
Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)         
PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering  
(ESCAPE33), June 18-21, 2023, Athens, Greece                                                                             
© 2023 Elsevier B.V. All rights reserved.  

A comparative study of distributed feedback-
optimizing control strategies  
Vegard Aas,a Risvan Dirza,a Dinesh Krishnamoorthy,a Sigurd Skogestad,a* 
a Department of Chemical Engineering, Norwegian University of Science and 
Technology, NO-7491 Trondheim, Norway   
*sigurd.skogestad@ntnu.no  

Abstract 
In industry, the processes often consist of several subsystems with a common constraint, 
for example, a shared resource. This paper considers the problem of steady-state real-time 
optimization (RTO) for a subsea gas-lifted oil production network with multiple wells 
and constrained access to shared gas-lift supply. Such problems can be solved by a 
centralized numerical optimization, which can be computationally expensive. To avoid 
the use of numerical optimization, one can utilize either online primal or dual 
decomposition instead, where the problem is converted into a feedback-based problem. 
The main benefit of primal method is that it distributes local setpoints which complies 
with primal feasibility, however, the dual method is more general. Both the primal and 
dual methods allow for a distributed implementations. The dual method is more general 
in terms for allowing for many constraints, but as shown for the simulations with 
uncertainty and measurement noise, the primal method may give better dynamic 
constraint satisfaction. 
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1. Introduction 
Industrial process often consists of several subsystems with a common constraint, for 
example, a shared resource. Problems like this can be decomposed and solved using 
distributed optimization. However, this can be computationally expensive as it solves 
several rounds of numerical optimization problems online at each sample time. This can 
be addressed by indirectly moving the optimization problem into the control layer (Morari 
et al. (1980)). Such problems are known as feedback-optimizing control, which can be 
implemented using simple tools such as Proportional-Integral-Derivative (PID) 
controllers. 
 
In our previous work (Dirza et al., 2022(b)), we have experimentally validated a recently 
developed method of feedback-optimizing control called distributed feedback-based 
RTO. This method is developed based on dual decomposition and optimally handles 
steady-state changes in active constraints. However, the constraints are controlled in a 
slower time scale by updating the dual variables. This leads to the need for significant 
“back-off” strategy, which could lead to profit loss in the long run. To eliminate or reduce 
the “back-off,” Dirza et al. (2022(a)) introduces an alternative distributed feedback-
optimizing control based on online primal decomposition using feedback and constraint 
controller(s) which distribute local setpoints without violating the common constraint to 
avoid or minimize use of a “back-off” strategy.  
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In this paper, we provide a comparative analysis of the two distributed feedback-
optimizing control approaches. The model we consider represents our lab-scale 
experimental rig that consider uncertainty and measurement noise. The rig emulates a 
subsea oil production network with gas-lift rate as the manipulated variables. The 
experimental results will be provided as the future work.  

2. Feedback-optimizing control 
Consider the optimization problem for the entire system built by a network of N 
subsystems. We assume each subsystem is optimized locally and that we always have 
active constraint. Thus, the steady-state optimization problem can be expressed as 
follows, 

min
,∀ ∈

     𝐽 = 𝐽 ,

∈

 

𝑠. 𝑡.             𝒇 (𝒙𝒊, 𝒖𝒊, 𝒅𝒊) = 0  𝑖 ∈ [1, 𝑁] 
    

𝑔 (𝒙𝒊, 𝒖𝒊, 𝒅𝒊)

∈

− 𝑔 = 0 

where 𝒙 , 𝒖  𝑎𝑛𝑑 𝒅  denote the vector of states, inputs and disturbances respectively. 
Constraint (1b) is related to the entire system model, and (1c) is an equality constraint. 

2.1. Distributed Feedback-Optimizing Control using Online Primal Decomposition 
To solve problem (1) using simple feedback controller, it is possible to construct a method 
based on online primal decomposition (Dirza et. al (2022(a))). The main motivation for 
this method is that we want to achieve optimal steady-state operation in a distributed 
manner, with minimal dynamic constraint violation and without demand of solving 
numerical optimization problems online. By introducing an initial value of local 
constraint 𝑔 , (1c) can be written as 

𝑔 (𝒙𝒊, 𝒖𝒊, 𝒅𝒊) − 𝑔 = 0 𝑖 ∈ [1, 𝑁] 

𝑔

∈

= 𝑔  

instead. As long as (1e) is satisfied, primal feasibility is guaranteed. Each subproblem 
estimates local Lagrange multipliers, which is used in central constraint controllers. These 
controllers update the setpoints iteratively, where the goal is to provide setpoints that 
satisfy the primal feasibility. In this paper we assume that the constraint is always active, 
therefore we have two types of approaches of updating the local setpoints. To ensure that 
(1e) is satisfied, one of the local setpoints is updated as follows, 

𝑔
,

= 𝑔 − 𝑔
,

+ ⋯ + 𝑔
,  

This is called the compensator subsystem, and the objective is to ensure primal feasibility. 
For the remaining subsystems, 𝑖 =  {1, … , 𝑁 − 1}, the local setpoints is updated by 

𝑔
,

= 𝑔
,

+ 𝐾 , (−λ + λ ) 

We may use integrating controllers with integral gain 𝐾 , =
,

, where 𝐾  is the step 

response gain and τ ,  is the closed-loop time constant. However, a proportional integral 
(PI) controller can also be used. The local Lagrange multipliers, λ , can be estimated 

λ = −∇ 𝐽 , ∇ 𝑔 (𝑥 , 𝑢 , 𝑑 )  

Where ∇ 𝐽 ,  and ∇ 𝑔  are the estimated gradient of local cost and local setpoints 
respectively. In figure 2.1 the online primal decomposition framework is illustrated. The 
central constraint controllers, which contains both normal and compensator subsystems, 
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provide new set points for the local 
constraints. As the constraints always are 
active, these set points are considered as 
inputs to the subsystems. When there is a 
presence of disturbance, we can use the plants 
current information to estimate the current 
state and parameters by implementing a local 
dynamic estimator, for instance Extended 
Kalman Filter (EKF). By applying the inputs, 
estimated states and parameters, we can 
estimate cost gradient as well as constraint 
gradient to compute the local Lagrange 
multipliers. The multipliers are then 
implemented in the central constraint 
controller to calculate the new set points. 

3. Simulation descriptions 

3.1. Simulation model setup 
To emulate the subsea gas-lifted oil production system, we use a model created in 
MATLAB R2021a based on a lab-scale experimental rig from a paper by Matias et al. 
(2022) and has been tested and used in earlier papers related to the lab-rig. It is 
implemented with noise similar to what is expected from the lab-rig. The reservoir section 
of the model is implemented by valve openings 𝒑 = [𝒑𝟏, 𝒑𝟐, 𝒑𝟑] which determine the 
liquid flow. These valves represent the disturbances from the reservoir. In the MATLAB 
model the gas-lift flow controllers are given ui as setpoints. They are implemented as a 5 
second delay plus input noise to simulate controller action instead of coding the actual 
controllers. The setpoint controllers in the central constraint controller are integral 
controllers tuned using SIMC tuning rules (Skogestad (2003)). 

3.2. Optimization problem setup 
The objective of the optimization problem in this model setup is to maximize the liquid 
flow rate, which equals the sum of the liquid production of the three wells, with a limited 
amount of gas-lift injection, which is input shared constraint. Considering problem (1). 
the economic objective can be expressed as below, 

𝑱(𝒖, 𝒑) = 𝑓 (𝑢 , 𝑝 ) = −20𝑄 , (𝑢 , 𝑝 ) − 25𝑄 , (𝑢 , 𝑝 ) − 30𝑄 , (𝑢 , 𝑝 ) 

where 𝑄 , , 𝑄 ,  and 𝑄 ,  are the produced liquid flow rates of well 1, 2 and 3 respectively. 
We assume different values of the hydrocarbon flows as shown in eq. 6, to illustrate how 
different values affect the behavior of the subsystems. The input vector is defined as 𝒖 =

𝑄 ,
𝐬𝐩

 𝑄 ,
𝐬𝐩

 𝑄 ,

𝑻
 where 𝑄 , , 𝑄 ,  and 𝑄 ,  are the gas-lift set points from the 

central controller of well 1, 2 and 3 respectively. In addition, the reservoir valve p is time 
varying. 

3.3. Comparative method 
We consider our previous work, distributed feedback-based optimization with dual 
decomposition, to compare with primal decomposition. The implemented dual 
decomposition method is based on Dirza et al. (2022(b)) and Krishnamoorthy et al. 
(2021). In figure 3.1 the implemented dual decomposition framework is shown.  

Figure 2.1 The online primal decomposition 
control structure. 

(5) 



4  V. Aas et al. 

4. Results and Discussion 
Figure 4.1 shows the disturbance in this 
simulation, which corresponds to the 
reservoir valve openings p in the lab-rig 
model. The first disturbance occurs 
when p1 gradually decreases from t = 6 
to t =12.5 min. During this interval, we 
expect the gas-lift injection in well 1 to 
decrease, and redistribution of the gas 
to the other wells. The second 
disturbance occurs when also p3 
gradually decreases from t = 14 to t = 
18 min. As before, we expect that the 
gas-lift injection rate in well 3 will go 
down. At the same time, we expect the 
other wells will gain a higher gas-lift 
injection. The third and fourth 
disturbance occur from t = 21 to t = 24.5 
and t = 28 to t = 34.5 respectively. 
During this time p3 and p1 are gradually 
increased back up to the initial values. This is because we want to see how the controllers 
behave for both decrease and increase in the disturbance. 
 
In this paper subsystem 3 has been used as the compensator for the primal decomposition. 
This subsystem was chosen because it has the highest gain magnitude, which results in 
most profit for cases with active shared 
constraint.  
 
In figures 4.2 – 4.7 we compare the 
simulation results from primal 
decomposition and dual decomposition. 
The calculated input setpoints are shown 
in figure 4.2, the actual gas-lift flow rate 
will deviate slightly from the setpoints 
due to the implemented measurement 
noise in the model. Another cause is how 
the gas flow rate controllers are 
implemented in the model, which is 
described in section 3.1.  
 

Figure 3.1 Block diagram of dual decomposition 
control structure for one well. The area within the 
dashed gray box is duplicated N times. For a more 
detailed version the reader is referred to Dirza et al. 
(2022b). 

Figure 4.1 Disturbance profile during the 
simulation. 

Figure 4.2 The gas-lift flow rate setpoint 𝒖 =
𝑸 of every well due to disturbance from the 
simulation.  
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In figure 4.2 and 4.3 we see that the dual control is responding slower to the disturbances 
than the primal control for correcting the gas-lift setpoints. This is a consequence of the 
time-scale separation between the central controller and the gradient controllers needed 
in the dual structure (Dirza et al (2022b)). 

Figure 4.3 shows the constraint satisfaction. As expected, the Primal decomposition 
performs much better than the dual decomposition here. This is because the compensator 
system, subsystem 3, "absorbs" the deviations from the constraint. The absorbing ability 
comes from how the compensator set point is calculated, see eq. 2, and is the reason for 
the primal decomposition’s capability to maintain the active constraint. In terms of what 
this means for the operation, with the use of primal decomposition we can run the system 
without any significant back-off and remain feasible at all times. On the other and, for the 
dual decomposition we must implement back-off, especially from t = 21 when the 
disturbances start to increase again. 

Figure 4.4 depicts that the local Lagrange multipliers for Primal Decomposition converge 
to the same value. Figure 4.5 show the Lagrange multiplier for the dual decomposition. 
We can observe that the multiplier converges slower and is smoother for this method. 
This is because the central controller for dual decomposition operates on a slower 
timescale. When the Lagrange multiplier converges around t = 3.5 we can see that the 
active constraint is controlled almost as good as for the Primal case. It is also worth to 
notice that the Lagrange multipliers converges to the same value for both Primal and 
Dual.  
 
To analyze the optimization performance of primal and dual decomposition, we compare 
the profit obtained by the two methods with a naive approach, where it is considered fixed 

inputs, 𝒖 =  
𝑄

3. The naive approach represents the case where no information is 
available, therefor, the best approach is to divide the available gas equally among the 

Figure 4.3 The constraint satisfaction of both primal and dual. There is a magnifying plot in time 
window 5 to 6.5 min showing only constraint satisfaction for primal. 

Figure 4.4 Local Lagrange multipliers for 
primal decomposition. 

Figure 4.5 Lagrange multiplier for dual 
decomposition 
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wells. This additional approach is used as benchmark to show how primal and dual 
decomposition compares to not do any optimization at all. To display the performance, 
we plot the difference in percentage between the instantaneous profit of primal/dual and 

the naive approach. The difference is calculated as 𝐽 = ∙ 100, where 𝐽 is the 

profit of the method of interest and 𝑱  is the profit of the naive approach. Figure 4.7 
shows that primal is more profitable than dual until t = 21 min, after this dual appears to 
be favorable. However, in figure 4.3 we see that after t = 21 dual does not achieve primal 
feasibility and therefore the profit here is not viable.  

5. Conclusion 
In this work, we have done simulation with uncertainty and measurement noise to 
compare feedback-based real-time optimization with online primal and dual 
decomposition. Based on the results we can conclude that primal decomposition is able 
to effectively ensure primal feasibility for separable systems with an active shared input 
constraint. It performs better than dual decomposition in this aspect, mainly because of 
the timescale difference of the central constraint controllers.  This significantly reduces 
the need for any significant back off, which results in more profitable operations. While 
primal ensures constant feasibility, it is less general than dual. As the continuation of this 
work, we consider obtaining the experimental result, implementing dual with override 
and develop a primal structure able to switch between active constraints. 
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