimate the plant cost gradients in order to control them to zero 
(Krishnamoorthy et al., 2019). 
One of the main challenges that such approaches face is the presence of changing active 
constraints (Jäschke et al., 2017), which may drastically change the operation mode of 
the system. For example, if a constraint becomes active due to a disturbance, not taking 
its control into account leads to infeasible operation. Similarly, if a constraint becomes 
optimally inactive, the control of such constraint should be given up. For a given set of 
active constraints, if the cost gradient is measured, it is known that the control of the 
active constraints together with the control of a projection of the cost gradient over the 
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nullspace of the active constraints’ gradient leads to optimal operation (Jäschke and 
Skogestad, 2012). However, the existence of several active constraint regions may deem 
necessary the use of several independent control structures, each of them being able to 
provide near-optimal operation for their respective region of design. The switching 
between such control structures would also become an issue since the lack of a feedback-
based switching strategy could lead to improper operation. 
In practical applications of process systems, logic elements have been extensively used 
for reconfiguring control loops, which is often needed for attaining optimal operation 
(Reyes-Lúa et al., 2018). In particular, selectors have been successfully applied as a tool 
for automatic detection of active constraint switching for single input systems 
(Krishnamoorthy and Skogestad, 2020). In this work, we extend this analysis for 
multivariable systems, proposing a simple framework for decentralized optimal operation 
under changing active constraints, with the use of PID controllers and selectors. 

2. Methodology 
The main idea of this framework consists in identifying the optimal CVs for each region, 
and consequently proposing control loops for dealing with such CVs, in a way that 
reconfiguring is minimized. Consider the following convex optimization problem: 
 

min
𝑢𝑢
𝐽𝐽(𝑢𝑢,𝑑𝑑) 

𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑢𝑢,𝑖𝑖
𝑇𝑇  𝑢𝑢 + 𝑔𝑔𝑑𝑑,𝑖𝑖(𝑑𝑑) ≤ 0, 𝑖𝑖 = 1, … ,𝑛𝑛𝑔𝑔 

 

(1) 

For the purposes of this work, we consider the steady-state cost gradient 𝐽𝐽𝑢𝑢 to be known. 
Based on that, and assuming that 𝑛𝑛𝑢𝑢 ≥ 𝑛𝑛𝑔𝑔 and all vectors 𝑔𝑔𝑢𝑢,𝑖𝑖 are linearly independent 
(LI), we can devise a simple control strategy for optimal operation. Firstly, the 
unconstrained degrees of freedom related to the nullspace of 𝐺𝐺𝑢𝑢 = [𝑔𝑔𝑢𝑢,1 … 𝑔𝑔𝑢𝑢,𝑛𝑛𝑔𝑔]𝑇𝑇 
will always be optimally controlled regardless of how many constraints are active, and 
therefore 𝑁𝑁0𝑇𝑇𝐽𝐽𝑢𝑢, with 𝑁𝑁0 being a basis for the nullspace of 𝐺𝐺𝑢𝑢, should always be controlled 
to zero. In addition to that, if all but one constraint is active, an extra unconstrained degree 
of freedom needs to be considered. The degree of freedom freed by the constraint 𝑔𝑔𝑖𝑖 
becoming inactive can be determined by the nullspace of the matrix 𝐺𝐺𝑢𝑢−𝑖𝑖 comprised of all 
the remaining rows 𝑔𝑔𝑢𝑢,𝑗𝑗

𝑇𝑇 , 𝑗𝑗 ≠ 𝑖𝑖. By definition, this nullspace will include the space 
generated by 𝑁𝑁0, and it is sufficient to pick any projection 𝑁𝑁𝑔𝑔,𝑖𝑖 that is LI from 𝑁𝑁0. A 
unique solution can be obtained by picking 𝑁𝑁𝑔𝑔,𝑖𝑖 orthogonal to 𝑁𝑁0. 
With these definitions, we propose the following control strategy for a given active 
constraint set 𝒜𝒜: 

• if 𝑛𝑛𝑢𝑢 > 𝑛𝑛𝑔𝑔, find 𝑁𝑁0 such that 𝐺𝐺𝑢𝑢𝑁𝑁0 = 0 and control 𝑁𝑁0𝑇𝑇𝐽𝐽𝑢𝑢 = 0; 
• for 𝑖𝑖 = 1, … ,𝑛𝑛𝑔𝑔: 

o find 𝑁𝑁𝑔𝑔,𝑖𝑖 such that �
𝐺𝐺𝑢𝑢−𝑖𝑖
𝑁𝑁0𝑇𝑇

�𝑁𝑁𝑔𝑔,𝑖𝑖 = 0; 

o control 𝑔𝑔𝑖𝑖 = 0 if 𝑖𝑖 ∈ 𝒜𝒜; else, control 𝑁𝑁𝑔𝑔,𝑖𝑖
𝑇𝑇 𝐽𝐽𝑢𝑢 = 0. 

It can be verified that the operating point defined by the forementioned CVs leads to the 
solution of (1). Furthermore, if decentralized PID control is used for every CV, the 
decision of controlling 𝑔𝑔𝑖𝑖 = 0 or 𝑁𝑁𝑔𝑔,𝑖𝑖

𝑇𝑇 𝐽𝐽𝑢𝑢 = 0 can be performed locally by comparing the 
corresponding control loops. This problem may be solved with selectors, such that 
constraint control becomes active when necessary, and the unconstrained degree of 
freedom is controlled whenever the constraint is not violated. If the system is such that 
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decentralized PID control can be used for every set of CVs, the framework will lead to 
optimal operation. 
The proposed framework considers linear constraints with respect to the plant inputs, 
which is a strong assumption that is not accurate for most real systems. We will now 
demonstrate the effectiveness of the framework in a case study with nonlinear constraints, 
evaluating the loss that is obtained by the application of the proposed method. 

3. Results 
3.1. Case study description 
We now consider the optimal operation of the Williams-Otto reactor (Williams and Otto, 
1960). The optimal operation of the reactor is described by: 
 

min
𝑢𝑢
𝐽𝐽𝑒𝑒𝑒𝑒 = 𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐹𝐹𝐵𝐵 − (𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)(𝑝𝑝𝐸𝐸𝑥𝑥𝐸𝐸 + 𝑝𝑝𝑃𝑃(1 + Δ𝑝𝑝𝑃𝑃)𝑥𝑥𝑃𝑃) 
𝑠𝑠. 𝑡𝑡.  𝑔𝑔1 = 𝑥𝑥𝐴𝐴 − 0.12 ≤ 0 

  𝑔𝑔2 = 𝑥𝑥𝐸𝐸 − 0.3 ≤ 0 
 

(2) 

 
The degrees of freedom for operation are 𝑢𝑢 = [𝐹𝐹𝐵𝐵 ,𝑇𝑇𝑅𝑅], with 𝑇𝑇𝑅𝑅 being the reactor 
temperature, and the considered disturbances are 𝑑𝑑 = [𝐹𝐹𝐴𝐴,Δ𝑝𝑝𝑃𝑃]. The solution of the above 
optimization problem as a function of the disturbances leads to the pattern shown in 
Figure 1, where each region correspond to the set of active constraints at the solution. 
 

 
Figure 1: Optimally active constraints as function of the disturbances 

3.2. Control structure design 
In order to apply the proposed framework, we linearize the constraints at a nominal point. 
With this, we assume a constant constraint gradient with respect to the inputs, and this 
ultimately results in constant cost gradient projections to be controlled inside each region. 
The nominal point was chosen to be the optimal point for 𝑑𝑑∗ = [1.0 0.0], and the 
linearization of the constraints at this point results in: 
 

Δ𝑔𝑔 = �
𝑔𝑔𝑢𝑢,1
𝑇𝑇

𝑔𝑔𝑢𝑢,2
𝑇𝑇 � Δ𝑢𝑢 + 𝑔𝑔𝑑𝑑Δ𝑑𝑑 = �−0.0492 0.0032

−0.0328 −0.0026� Δ𝑢𝑢 + 𝑔𝑔𝑑𝑑Δ𝑑𝑑 (3) 

 
Since 𝑛𝑛𝑔𝑔 = 𝑛𝑛𝑢𝑢 = 2, there are no unconstrained degrees of freedom that remain active at 
the fully constrained case, when 𝒜𝒜 = {𝑔𝑔1,𝑔𝑔2}. Therefore, no cost gradient projection 
𝑁𝑁0𝑇𝑇𝐽𝐽𝑢𝑢 is needed, and all operational degrees of freedom are filled by active constraint 
control. For 𝒜𝒜 = {𝑔𝑔1}, in addition to controlling 𝑔𝑔1 = 0, we must control one cost 
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gradient projection 𝑁𝑁𝑔𝑔,2
𝑇𝑇 𝐽𝐽𝑢𝑢 = 0 in order to fill the remaining degree of freedom, where 

𝑁𝑁𝑔𝑔,2 is chosen such that 𝐺𝐺𝑢𝑢−2𝑁𝑁𝑔𝑔,2 = 𝑔𝑔𝑢𝑢,1
𝑇𝑇 𝑁𝑁𝑔𝑔,2 = 0. Similarly, in the region where 𝒜𝒜 =

{𝑔𝑔2}, the optimal CVs will be 𝑔𝑔2 = 0 and 𝑁𝑁𝑔𝑔,1
𝑇𝑇 𝐽𝐽𝑢𝑢 = 0, where 𝑁𝑁𝑔𝑔,1 is chosen such that 

𝐺𝐺𝑢𝑢−1𝑁𝑁𝑔𝑔,1 = 𝑔𝑔𝑢𝑢,2
𝑇𝑇 𝑁𝑁𝑔𝑔,1 = 0. In the unconstrained region 𝒜𝒜 = { }, the optimal CVs are all 

the components of the cost gradient 𝐽𝐽𝑢𝑢 = 0. However, controlling 𝑁𝑁𝑔𝑔,1
𝑇𝑇 𝐽𝐽𝑢𝑢 = 0 and 

𝑁𝑁𝑔𝑔,2
𝑇𝑇 𝐽𝐽𝑢𝑢 = 0 simultaneously implies in 𝐽𝐽𝑢𝑢 = 0, as the constraints are independent and 

therefore [𝑁𝑁𝑔𝑔,1 𝑁𝑁𝑔𝑔,2] is full rank. This means that the same gradient projections used for 
the partly constrained regions can be used for the fully unconstrained region. 
The control structure that results from the application of the proposed methodology is 
presented in Figure 2, where 𝐾𝐾𝑔𝑔𝑖𝑖  and 𝐾𝐾𝑒𝑒𝑖𝑖  denote PID controllers related to control of 
constraints and gradient projections, respectively. It can be seen that control of 𝑁𝑁𝑔𝑔,1

𝑇𝑇 𝐽𝐽𝑢𝑢 can 
be optimally given up when the control of 𝑔𝑔1 becomes active, and the same happens with 
the pair 𝑁𝑁𝑔𝑔,2

𝑇𝑇 𝐽𝐽𝑢𝑢 and 𝑔𝑔2. This pairing results in optimal operation for all possible active 
constraint regions, with the switching being performed by max selectors on the controller 
outputs for this case study. 

 
Figure 2: Control structure for optimal operation of case study 

3.3. Simulation results 
The behavior of the proposed control structure is illustrated by the simulations presented 
in Figure 3. The disturbance realizations were chosen such that the system operates at all 
active constraint regions. In the simulations, 𝐽𝐽𝑢𝑢 was obtained using the automatic 
differentiation tools from CasADi (Andersson et al., 2019) with known disturbances. In 
practice, an estimator would be needed if the disturbances are not measured. 
The system starts at the fully unconstrained region, where perfect optimal operation is 
possible because the cost gradient, 𝐽𝐽𝑢𝑢, is known. Once the system moves to the region 
𝒜𝒜 = {𝑔𝑔1} at 𝑡𝑡 = 4 h, constraint violation is avoided as 𝑔𝑔1 = 0 becomes the CV chosen 
by the selector. Even though the inputs are not driven to their optimal value, the choice 
of CVs is such that low economic loss is achieved. At 𝑡𝑡 = 6 h, the disturbance value is 
equal to the nominal point, where the linearization of the constraints was performed. For 
this reason, the controlled cost gradient projection 𝑁𝑁𝑔𝑔,2

𝑇𝑇 𝐽𝐽𝑢𝑢 corresponds exactly to the 
optimality conditions, and perfect optimal operation is attained. At 𝑡𝑡 = 8 h, the system 
starts operating at the region 𝒜𝒜 = {𝑔𝑔1,𝑔𝑔2}. As all degrees of freedom are associated to 
active constraint control, perfect optimal operation is achieved. From 𝑡𝑡 = 12 h, the system 
operates at 𝒜𝒜 = {𝑔𝑔2}, and near-optimal operation is achieved with low economic loss. 
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Figure 3: Dynamic simulation of proposed control structure 

The steady-state economic loss for the proposed control structure is presented in Figure 
4 as a function of the disturbances. Similar to what was observed in the dynamic 
simulations (Figure 3), the regions with nonzero loss are concentrated at the partly 
constrained regions. This is because the optimal CVs corresponding to the cost gradient 
projections change due to the nonlinearity of constraints. In contrast, the fully constrained 
and fully unconstrained regions mostly present zero operational loss, because the optimal 
CVs remain constant inside these regions, and the information about 𝐽𝐽𝑢𝑢 is accurate. The 
linearization of the constraints was performed inside the region 𝒜𝒜 = {𝑔𝑔1}, where the 
operational loss is effectively zero at this reference point, and it increases as the system 
moves away from it. It can also be seen that optimal switching between regions is subject 
to errors related to the linearization of the constraints. The largest operational loss is 
obtained in the switching between regions 𝒜𝒜 = {𝑔𝑔1,𝑔𝑔2} and 𝒜𝒜 = {𝑔𝑔2}, where an 
inaccurate cost gradient projection is tracked, that is, controlling 𝑁𝑁𝑔𝑔,1

𝑇𝑇 𝐽𝐽𝑢𝑢 = 0 does not lead 
to exact optimal operation. Therefore, the switching is not performed at the exact optimal 
boundary, as can be seen in the results, but it nonetheless leads to a reasonable switching 
policy between regions, and good resulting economic performance. 
 

 
Figure 4: Steady-state economic loss of the proposed control structure as a function of 

disturbances (black lines represent optimal region switching) 
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4. Discussion 
The control structure resulting from the framework proposed in this work (Figure 2) 
makes use of selectors as simple elements for switching between operating regions. These 
elements are frequently used in practice for coordinating conflicting control objectives. 
In this work, we show how these elements can be used for the optimal operation of 
systems under changing active constraints in a systematic manner. The min/max nature 
of the selectors is ultimately related to the nature of the constraint with respect to the input 
(Krishnamoorthy and Skogestad, 2020). 
The approach proposed in this work is based on the analysis of the partly constrained 
regions, where we find gradient projections that can be optimally controlled. These 
projected gradients are also the optimal CVs of other regions, which minimizes the 
number of control loops that are necessary to account for all regions. Moreover, the 
proposed switching operates independently for each plant input, which means that the 
detection of each constraint is done independently, and feasible operation is safely 
achieved. However, the reconfiguring of CVs done by the selectors may significantly 
change the interactions between loops, and therefore careful tuning of the controllers is 
necessary, such that a good performance is achieved regardless of which loops are active. 

5. Conclusion 
In this work, we propose a framework for decentralized optimal operation under changing 
active constraints, applicable to a class of multivariable problems. Even though the 
approach is based on the linearization of the constraints, and therefore the quality of the 
linearization plays a relevant role in the economic performance, the strategy proved to be 
successful in a nonlinear case study, which encourages its use in other relevant problems 
of process systems engineering, especially when the gains from the inputs to the 
constraints do not change greatly in the operating range. The use of adaptive cost gradient 
projections would also be beneficial for improving economic performance. More 
theoretical aspects regarding the proposed framework will be expanded in future work. 
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