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Due to the increasing trend of using renewable energy, the
development of an energy storage system (ESS) attracts great
research interest. A zinc–air battery (ZAB) is a promising ESS
due to its high capacity, low cost and high potential to
support circular economy principles. However, despite ZABs’
technological advancements, a generic dynamic model for a
ZAB, which is a key component for effective battery
management and monitoring, is still lacking. ZABs show
nonlinear behaviour where the steady-state gain is strongly
dependent on operating conditions. The present study aims
to develop a dynamic model, being capable of predicting the
nonlinear dynamic behaviour of a refuellable ZAB, using a
linear parameter-varying (LPV) technique. The LPV model is
constructed from a family of linear time-invariant models,
where the discharge current level is used as a scheduling
parameter. The developed LPV model is benchmarked
against linear and nonlinear model counterparts. Herein, the
LPV model performs remarkably well in capturing the
nonlinear behaviour of a ZAB. It significantly outperforms
the linear model. Overall, the LPV approach provides a
systematic way to construct a robust dynamic model which
well represents the nonlinear behaviour of a ZAB.
1. Introduction
Renewable energy has great potential to sustain global energy
security. Nevertheless, renewable energy is very intermittent
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and highly erratic, resulting in fluctuation in energy production. An energy storage system (ESS) can
stabilize such fluctuation and effectively support energy management and integration. Recently, ESS
has become an immensely focused topic in energy research. An ESS can enhance the efficiency and
stability of various energy systems [1,2] (table 1).

Of the various types of ESS, zinc–air batteries (ZABs) prove to be the most promising, providing
excellent specific capacity. ZAB technology has made substantial research progress and is approaching
commercialization [3–5]. ZABs use the electrochemical reaction between zinc (Zn) and oxygen (O2) to
store and release electricity. ZABs characteristically have high energy density but low power. It is
reported that ZABs are able to deliver peak power density up to 430 mW cm−2 and energy density up
to 837 W h kg−1 [6]. These values have already exceeded the specific energy of commercialized lithium
ion batteries (LIBs) many times. Moreover, Zn is abundant on Earth; therefore, its cost is quite low
[7–9]. In addition, Zn is safe, environmentally friendly and highly stable. Zinc oxide (ZnO), which is
the discharge product, can be easily recycled. O2, supplied from atmospheric air, is also quasi-free and
virtually unlimited. Thus, ZABs present great potential and feasibility in providing a decent ESS on a
large scale.

Generally, a ZAB consists of two electrodes: a Zn electrode (negative electrode) and an air electrode
(positive electrode). The most common electrolyte for a ZAB is an aqueous alkaline electrolyte such as
potassium hydroxide (KOH) solution. As regards discharging, Zn serves as an electron donor at the
negative electrode. Zn reacts with hydroxide ions (OH−) producing zincate ions (Zn(OH)4

2−) and
electrons (e−). Zincate ions remain in the electrolyte and can precipitate to form ZnO. At the positive
electrode, O2 from the ambient air acts as an electron acceptor. Oxygen reduction reaction (ORR)
proceeds and provides OH− as the product. The overall reaction of a ZAB is the redox reaction of Zn
and O2, thereby producing ZnO. The overall reactions that occur in the battery are described as
follows [10,11]:

Negative electrode: Znþ 4OH� $ ZnðOHÞ2�4 þ 2e�

Zn(OH)2�4 $ ZnOþ 2OH� þH2O

Positive electrode:
1
2
O2 þH2Oþ 2e� $ 2OH�

and Overall reaction: Znþ 1
2
O2 $ ZnO:

The theoretical open circuit voltage (OCV) is approximately 1.65 V [10], which can be calculated from
the following equation:

E0,cell ¼ E0,air þ RT
neF

ln
[O2]

0:5

[OH�]2

 !
� E0,Zn þ RT

neF
ln

[Zn(OH)2�4 ]

[OH�]4

 !
, ð1:1Þ

where E0,cell is the standard cell potential or theoretical OCV, E0,air is the standard electrode potential of
the air electrode (corresponding to ORR) which is 0.401 V versus standard hydrogen electrode (SHE),
E0,Zn is the standard electrode potential of Zn electrode (corresponding to Zn oxidation reaction)
which is −1.26 V versus SHE, R is the gas constant, T is the temperature, ne is the number of electron
transfers in the reaction and F is the Faraday constant. This equation uses the concentration of the
reactants to calculate the standard cell potential.

However, the practical OCV obtained from laboratory prototypes is about 1.4 V [12–14]. Charging can
be done in a rechargeable ZAB by applying a potential higher than the theoretical OCV. When charging,
the reactions proceed backwards and regenerate Zn and O2.

The development of a ZAB encompasses many aspects [15–18]. In the past decade, the focus has been
on improving the performance and stability of the battery such as development of ORR catalyst or
battery electrolyte. It is noted that the performance of a ZAB has been improved by optimizing
battery parameters [19]. The development of battery operation, i.e. pulse-current charging, has also
been investigated. Pulse-current charging is a technique developed to prevent the growth of dendritic
zinc when charging the battery [20–22]. While most research concentrates on the improvement of
material and battery design, management and monitoring tools for a ZAB have received less attention
and clearly represent an incomplete field of study. Management systems can improve the performance
of batteries and protect batteries from inappropriate operations [23,24]. For instance, when ZABs are
charged with excessive voltage, both the detrimental dendritic formation and hydrogen evolution
reaction (HER) occur. Management systems require precise prediction of dynamic behaviour and state



Table 1. Nomenclature.

A state matrix in state space model

B input matrix in state space model

BC combined parameter between parameters B and C

B/F linear block in Hammerstein–Wiener (HW) model

B(z) numerator polynomial function of linear block in HW model

bnb polynomial coefficient of B(z)

C output matrix in state space model

CP capacitance in RC loop, F

D feedthrough matrix in state space model

E0,air standard electrode potential of air electrode, 0.401 V versus standard hydrogen electrode (SHE)

E0,cell standard cell potential or theoretical OCV, V

E0,zn standard electrode potential of Zn electrode, −1.26 V versus SHE
F Faraday constant, 96485.3329 A s mol−1

F(z) denominator polynomial function of linear block in HW model

f input nonlinear block

fnf polynomial coefficient of F(z)

h output nonlinear block

Icell discharge current, A

k discrete time, s

n number of states = 1

nb order of B(z) polynomial

ne number of electron transfer in the reaction

nf order of F(z) polynomial

nk input delay of linear block in HW model

p scheduling parameter

R gas constant, 8.3145 J mol−1 K−1

RC resistance in RC loop, Ω

R0 ohmic resistance, Ω

T temperature, K

Ts sampling time, s

u input vector of state-space model and HW model

VOC open circuit potential, V

VRC potential loss, V

VRCR potential drop across RC loop, V

w input of linear block in HW model

X state vector in state-space model

x output of linear block in HW model

Y output vector of state-space model

y output of HW model

z delay operator in output-error model

α coefficient of two-term exponential function

β coefficient of two-term exponential function

γ coefficient of two-term exponential function

δ coefficient of two-term exponential function

μ coefficient of third-order polynomial function

ξ model parameter estimated from correlations
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of the battery, which is typically achieved via modelling. Some types of modelling have been used in ZAB
researches. As such, theoretical continuum models have been carried out and used to examine
phenomena occurring inside the battery [20,25,26].

The dynamic behaviour of a battery focuses on the discharge current and voltage of the battery, which
is considered as being the input and output of the system. Thus, empirical modelling has regularly been
preferred, due to its simplicity in computation. For example, an equivalent circuit model (ECM) is the
most commonly used empirical model in the investigation of battery dynamics. An ECM describes
the dynamic behaviour of the battery via simple electrical elements that are comparable to the
electrochemical characteristics of the battery [27]. This type of model has been used in various
batteries, such as LIBs [28–30], Zn–Ni batteries [31,32] or lead–acid batteries [33]. However, only a few
works on a ZAB have used ECM to predict battery behaviour [34], although electrochemical
impedance spectroscopy (EIS) has frequently been applied. For a more empirical approach, a state-
space model has been developed. This model is normally used with both state and parameter
estimation algorithms [27].

Although the dynamic behaviour of a ZAB is strongly nonlinear, previous studies have centred on the
development of empirical linear models. Nonlinear behaviour can be realized by invoking first
principles-based models or nonlinear empirical modelling techniques. However, it is acknowledged
that nonlinear models are less flexible than comparable linear models and the mathematical tools are
lacking for nonlinear systems. Alternatively, nonlinear behaviour can be captured via a linear
parameter-varying (LPV) model, which approximates a nonlinear system with high accuracy [35,36].

LPV models have been applied in various systems, but only a few works have employed this
technique in a battery system [37–39]. For instance, a subspace method has been introduced for the
identification of an LPV battery model for LIBs, where state of charge (SOC) estimation was done
using LPV techniques [37,38]. Results indicated that this technique provides good and stable
performance and is easy to tune compared with other algorithms. In another example, LPV modelling
has been used to assist in monitoring the state of health (SOH) for an LIB cell [39]. This model
combined with a nonlinear Kalman filter proved capable of online estimating SOC and SOH. The
model was validated via measurement data and provided good validation results.

Herein, an LPV model is developed to account for all nonlinearities within a ZAB directly. Nonlinear
ZAB characteristics, therefore, are empirically exhibited in the form of change in parameters of the
underlying linear time-invariant (LTI) models, with respect to a reference condition. The LPV model is
seen to combine the varying parameters into a single model. Besides, it proved capable of effectively
predicting battery nonlinear behaviour over a wide range of conditions. Furthermore, the LPV model
adopted the linear characteristic of the LTI model. Hence, it possessed considerable robustness.

This work proposes to use LPV models for predicting the input–output discharge behaviour of a
ZAB. Data employed in this scheme were obtained from an in-house refuellable ZAB [40]. The
underlying linear models obtained at different conditions are then combined into a single LPV model,
where the discharge current level is used as a scheduling parameter. As regards validation, the
developed LPV model is used to predict various sets of response data. A nonlinear model was further
implemented to compare results between the nonlinear and LPV model.
2. Battery description and experimental data
Battery response data previously published by Lao-atiman et al. [40] have been implemented for parameter
estimation and model validation. As shown in figure 1, such data were acquired from a tubular refuellable
ZAB, designed in-house. The cylindrical structure of the cell was made of stainless-steel mesh. The active
material for the anode was 6 g of 20 mesh Zn pellets packed into another stainless-steel mesh tube. The
cathode current collector comprised nickel (Ni) foam coated with ORR catalyst (MnO2) and a gas
diffusion layer. The cell contained 8 M KOH aqueous solution as the electrolyte.

After battery fabrication, both the discharge current and voltage of the battery were measured by
BA500 battery analyser (Battery Metric, Toronto, ON, Canada). Sampling time was 1 s. Then, the
discharge current setpoint was set. Subsequently, the battery was forced to discharge in accordance
with the setpoint. Next, both the actual discharge current and voltage were measured and recorded
along with the selected sampling time. The set of data used for model identification contained a time-
series of discharge current (as input) and discharge voltage (as output). The discharge voltage was
measured at the specified discharge current. Step response data, including the discharging current
steps from 0 to 100, 0 to 450 and 0 to 900 mA, were used to identify linear models. With respect to
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Figure 1. Schematic diagram of experimental ZAB.
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validation, response data with increased variability and complexity were examined. All data used in this
work, including data names and descriptions, are summarized in table 2. Graphical representation for
each dataset can be found in electronic supplementary material, figures S1–S10.
3. Methodology
The LPV model is a collection of LTI state-space models whose parameters vary as a function of
scheduling parameters. In the case of a ZAB, discharge current is considered to be the scheduling
variable, which is available for measurement. More importantly, the discharge current is the signal
which directly enables modifications of a ZAB’s dynamic behaviour to occur.

In terms of methodology, this approach follows a classical operation mode: namely, a certain number
of points in the scheduling space were selected. Thus, an LTI model was constructed and assigned to each
point, representing the dynamics in the local vicinity of that point. The dynamics at scheduling locations
in between the specified grid points were acquired by interpolation of LTI models at neighbouring points.

In addition, a nonlinear model was constructed to benchmark the LPV model in terms of precision
and complexity of the prediction.
3.1. Linear state-space model
The LPV model uses local LTI models: the choice being made here is to represent these models in a
discrete domain, taking into account that available data are inherently obtained on a discrete timescale
after sampling. Trajectories of a state vector (X ) and output vector (Y ) are commonly measured and
tracked as they move through time. The LTI model, at each local operation point, is expressed as in
the below equations

X(k þ 1) ¼ AX(k)þ Bu(k) ð3:1Þ
and

Y(k) ¼ CX(k)þDu(k), ð3:2Þ
where u is an input vector. As for a single-input, single-output case,



Table 2. Summary of experimental data used for identification and validation of models.

data name description description

0T100 current step from 0 to 100 mA StepDischarge.xlsx [40]

sheet: 100STEP0-100-0

100T0 current step from 100 to 0 mA StepDischarge.xlsx [40]

sheet: 100STEP0-100-0

0T450 current step from 0 to 450 mA StepDischarge.xlsx [40]

sheet: 450STEP0-450-0

450T0 current step from 450 to 0 mA StepDischarge.xlsx [40]

sheet: 450STEP0-450-0

0T900 current step from 0 to 900 mA StepDischarge.xlsx [40]

sheet: 900STEP0-900-0

900T0 current step from 900 to 0 mA StepDischarge.xlsx [40]

sheet: 900STEP0-900-0

400T500R repeating current step between 400 and 500 mA StepDischarge.xlsx [40]

sheet: 100STEP400-500

500T1000R repeating current step between 500 and 1000 A StepDischarge.xlsx [40]

sheet: 500STEP500-1000

MULTI multiple current step from 0 to 100, 450 and 900 mA Supplementary.xlsxa

sheet: MULTI

VARIOUS various current step with random pattern Supplementary.xlsxa

sheet: VARIOUS
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A [ Rn�n, B [ Rn�1, C [ R1�n and D [ R

A, B, C and D matrices are estimated from the experimental data (Y(k), u(k)) via least square regression.
In this case, the input and output of the experimental data are discharge current and cell voltage,

respectively. For convenience of computation, Y represents the deviation of cell voltage from the OCV
(potential loss). Then, u represents the discharge current. This change of coordinate ensures that both
Y and u are expressed in the absence of excitation and have a fixed point at 0, according to the LTI
model, as shown in equations (3.1) and (3.2).

3.2. LPV model
As regards the LPV model, system dynamics are represented as a linear state-space model having
parameters expressed in terms of functions of r scheduling variables [41]. The case of a single-input,
single-output system is denoted as follows:

A:Rr ! Rn�n, B:Rr ! Rn�1, C:Rr ! R1�n and D:Rr ! R:

The LPV model is a generalization of the LTI structure, building on the principles that dynamic
properties vary with respect to the functioning conditions (represented by exogenous or internal
signals) or parameters. Explicitly, model parameters are a function of the scheduling vector of
parameters p which in turn is time-varying

A ¼ A(p(k)), B ¼ B(p(k)), C ¼ C(p(k)) and D ¼ D(p(k)): ð3:3Þ

Accordingly, the state-space model becomes

X(k þ 1) ¼ A(p(k))X(k)þ B(p(k))u(k) ð3:4Þ
and

Y(k) ¼ C(p(k))X(k)þD(p(k))u(k): ð3:5Þ

aThe data are located in the electronic supplementary material.
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Figure 2. Electrical equivalent circuit diagram of potential loss of battery: first-order RC model.
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For simplicity of notation, in time, the time dependence of the parameter will be dropped. With
respect to ZAB modelling, given the fact that the experiments are conducted at constant external
temperature, it is, therefore, assumed that the parameters are concentrated in the discharge current.

An important remark related to the particular single-input single-output form is that parametric
dependence in both B and C has a certain degree of redundancy, as long as it relates to the input–
output gain in equations (3.1) and (3.2) and can lead to non-unicity problems. To solve this issue and
simplify equations (3.4) and (3.5), the coefficients of the matrix C are assumed to be time-independent
and considered constant through an appropriate change of coordinate leading to the form, as shown
in equations (3.6) and (3.7)

X(k þ 1) ¼ A(p)X(k)þ B(p)u(k) ð3:6Þ
and

YðkÞ ¼ CX(k)þD(p)uðkÞ: ð3:7Þ

The state-space model becomes more useful as the number of parameters are reduced. This form of
model can also be interpreted as first-order resistor–capacitor (RC) model, as illustrated in figure 2.

In the circuit, there is an RC loop (RC and CP) connected with another resistor (R0). In a comparison
between the state-space model and the equivalent circuit, it was found that the input, u, is equivalent to
the discharge current (Icell). Output, Y, is equivalent to VRCR which is potential loss of battery. The state
variable, X, can be interpreted as the potential drop across the RC loop (VRC). Parameter A is equivalent
to 1− Ts/RCCP. Parameters B and D are Ts/CP and R0, respectively. Parameter C equals to 1 which agrees
with the assumption previously made. The state-space model can be rewritten as ECM, as follows:

VRC(k þ 1) ¼ 1� Ts

RCCP

� �
VRC(k)þ Ts

CP
Icell(k) ð3:8Þ

and

VRCRðkÞ ¼ VRC(k)þ R0IcellðkÞ: ð3:9Þ

For physical interpretation, ECM is normally used for investigating battery behaviour via EIS. Herein,
the RC loop contributed to potential loss due to the electrochemical reactions: so-called activation
overpotential. This overpotential is the potential required to drive the reactions viz. Zn oxidation and
ORR for discharging the ZAB. Several researches have suggested that the overpotential strongly
depends on the discharge current level and can be theoretically described by the Butler–Volmer
approach [15,25,42]. Next, R0 contributed to the potential loss to internal resistance: so-called ohmic
overpotential. This loss increases proportionally with the current drawn from the battery.

As regards battery modelling, scheduling parameters can be chosen from various parameters. In this
work, input–output behaviour depends on the level of discharge current. Therefore, the sets of
parameters used for constructing the LPV model were obtained from the data having different
discharge current conditions.
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Figure 3. Block diagram of the Hammerstein–Wiener model.
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As regards model parameters, the correlation between the model parameters (coefficients of the
matrices in equations (3.6) and (3.7)) and discharge current was estimated via forms such as quadratic
polynomial or exponential function

quadratic polynomial: j ¼ m1p
2 þ m2pþ m3 ð3:10Þ

and

two-term exponential: j ¼ aebp þ gedp, ð3:11Þ

where ξ denotes the estimated parameter. μ1, μ2 and μ3 are the parameters acquired from the curve fitting.
α, β, γ and δ are the coefficients of the exponential function obtained from the curve fitting.

The parameters of the linear model from the previous section were used to build the correlations with
respect to after-stepping current levels, as scheduling parameters. From the experimental data, the
conditions of current levels used for constructing the correlations were 0, 100, 450 and 900 mA. The
correlations of parameters A, B and Cwere estimated by a second-order polynomial function. For parameter
C, a linear function was used. An exponential function was used to fit the correlation of parameter BC.
Correlations for parameters of the LPV model are provided in electronic supplementary material, table S4.

3.3. Nonlinear model
Thenonlinearmodel used for comparison in thisworkwas theHammerstein–Wiener (HW)model. TheHW
model is a block-orientedmodelwhich contains nonlinear functions and a linear block separately [43,44]. As
shown in figure 3, the HWmodel is depicted as a series of three connected blocks.

The first and last blocks are nonlinear functions which transform the input and output signals,
respectively. The second block located between the two nonlinear blocks is the linear block. The first
nonlinear block is called ‘Hammerstein block’ and is represented by function f, as shown in equation
(3.12). This nonlinear block transforms the input signal before entering the linear block

wðkÞ ¼ f ½uðkÞ�, ð3:12Þ
where u(k) and w(k) are the input and output of nonlinear block f, respectively.

The next block is the linear block and is denoted by B/F. The linear block is derived from an
output-error (OE) model and transfers input w(k) to output x(k), as in the below equation

x(k) ¼ B
F

� �
w(k � nk), ð3:13Þ

where nk is an input delay. B and F are polynomials in a linear output-error model with respect to the
delay operator z−1 and defined, as follows in the below equations

BðzÞ ¼ b1 þ b2z�1 þ . . .þ bnbz
�nbþ1 for B order ¼ nb ð3:14Þ

and

F(z) ¼ 1þ f1z�1 þ . . .þ fnf z
�nf for F order ¼ nf : ð3:15Þ

The last nonlinear block h is called the ‘Wiener block’. This block transforms the output signal of the
linear block, as in the below equation

yðkÞ ¼ h[xðkÞ], ð3:16Þ
where y(k) is the output of the nonlinear block h and the output of HW model.

The output of the HW model y(k) can be rewritten as a function of u(k), as in the below equation

yðkÞ ¼ h
B
F

� �
f ½uðkÞ�

� �
: ð3:17Þ

For this study, only the Hammerstein nonlinear block was used. The HWmodel, therefore, is reduced
to the Hammerstein model.



Table 3. Summary of conditions for identification of the model used in this work.

model name model type identification dataa identifying condition

SS0T100A linear model 0T100A first-order model with feedthrough and

1 s sampling time

number of states (n) = 1

SS0T100B linear model 0T100B

SS0T100C linear model 0T100C

SS100T0A linear model 100T0A

SS100T0B linear model 100T0B

SS100T0C linear model 100T0C

SS0T450A linear model 0T450A

SS0T450B linear model 0T450B

SS0T450C linear model 0T450C

SS450T0A linear model 450T0A

SS450T0B linear model 450T0B

SS450T0C linear model 450T0C

SS0T900A linear model 0T900A

SS0T900B linear model 0T900B

SS0T900C linear model 0T900C

SS900T0A linear model 900T0A

SS900T0B linear model 900T0B

SS900T0C linear model 900T0C

LPV LPV model linear models:

SS0T100A, SS0T100B, SS0T100C,

SS100T0A, SS100T0B, SS100T0C,

SS0T450A, SS0T450B, SS0T450C,

SS450T0A, SS450T0B, SS450T0C,

SS0T900A, SS0T900B, SS0T900C,

SS900T0A, SS900T0B, SS900T0C

curve fitting:

A: second-order polynomial

B: second-order polynomial

C: second-order polynomial

D: linear function

BC: two-term exponential

nonlinear A nonlinear HW

model

MULTI input nonlinearity: third-order

polynomial

output nonlinearity: unit gain (absent)

OE model order: nb = 2, nf = 1,

nk = 0

nonlinear B nonlinear HW

model

VARIOUS input nonlinearity: third-order

polynomial

output nonlinearity: unit gain (absent)

OE model order: nb = 2, nf = 1,

nk = 0
aThe data location is tabulated in electronic supplementary material, table S1.
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In contrast with the linear model, the nonlinear models were identified from the data with multiple
steps under varying conditions. In table 3, model identification data for all developed models are tabulated.
4. Results and discussion
In electronic supplementary material, table S2, the LTI model parameters are shown. From these LTI
models, the LPV model was developed. The correlations of the model parameters were constructed via
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Figure 4. Comparison of response between measured data (blue lines) and predicted data from linear models: (a) matching
conditions with current step from 0 to 100 mA, (b) different conditions with current step from 0 to 100 mA and (c) multiple
current steps from 0 to 100, 450 and 900 mA.
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curve fitting. The nonlinear models were identified from the multiple step and various step data [40]. A
third-order polynomial function was selected for the Hammerstein block. The model order of the OE
model was nb = 2, nf = 1 and nk = 0. In table 3, the identifying conditions are summarized. In addition,
parameter values estimated in this work are provided in electronic supplementary material, table S3.

In the following sections, the graphical highlights of validation and comparison results are displayed.
Full graphical results of the linear model and the LPV model are shown in electronic supplementary
material, figures S11 and S12, respectively. In electronic supplementary material, table S5, the fit
percentage values of the prediction results are tabulated.
4.1. Linear state-space model
The linear models were identified as first-order state-space models. The number of states (n) was
one. Model parameters were estimated using one set of experimental data. To validate the models,
different sets of experimental data were applied. In figure 4, validation results for the linear models
are shown. Figure 4a shows the validation results with the same conditions (current steps) as used in
the estimation (0–100 mA). Results demonstrate that the models were able to accurately predict
individual response data.

Figure 4b highlights the results when the models were validated at different conditions (different
current steps). It was found that the models could predict accurately only the data used to identify
the models’ parameters. The models poorly estimated other data. The gain of the models significantly
deviated. Results suggested that the linear model was only accurate locally.

Figure 4c provides an example by displaying a comparison between model predictions and measured
data in the context of multiple step current discharges. Results clarified the dependency between gain and
current level. Thus, from the results shown, the linear models were able to accurately predict the responses
if the current level corresponded with the models. Nevertheless, most of the battery data contain more than
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one current level. Consequently, the linear model cannot be applied in most cases. In this situation, the LPV
model proved to offer the level of flexibility necessary for adapting to the LTI responses.
4.2. LPV model
As previously stated, the LPV model was developed from linear state-space models. Consequently, the
models with different current level conditions were combined into one model. For this model, the
conditions of current level included: 0, 100, 450 and 900 mA. Each condition, with respect to the final
current level, provided a different set of model parameters. For instance, the state-space model
estimated from the current step of 0 to 100 mA provided the values of model parameters at the
100 mA current level. At each current level, three datasets of the same condition were used. For
validation, the LPV model was then used to predict the various response data.

As shown in figure 5, correlations between model parameters and current levels were fitted in
accordance with equations (3.4) and (3.5). In figure 5a,b, the correlation of model parameters A and D
was able to be fitted using a second-order polynomial function as well as a linear function, respectively.
Parameters A and D showed consistent trends with respect to current levels. However, parameters B
and C were found to be inconsistent in their trends. Moreover, the values of B and C contained both
positive and negative values which can cause discrepancy in prediction. To address this issue, C was
fixed at C = 1, while B and C were multiplied together, resulting in the parameter BC which proved to
be more consistent, as described in equations (3.6) and (3.7). Accordingly, the LPV model becomes

X(k þ 1) ¼ A(p)X(k)þ BC(p)u(k) ð4:1Þ
and

YðkÞ ¼ X(k)þD(p)uðkÞ: ð4:2Þ
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The trend of parameter BC exhibited good consistency and was able to be fitted via a two-term
exponential function, as shown in figure 5c. For physical interpretation, equations (4.1) and (4.2) are
equivalent to the ECM as expressed in equations (3.8) and (3.9). Parameter D was expressed as a
linear function having a small slope. This indicated that the discharge current level had little effect on
R0. Parameters A and BC were fitted with a polynomial and exponential function, respectively. As the
RC loop represented the activation loss, these correlations agreed with the nonlinear trend of the
activation loss.

As regards validation, the developed LPV model was used to predict the same response data as used
previously in §4.1. A comparison of the fit percentage between various model predictions is shown in
figure 6. As for the single step responses (0T100A and 0T900A), results demonstrated good agreement
between measured data and predicted data. Compared with the linear model, however, the LPV
model proved to be slightly less accurate due to the error in correlation fitting. Yet, the LPV model
performed much better globally because the models used for constructing this LPV model were
estimated from data measured directly. In addition to the LPV model, two nonlinear models,
nonlinear A and nonlinear B (table 3), were identified and compared for response prediction. Results
showed that the LPV model performed better than the nonlinear models in this case. The nonlinear
models, identified from the data, were seen to have high complexity. Thereby, the models were found
to be less robust (especially nonlinear model B).

As regards multiple step responses (MULTI), prediction results of the multiple step responses are
displayed in figure 7a. Results highlighted the benefit of the LPV model revealing that the LPV model
was able to predict multiple step responses with acceptable agreement. In comparison with the linear
model, the LPV model confirmed improvement in prediction. In addition, when the current level
changed, the LPV model was able to predict cell voltage more accurately than the linear model. The
gain of the LPV model prediction was able to adapt to current level change. The LPV model proved to
be comparable with that of the nonlinear model identified from the matching data (nonlinear A).
However, the nonlinear model identified from the other condition (nonlinear B) indicated less accurate
prediction.

For validation purposes, the LPV model was tested further, using the different sets of data that had
not been used for estimation of the coefficients in the underlying LTI models. The measured data with the
repeating step currents: 400–500 mA (400T500R) and 500–1000 mA (500T1000R) were used for validation.
A comparison of the fit percentages found that all the proposed models including the LPV model and
nonlinear models were less accurate than the other datasets in predicting the responses. As shown in
electronic supplementary material, figure S12, the response comparison revealed two limitations of the
LPV model: the effect of SOC and the input range of the underlying LTI models.

Regarding the effect of SOC, the error of prediction increased as time passed because cell voltage is
also a function of SOC [14]. As the battery discharged over time, cell voltage dropped because of the
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decrease in SOC. However, in this model, the effect of SOC on cell voltage was not considered. Another
limitation shown is regarding the input range of the underlying LTI model. For instance, the upper
bound of the current level of the underlying LTI models was 900 mA. For the current level higher
than 900 mA, the correlation of the model parameters was found to be incorrect; less accurate values
were obtained from extrapolation. Thus, this indicated that the LPV model was not precise in
predicting conditions which are out of the input range of the underlying LTI models.

In figure 7b, prediction results of the various step responses (VARIOUS) are displayed, verifying the
models against more complicated data. Limitation of the model appeared the same as in a previous test
where cell voltage is dependent on SOC. Nonetheless, the LPV model exhibited superior performance
when compared with the linear model and its performance was comparable to that of the nonlinear
model. This result revealed the feasibility of using the LPV model. The LPV approach sets out to
prove its significance as a modelling tool for the nonlinear behaviour of a ZAB. Herein, the discharge
current level is demonstrated as the effective scheduling parameter for predicting the nonlinear
behaviour of a ZAB. For some large-scale refuellable ZABs, the influence of SOC is less concerned.
Hence, the management system having only discharge current scheduling might be viable over a wide
range of operations. To improve the LPV model, the model may have to be developed further by
including other scheduling parameters such as SOC or temperature. Moreover, it might be feasible to
study the LPV model in a rechargeable ZAB, as the charging process of this battery also adopts the
nonlinear characteristic.
5. Conclusion
In this work, an LPV model was developed to predict the nonlinear dynamic behaviour of a ZAB. LTI
models were used as the basis to construct the LPV model. The experimental data acquired from an in-
house designed tubular refuellable ZAB were used for identification purposes and validation. By
comparing model accuracy based on normalized root mean square error, results showed that the linear
model, identified at each local point, was able to predict the behaviour of a ZAB but only at the local
vicinity of that point. However, it was unable to capture the nonlinear behaviour of the ZAB where the
gain intensely varied with the discharge current levels. In contrast, the LPV model could well predict
battery response. Further, the LPV model was found to be more robust than two other nonlinear
models. The LPV model sets out to prove its worth as a dynamic modelling approach for a ZAB.
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