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a b s t r a c t 

Feedback optimizing control aims to achieve asymptotic optimal operation by directly manipulating the 

inputs using feedback controllers, without the need to solve numerical optimization problems online. The 

main question when designing feedback optimizing control is then what to control such that the economic 

objectives are translated into control objectives. Over the past two decades, active research has resulted 

in several different approaches to feedback optimizing control stemming from different application areas, 

leading to a rich source of literature. The different methods differ on the choice of the controlled vari- 

ables, the need for detailed process models, type of measurements used, convergence speed, accuracy, 

ease of implementation etc. This paper aims to provide a survey of these different approaches under the 

unified umbrella of feedback optimizing control , and provides an overview and comparison of the different 

feedback-based real-time optimization approaches for continuous processes. 

© 2022 The Authors. Published by Elsevier Ltd. 
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. Introduction 

In the face of growing market competition and increased focus 

n sustainability, energy efficiency and safety, online optimization 

f process operations are becoming increasingly important. Real- 

ime optimization (RTO) explicitly deals with the optimal economic 

peration of the process. A widely accepted definition of real-time 

ptimization is that it is a work flow where the decision variables 

re iteratively adjusted using the system model and/or real time 

rocess measurements, in order to minimize the operational cost 

nd satisfy constraints ( Marlin and Hrymak, 1997; Chachuat et al., 

009; Krishnamoorthy, 2019 ). 

.1. Conventional real-time optimization (RTO) 

Traditional real-time optimization (RTO) framework computes 

he optimal steady-state setpoints by solving a steady-state numer- 

cal optimization problem that comprises of the following compo- 

ents 

1. Rigorous nonlinear steady-state process models, 

2. Process, equipment, and environmental constraints, 
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3. Economic objective function that constitutes the cost of raw 

material, value of the products, operational costs, environmen- 

tal taxes etc. 

Traditional RTO implementations are thus based on steady-state 

onlinear models. The model parameters are updated using data 

rom time periods corresponding to steady-state process operation, 

n order to match the plant measurements and the model pre- 

ictions. The updated model is then used to re-optimize for the 

ew setpoints ( Seborg et al., 2010 , Chapter 19),( Marlin and Hry- 

ak, 1997 ). The traditional RTO framework is thus a two-step ap- 

roach: 

• Step 1: Data reconciliation - Update nonlinear model using 

steady-state measurements. 
• Step 2: Numerical optimization - Compute new optimal set- 

points using the updated model. 

Most of the commercially available RTO software packages are 

ased on the repeated identification and optimization scheme us- 

ng steady-state models ( Câmara et al., 2016 ). The justification for 

his approach is that for most continuous processes, the economic 

peration of the plant often occurs at some steady-state. The ex- 

eption are processes with frequent grade changes, cyclic opera- 

ions, and batch processes. As such, the objective in most contin- 

ous processes is simply to find the economically optimal steady- 

tate operating point as a function of the given operating condi- 

ions. To this end, steady-state process optimization for continuous 

rocesses will be the main focus in this paper. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Overview of online process optimization approaches, and the structure of this paper. 

Step

Fig. 2. Traditional hierarchical decomposition into optimization and control layers. 
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The decision variables for the RTO layer are typically the set- 

oints for the controlled variables, which are then given to a set- 

oint tracking control layer below. The control layer adjusts the 

anipulated variables in order to keep the measurements at the 

ptimal setpoints computed by the RTO layer above. Fig. 2 shows 

he typical hierarchical decomposition into optimization and con- 

rol layers. 

Despite the economic benefits and promises, traditional real- 

ime optimization is not widely used in practice as one would 

xpect. Consequently, the full potential of RTO is not exploited 

n process industries ( Darby et al., 2011; Krishnamoorthy et al., 

018a; Krishnamoorthy, 2019 ). The main technical challenges that 

imit industrial use of steady-state RTO for process operations 

nclude: 

Challenge 1 Cost of developing the model (offline model de- 

elopment) - Developing good first principle-based models is of- 

en challenging and expensive, especially for new application areas 

ith limited domain knowledge. In addition, lack of knowledge or 

odel simplification leads to mismatch between the physical mod- 

ls used in the optimization problem and the real system. With in- 

reasing complexity of many industrial processes, simplified first- 

rinciple models are insufficient to accurately capture the system 

ehavior. 
2 
Challenge 2 Model uncertainty, including wrong values of dis- 

urbances and parameters (online update of the model) - Since 

raditional RTO uses steady-state models, the model parameters 

ust be updated using measurements that corresponds to steady- 

tate conditions. To this end, steady-state detection algorithms 

re employed to detect if the process is operating at steady- 

tate conditions, see for example Kelly and Hedengren (2013) , 

âmara et al. (2016) and the references therein. The time be- 

ween the steady-state conditions is known as steady-state wait 

ime. In a recent review paper on current practices of RTO, 

arby et al. (2011) conclude that a fundamental limiting factor of 

TO implementation is the steady-state wait-time associated with 

he online model update. Câmara et al. (2016) also recently pointed 

ut some of the issues with steady-state detection routines used in 

eal industrial RTO systems. 

Challenge 3 Numerical robustness, including computational is- 

ues of solving optimization problems - Solving numerical opti- 

ization problems to compute the optimal setpoints, leads to high 

omputational effort. Although the computational cost is consider- 

bly less for solving steady-state optimization problems than dy- 

amic optimization problems, the optimization problem may still 

ail to converge for large-scale processes due to numerical robust- 

ess and convergence issues ( Marlin and Hrymak, 1997 ). 

Challenge 4 Conflicts with the planning layer - In process ap- 

lications, the planning and scheduling layer (which typically sits 

n top of the RTO layer in the decision-making hierarchy) deals 

ith decisions such as feed purchases, production capacity, storage, 

nd other such operational planning over a time horizon of weeks 

nd months, based on average plant behavior ( Darby et al., 2011 ). 

TO, on the other hand, deals with real-time decisions based on 

he current plant conditions. Since the economics are considered 

t both the RTO and planning levels, this can lead to inconsisten- 

ies, as what is optimum for a process unit or section may not be 

ptimum when all production aspects are considered over a large 

orizon. 

An alternative to the traditional RTO paradigm is the so-called 

feedback optimizing control”, where the optimization objectives 

re translated into control objectives, thereby moving the opti- 

ization functionality into the control layer ( Morari et al., 1980 ). In 

 recent review paper, Darby et al. (2011) also considers the ques- 

ion of moving the RTO functionality to the control layer (more 

pecifically MPC) as an alternative RTO formulation, thus result- 

ng in a one-layer solution that “performs a type of hill-climbing 
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ptimization”. Achieving optimal operation via feedback control 

ircumvents challenge 3, since numerical optimization problems 

re not solved online. Feedback optimizing control also avoids the 

teady-state wait-time (challenge 2), since optimal operation is 

chieved using real time process measurements as feedback. Fi- 

ally, as will be shown later, many feedback optimizing control ap- 

roaches may not require detailed process models, hence address- 

ng challenge 1. 

Challenges related to human aspects In addition to the technolog- 

cal challenges mentioned above, human aspects such as technical 

ompetence and corporate culture are some of the main limiting 

actors of industrial practice. Conventional real-time optimization 

equires regular maintenance and monitoring. This is often pro- 

ided by a team of skilled engineers and a dedicated group with 

xpertise in modeling, control, and optimization, which the com- 

any may be lacking. Consequently, the expected benefits of such 

dvanced tools may not be fully realized and this often leads to 

he application being turned off ( Shook, 2006; Forbes et al., 2015; 

arby et al., 2011 ). As Marlin and Hrymak (1997) pointed out, “the 

reatest demand from optimization users is a system that can be 

asily understood”. For this reason, many traditional process in- 

ustries still prefer to use simple feedback control tools available 

n standard digital control system (DCS) to optimize process op- 

rations. In such cases, feedback optimizing control provides a sys- 

ematic procedure that enables asymptotic optimal operation using 

eedback control. 

As shown in Fig. 1 , online process optimization approaches can 

e broadly categorized into two classes, based on whether one 

eeds to solve numerical optimization problems online, or not. Tra- 

itional steady-state RTO and dynamic RTO (including economic 

PC) belongs to the former category, where numerical optimiza- 

ion problems are solved online, in order to compute the optimal 

perating conditions. Feedback optimizing control, on the other 

and, belongs to the latter category where asymptotic optimal op- 

ration is achieved via feedback control. Here, the main idea is to 

chieve optimal operation by directly manipulating the inputs u 

ased on feedback measurements y such that the process is op- 

rated optimally at steady-state. In other words, the objective is 

o eliminate the RTO layer by translating the economic objectives 

nto control objectives. This is commonly known as “feedback opti- 

izing control ”, “direct input adaptation ”, or “implicit RTO ” ( Morari 

t al., 1980; Chachuat et al., 2009; Srinivasan and Bonvin, 2019 ). 

Feedback optimizing control for the unconstrained degrees of 

reedom is an active area of research and has been receiving signif- 

cant interest over the past two decades. Different feedback-based 

TO methods have been proposed not only in the process control 

iterature, but also in electrical and mechanical engineering liter- 

ture ( Ariyur and Krstic, 2003; Tan et al., 2010; Hauswirth et al., 

017 ). The main objective of this paper is to provide an overview 

nd understanding of the different approaches to achieving asymp- 

otic optimal operation using feedback control, without the need 

o solve numerical optimization problems online. Different model- 

ased and model-free methods, and a combination of these will be 

eviewed in this paper. 

Much of the research in this field has been devoted to using 

teady-state cost gradients J u as the self-optimizing variable, with 

 few exceptions such as Alstad et al. (2009) , Larsson and Sko- 

estad (20 0 0) , Halvorsen et al. (20 03) . Naturally, this survey pa-

er could also be seen as a review of different gradient estima- 

ion methods for real time optimization, where we also discuss and 

ompare the performance of different approaches in terms of accu- 

acy, convergence time, ease of implementation, scalability etc. It 

s important to note that the objective of this paper is not to con- 

ince that simple control structures are superior to model-based 

ptimization routines, but rather to demonstrate that there exists 

 wide array of methods that can be used to asymptotically drive 
3 
 process to its optimum using feedback control, as an alternative 

o model-based steady-state real-time optimization. 

The reminder of the paper is organized as follows: The under- 

ying concept of feedback optimizing control relating to the first- 

rder optimality conditions is shown in Section 2 . Section 3 pro- 

ides a detailed survey of the model-based approaches. More pre- 

isely, Section 3.1 reviews the methods where rigorous nonlinear 

rocess models are used offline to select a linear combination of 

easurements as self-optimizing variables, whereas Section 3.2 re- 

iews model-based gradient estimation methods. Section 4 reviews 

he model-free gradient estimation methods, where the steady- 

tate cost gradient is estimated directly from the cost measure- 

ent. The combination of model-based and model-free approaches 

re reviewed in Section 5 . Section 6 deals with optimal operation 

ith changing operating conditions. The performance of the differ- 

nt methods are compared using a benchmark Williams-Otto reac- 

or example in Section 7 . Detailed discussions on the key features 

f the different methods are provided in Section 8 before conclud- 

ng the paper in Section 9 . 

Notational remark In the rest of the paper, we use the following 

otations. 

˜ u - Physical manipulated variables (primal variables) 

u ⊆ ˜ u - unconstrained degrees of freedom 

d - parameters and process disturbances 

y m 

- vector of process measurements 

J - Cost measurement 

J model - Cost predicted by model 
ˆ J u ,model - Model-based gradient estimate 

ˆ J u - Model-free gradient estimate 

C ( ̃  u , d ) - set of constraints 

C A ( ̃  u , d ) - set of active constraints 

λ - Lagrange multipliers of constraints C (dual variables) 

λA - Lagrange multipliers of active constraint set C A 

. Feedback optimizing control 

Morari et al. (1980) first introduced the concept of feedback op- 

imizing control , where the main aim was to translate the economic 

bjectives into process control objectives. This can be done by 

hoosing the “right controlled variables”, which when controlled 

o a constant setpoint, leads to economically optimal operation at 

teady-state. The most important question is then, 

What variables to control, such that the economic objectives 

re translated into control objectives? 

To answer this, consider the steady-state optimization prob- 

em, 

in 

˜ u 
J( ̃  u , d ) 

s.t. (1) 

C ( ̃  u , d ) ≤ 0 

here ˜ u ∈ R 

n ˜ u denotes the vector of manipulated variables (MV) 

nd d ∈ R 

n d denotes the vector of disturbances, J : R 

n ˜ u × R 

n d → R

s the scalar cost function and C : R 

n ˜ u × R 

n d → R 

n c denotes the

ector of constraints. The Lagrangian of the optimization problem 

s given by, 

 (λ, ̃  u , d ) := J( ̃  u , d ) + λT C ( ̃  u , d ) (2)

here λ ∈ R 

n c are the Lagrange multipliers of the inequality con- 

traints, and the first-order optimality conditions for this optimiza- 

ion problem is given by: 

 ˜ u J( ̃  u 

∗, d ) + λ∗T ∇ ˜ u C ( ̃  u 

∗, d ) = 0 (3a) 

 ( ̃  u 

∗, d ) ≤ 0 (3b) 
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∗ ≥ 0 (3c) 

i 
∗
C i ( ̃  u 

∗, d ) = 0 , ∀ i = 1 , . . . , n c (3d) 

ssumption 1. Linear independence constraint qualification, strict 

econd order sufficient condition and strict complementarity holds 

or the optimization problem (1) . 

The above assumption implies that the optimization problem 

1) has a unique primal and dual solution ( ̃  u 

∗, λ∗) , and the ob- 

ective is to asymptotically drive the plant to this unique local op- 

imum by using feedback control. Note that feedback optimizing 

ontrol only deals with asymptotic optimal operation and not with 

ptimizing the transient behavior. Transient behaviour is typically 

etermined by the controller tuning parameters. 

There are two main paradigms that can be used to translate the 

conomic objectives into control objectives: 

1. Region-based control : In this paradigm, the idea is to first 

identify the different active constraint regions a priori and use 

a subset of physical manipulated variables (primal variables) to 

control the set of active constraints (constraints that are opti- 

mally at their limiting value) in each region. The remaining un- 

constrained degrees of freedom in each region are then used to 

satisfy the first-order optimality condition of the reduced un- 

constrained optimization problem. This is discussed in detail in 

Section 2.1 . 

2. Primal-dual feedback optimizing control : In this paradigm, 

both the primal and the dual variables are considered as de- 

grees of freedom, which are adjusted using feedback control to 

satisfy the first-order optimality condition of the original con- 

strained optimization problem. This approach does not require 

the different active constraint regions to be identified a priori , 

and is therefore more general than the region-based approach. 

This is discussed in detail in Section 2.2 . 

.1. Region-based control 

.1.1. Active constraint control 

If optimal process operation corresponds to the case when 

ome of the constraints are active (i.e. at its limiting value), then 

he easiest choice for the controlled variables are the active con- 

traints itself. 

Let n a ≤ n c denote the number of active constraints C A ( ̃  u , d ) at

he optimum for a given disturbance realization d . Since the con- 

traints are typically measured in the process, for each active con- 

traint, we usually associate the constraint itself as the controlled 

ariable, i.e. CV = C A , which are controlled to its limiting value us-

ng feedback control. 

Active constraint control is a well known idea and has been 

sed in many examples, see Maarleveld and Rijnsdorp (1970) , 

rkun and Stephanopoulos (1980) , Morari et al. (1980) , 

isher et al. (1988) , Jacobsen and Skogestad (2012) , Reyes- 

úa et al. (2018) , Krishnamoorthy and Skogestad (2019) , 

rishnamoorthy et al. (2019a) to name a few. 

The first step to designing active constraint control is to iden- 

ify the potential combination of active constraints that may be 

ncountered. The rigorous approach to identifying the different ac- 

ive constraint regions as a function of disturbances is by offline 

ptimization, which requires good process models ( Jacobsen and 

kogestad, 2012 ). However, if reliable models are not available (cf. 

hallenge 1), then one can identify the relevant active constraint 

ombinations based on good process understanding and “engineer- 

ng intuition” ( Skogestad, 2004 ). To be systematic, one can start by 

riting down all the 2 n c active constraint combinations, and elimi- 

ate the constraint combinations that are not feasible or not likely 
4 
 Reyes-Lúa and Skogestad, 2019b ). For example, one can eliminate 

ertain constraint combinations using the following guidelines: 

• The maximum number of active constraints n a ≤ n ˜ u for the 

problem to be feasible. 
• Certain constraint combinations are not possible, e.g maximum 

and minimum constraint on the same variable cannot be active 

at the same time. 
• Certain constraints are always active, e.g. purity constraint 

on most valuable product to avoid product giveaway 

( Govatsmark and Skogestad, 2005 ),( Skogestad and Postleth- 

waite, 2007 , Chapter 10). 

Note that it is sufficient to identify the expected active con- 

traint combinations, and one does not need to know exactly 

here the switching occurs. It is reasonable to assume that all 

he constraints are measured for monitoring purposes, and one can 

herefore detect whether the constraints are approaching its limit- 

ng value or not. 

At the same time, it is also important to note that eliminating 

ertain active constraint combinations without solving the opti- 

ization problem offline requires good process understanding and 

nsight, and therefore it is not guaranteed that all the relevant ac- 

ive constraint regions will be considered. As such, this is more 

uited for small-scale unit operations with few constraints, where 

t is possible to identify the expected active constraint combina- 

ions easily. 

Due to imperfect control and noise it may be desirable to add 

 safety margin to the active constraint controllers. To avoid dy- 

amic constraint violations, we may choose to implement a back- 

ff, where the setpoint for the active constraints C A are offset by a 

argin ε . This gives rise to a loss, which increases linearly, and is 

uantified by the corresponding Lagrange multipliers λA as, 

oss = λT 
A 
ε (4) 

ee Appendix A for the proof. Quantifying the loss due to back-off

rovides two important insights: 

1. It tells us which constraints need to be tightly controlled. 

2. It allows us to simplify the control structure design. That is, 

if the Lagrange multiplier for a given constraint is sufficiently 

small such that the loss is negligible, then we can allow a large 

back-off ( Govatsmark and Skogestad, 2005 ). 

To this end, by tightly controlling the active constraints at their 

imiting value, one then only needs to find what to control using 

he remaining n ˜ u − n a unconstrained degrees of freedom. In other 

ords, the total n ˜ u available degrees of freedom are partitioned 

nto two subsets ˜ u = [ u 

′ u ] T , where u 

′ ∈ R 

n a is used to control

he active constraints and u ∈ R 

n ˜ u −n a is used to control the self- 

ptimizing variables. 

.1.2. Unconstrained optimum 

For the remaining n u := (n ˜ u − n a ) unconstrained degrees of 

reedom denoted by, u ⊂ ˜ u , we need to choose what to control . This 

s not obvious, and requires more knowledge about the process, 

ither in the form of process models or direct cost measurement, 

n order to translate the economic objectives into feedback control 

bjectives. This additional information can be used to identify suit- 

ble “self-optimizing” controlled variables c ∈ R 

n u , and their corre- 

ponding setpoints c sp . 

Skogestad (20 0 0) defined self-optimizing control as when we 

an achieve (near) optimal operation (acceptable loss) with con- 

tant setpoint for the self-optimizing controlled variables. This can 

ither be a single measurement ( Section 3.1.1 ), a linear combina- 

ion of measurements ( Section 3.1.2 ), or some other optimization 

pecific feature such as the steady-state cost gradient, that trans- 

ates the economic objectives into control objectives. The ideal self- 

ptimizing variable is the steady-state cost gradient ( Sections 3.2 
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nd 4 ), which when kept at a constant setpoint of zero, satis- 

es the necessary conditions of optimality ( Halvorsen et al., 2003; 

rançois et al., 2012; 2005 ). For instance, consider the gradient of 

he reduced system (after controlling the active constraints), 

in 

u 
J(u , d ) (5) 

here u ∈ R 

n u is the vector of unconstrained degrees of freedom. 

he KKT optimality conditions for (5) state that the necessary con- 

ition of optimality is when the reduced gradient of the cost func- 

ion is zero. 

 u (d ) := ∇ u J( u 

∗, d ) = 0 (6) 

Equivalently, one can also consider the full system (1) , in which 

ase the n u self-optimizing variables are given by a linear combi- 

ation of the cost gradient w.r.t. all the manipulated variables ˜ u , 

 u ( d ) := ∇ u J ( u , d ) = N 

T ∇ ˜ u J ( ̃  u , d ) = 0 (7) 

here N is the nullspace of the active constraint gradients (i.e. 

 

T ∇ ˜ u C ( ̃  u , d ) = 0 ). This equivalent approach results in a more gen-

ralized framework that can be used for different active constraint 

ombinations. Note that this is the same as the gradient of the 

educed system (see for example Krishnamoorthy and Skogestad, 

020a; Krishnamoorthy and Skogestad, 2019; Jäschke and Skoges- 

ad, 2012; Marchetti et al., 2016; Marchetti et al., 2020 to name a 

ew). 

heorem 1 (Generalized framework for region-based feedback op- 

imizing control Krishnamoorthy (2019) , Krishnamoorthy and Sko- 

estad (2020a) ) . Given Assumption 1 , the steady-state optimization 

roblem (1) for a given disturbance realization d can be transformed 

nto feedback control problem by controlling (in this order): 

1. Active constraints C A ( ̃  u , d ) = 0 . 

2. Self-optimizing variables c = c sp , where 

c = N 

T ∇ ˜ u J( ̃  u , d ) 

and c sp = 0 

roof. From Assumption 1 , the Lagrangian of (1) is given by 

( ̃  u , d ) + 

[
λA λI 

]T 

[
C A ( ̃  u , d ) 

C I ( ̃  u , d ) 

]
(8) 

 J( ̃  u , d ) + λT 
A 

C A ( ̃  u , d ) (9) 

here we have partitioned the system into set of active constraints 

denoted by (·) A ) and inactive constraints (denoted by (·) I ). The 

tationarity condition gives, 

 ˜ u J( ̃  u , d ) + λT 
A 
∇ ˜ u C A ( ̃  u , d ) = 0 (10) 

 ∇ ˜ u J( ̃  u , d ) = −λT 
A 
∇ ˜ u C A ( ̃  u , d ) (11) 

re-multiplying (11) by N 

T gives 

 

T ∇ ˜ u J ( ̃  u , d ) = −N 

T ∇ ˜ u C A ( ̃  u , d ) λA (12) 

nd since N is chosen such that N 

T ∇ ˜ u C A ( ̃  u , d ) T = 0 , we have

 

T ∇ ˜ u J( ̃  u , d ) = 0 . 

Therefore, keeping the active constraints C A ( ̃  u , d ) = 0 together 

ith N 

T ∇ ˜ u J( ̃  u , d ) = 0 fully specifies the first order optimality

onditions. �

This approach requires online estimation of the steady-state 

ost gradient ∇ ˜ u J( ̃  u , d ) , as well as the constraint gradients

 ˜ u C ( ̃  u , d ) . Any of the model-based gradient estimation method 

eviewed in Section 3.2 or any model-free gradient estimation 

ethod reviewed in Section 4 can be used for this purpose. 
5 
To summarize, we have thus far considered the case, where the 

ontrolled variables were chosen by partitioning the set of con- 

traints into active and inactive sets. This resulted in different ac- 

ive constraint regions as a function of disturbances. In each re- 

ion, n a degrees of freedom were used to control the active con- 

traints, and n ˜ u − n a remaining unconstrained degrees of freedom 

here used to control the self-optimizing variables (such as the 

teady-state cost gradient of the reduced system). When the set 

f active constraints change, this requires us to switch the set of 

ontrollers accordingly. This can be achieved by using multivariable 

ontrol such as MPC that tracks the constraints and self-optimizing 

ariables in neighboring regions, or by using classical control ele- 

ents such as selectors, split-range etc. This is discussed in de- 

ail in Section 6 . In other words, by identifying and controlling 

he active constraints tightly, we only need to transform a sim- 

ler unconstrained optimization of the reduced system, and switch 

etween the different controllers in each active constraint region 

ccordingly. The general control structure under this paradigm is 

chematically represented in Fig. 3 a. 

.2. Primal-Dual feedback optimizing control 

Alternatively, one can also transform the optimization prob- 

em into a feedback control problem without partitioning the set 

f constraints into active and inactive sets a priori . This approach 

s especially useful if there are many active constraint regions to 

witch between and/or if it is not possible to identify the different 

ctive constraint regions a priori (e.g. due to lack of good models). 

he main idea here is to consider the Lagrangian of the optimiza- 

ion problem (2) as an unconstrained optimization problem with 

 ˜ u + n c degrees of freedom. More precisely, the degrees of free- 

om for the feedback optimizing control are now given by both 

he physical manipulated variables ˜ u (which are the primal vari- 

bles in (1) ) as well as the Lagrange multipliers λ (which are the 

ual variables in (1) , also known as shadow prices). 

Consider the relaxed optimization problem (2) , for which the 

tationarity condition w.r.t. to the n ˜ u + n c degrees of freedom (de- 

oted jointly as [ ̃  u λ] T ) is given by, 

∇ ˜ u L (λ, ̃  u , d ) 

∇ λL (λ, ̃  u , d ) 

]
= 

[∇ ˜ u J( ̃  u 

∗, d ) + λ∗T ∇ ˜ u C ( ̃  u 

∗, d ) 

C ( ̃  u 

∗, d ) 

]
= 0 (13) 

herefore, the n ˜ u degrees of freedom are used to control 

he stationary condition such that ∇ ˜ u L (λ, ̃  u , d ) = ∇ ˜ u J( ̃  u , d ) +
T ∇ ˜ u C ( ̃  u , d ) = 0 for any given λ. Additional n c feedback con-

rollers are used to update λ such that the constraints C ( ̃  u , d )

re controlled to a constant setpoint of zero (i.e. active constraint 

ontrol). We also have the additional dual feasibility constraint 

≥ 0 (cf. (3c) ). However, at any given time, either only λ ≥ 0 

r C ( ̃  u , d ) ≤ 0 will be active, thanks to the complementary slack-

ess condition (3d) . Therefore, dual feasibility and complementary 

lackness is taken care by using a max-selector as shown in Fig. 3 b.

n other words, the “active constraint control” in this paradigm is 

chieved using the Lagrange multipliers λ (i.e. the dual degrees 

f freedom), instead of a subset of the primal degrees of freedom 

 ’ ⊆ ˜ u . 

Considering only integral action, the primal-dual feedback law 

n this case can be expressed as 

˙ ˜ u 

˙ λ

]
= 

[∇ ˜ u J( ̃  u , d ) + λT ∇ ˜ u C ( ̃  u , d ) 

max ( 0 , C ( ̃  u , d ) ) 

]
(14) 

hich is also commonly known as saddle-point flow ( Venets, 1985; 

eijer and Paganini, 2010 ). 

To this end, we have (n + n c ) feedback controllers: 
˜ u 



D. Krishnamoorthy and S. Skogestad Computers and Chemical Engineering 161 (2022) 107723 

Fig. 3. Feedback Optimizing Control. (a) Paradigm 1: Region-based control, with active constraint control and self-optimizing control in each region and switching between 

the different active constraint regions. (b) Paradigm 2: Primal-Dual Feedback optimizing control structure. 
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• n ˜ u primal controllers where ˜ u is used to control the gradient 

of the Lagrangian ∇ ˜ u L (λ, ̃  u , d ) to a constant setpoint of zero

thereby satisfying the stationarity condition (3a) 
• n c dual controllers where the dual variables λ are used to con- 

trol the constraints C ( ̃  u , d ) at their limiting value while ensur-

ing that λ ≥ 0 by using a max-selector, thereby ensuring primal 

feasibility (3b) , dual feasibility (3c) , and complementary slack- 

ness (3d) . 

Given Assumption 1 , this ensures the satisfaction of the first- 

rder optimality conditions by using feedback controllers. The gen- 

ral control structure under this paradigm is schematically repre- 

ented in Fig. 3 b. 

Unlike the region-based approach, primal-dual control avoids 

he need for identifying the different active constraint regions 

 priori . Consequently this approach also avoids the need to ex- 

licitly design a switching strategy to handle changes in the active 

onstraint regions as the operating conditions vary. The choice of 

V-CV pairing is also rather straightforward for this case, where ˜ u 

s used to control ∇ ˜ u L (λ, ̃  u , d ) , and the Lagrange multiplier corre-

ponding to a constraint is used to control that constraint. 

Note that the dual controllers control the constraint indirectly 

y updating λ, which occurs at a slower time scale relative to 

he primal controller (due to the cascade structure). Thus, in some 

ases it may be difficult to achieve tight control of the constraints 

nd to avoid dynamic constraint violation one may need to use 

ack-off, resulting in an economic loss, quantified by (4) . 

It can be seen that this approach requires online estimation of 

he steady-state cost gradient ∇ ˜ u J( ̃  u , d ) , as well as the constraint

radients ∇ ˜ u C ( ̃  u , d ) . Any of the model-based gradient estimation

ethod reviewed in Section 3.2 or any model-free gradient esti- 

ation method reviewed in Section 4 can be used for this purpose. 

ote that unlike the region-based approach, primal-dual approach 

annot use other self-optimizing variables such as a single mea- 

urement or a linear measurement combination. Therefore, primal- 

ual approach cannot be used if the cost and constraint gradient 

stimates are not available. 

It is also important to note that the primal and dual controllers 

ork together by gathering all the constraint and cost gradients 

o compute the gradient of the Lagrangian, and one is not inde- 

endent of the other. This makes it less robust to faulty control 

oops. For example, if any control loop is broken, then this will af- 

ect the overall system, unlike in region-based control, where for 

xample any given active constraint controller will still work per- 

ectly fine in controlling that constraint even if some other con- 

rol loop is broken. This is because in region-based control, each 

onstraint is paired directly with an input. On the other hand, this 

akes region-based approach less suitable for large-scale systems 

han the primal-dual approach. 
6 
Distributed Feedback Optimizing Control Primal-dual approach is 

ore amenable to distributed systems and large-scale processes 

hat is made up of several unit operations or sub-processes, that 

re coupled in one form or the other. In many process applications, 

eedback controllers are typically designed in a decentralized fash- 

on for small subprocesses /unit operations. If the overall process is 

oupled in one form or the other, then optimal operation of the lo- 

al subsystems do not necessarily contribute to the overall optimal 

peration. The loss due to lack of coordination was also pointed 

ut and quantified by Morari et al. (1980) . 

To address this issue, one can decompose the large-scale pro- 

ess into several smaller subprocesses or unit operations, and for- 

ulate local optimization problems with coupling constraints that 

ouples the different subsystems together. This enables one to de- 

ign feedback optimizing control structures for the local subsys- 

ems, and use a central coordinator to coordinate the different 

ubsystems. Decomposing a large-scale system into smaller sub- 

ystems and considering the different subsystems locally makes it 

asier to design feedback control structures, which is also often 

one in practice. A distributed feedback optimizing control scheme 

ased on the primal-dual feedback control approach was recently 

roposed by Krishnamoorthy (2021a) , where the “optimizing” con- 

rolled variable for local subsystems are given as a function of the 

agrange multiplier of the coupling constraints. The primal con- 

rollers are designed locally for each subsystem based on the lo- 

al cost and constraint gradient estimation. The dual controllers 

orresponding to the coupling constraints acts as the central co- 

rdinator and updates the Lagrange multipliers, as shown in Fig. 4 . 

ogether, this leads to overall system-wide asymptotic optimal op- 

ration. The coupling constraints typically arises from shared re- 

ources among the different unit operations or physical couplings 

e.g.the outflow from one unit is the inflow to another). In the for- 

er case, the optimization problem is formulated as an optimal 

xchange problem ( Boyd et al., 2011 , Section 7.3), whereas in the 

atter case, the optimization problem is formulated as a consensus 

roblem ( Boyd et al., 2011 , Section 7.1). The interested reader is 

eferred to Krishnamoorthy (2021a) for more detailed description 

nd analysis of the distributed feedback-based RTO scheme. 

. Model-based methods 

In model-based techniques, we assume that we have access to 

 model of the process given by, 

˙ 
 = f (x , u , d ) (15a) 

 = g (x , u , d ) (15b) 
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Fig. 4. A distributed feedback-based RTO framework using Lagrangian decomposition. The large-scale process is decomposed into N smaller subsystems, each optimized 

locally using feedback controllers. The central coordinator ensures system-wide optimal operation. 
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 model = h (x , u , d ) (15c) 

here x ∈ R 

n x denotes the states, u ∈ R 

n u denotes the un- 

onstrained degrees of freedom, d ∈ R 

n d denotes the distur- 

ances, and y ∈ R 

n y denotes the vector of measurements. f ∈ C 2 :
 

n x × R 

n u × R 

n d → R 

n x , g ∈ C 2 : R 

n x × R 

n u × R 

n d → R 

n y , and h ∈
 

2 : R 

n x × R 

n u × R 

n d → R denotes the smooth functions that de- 

cribe the system dynamics, measurements and the cost respec- 

ively. Note that the cost predicted by the model is denoted as 

 model = h (x , u , d ) , whereas the true cost measurement from the

lant is simply denoted as J, without any subscript. The unmea- 

ured disturbances and model parameters are jointly denoted by 

 . Furthermore, we assume that we have more measurements than 

isturbances, i.e. n y > n d . 

As shown in Fig. 1 , the model-based methods can be further 

lassified into two categories, based on whether the models are 

sed online or offline. 

.1. Models used offline for obtaining self-optimizing variables 

In this class of methods, the controlled variables c for the un- 

onstrained degrees of freedom are chosen offline based on process 

nsights extracted from the process models (15). Using offline anal- 

sis, the objective is to design the controlled variables c , as well as 

heir corresponding setpoints c sp . 

As already mentioned, the ideal self-optimizing variable is the 

ost gradient c = J u . However, obtaining an analytic expression for 

 u may be tedious, and even if an expression is found, one may 

ot have measurements of all variables in the expression for J u . 

n addition, the cost gradient J u may also be susceptible to mea- 

urement errors. An alternative approach is therefore to start from 

he available measurement y , and look for single measurements or 

easurement combinations that can be kept constant. To simplify 

he mathematical treatment, we usually only consider linear mea- 

urement combinations, c = Hy , where H is a constant measure- 

ent selection matrix. Note that also the optimal setpoint c sp must 

e obtained in this case. 

.1.1. Direct loss evaluation 

When deciding what to control using the unconstrained degrees 

f freedom, the simplest is to choose a subset of the available mea- 

urements c ⊂ y as the self-optimizing controlled variables (CVs), 

hich are controlled to some constant setpoint. The main idea 

ere is to select all or a subset of available measurements as candi- 

ate controlled variables, and repeatedly evaluate the cost for the 

xpected disturbance scenarios, when the different candidate con- 

rolled variables are kept constant. This analysis is performed of- 

ine for all the candidate CVs, and for all expected disturbances. 

ince there are n u unconstrained degrees of freedom, a subset of 
7 
 u measurements are evaluated as candidate CVs for expected dis- 

urbances. As such, this approach involves simulating the process 

everal times for each set of candidate CV to evaluate the cost, and 

eplacing the incumbent CV with the one that gives a lower cost. 

he candidate measurements with the lowest economic losses are 

hen used as self-optimizing controlled variable for online control. 

his method is also known as brute force approach . Economic loss 

ere may either be the average loss, or the worst case loss. 

Note that, with this method one does not know how far one 

s from the true optimum, since we only evaluate the cost, and 

elect the set of candidate CVs that provides the lowest ob- 

erved cost. This is one of the earlier methods for finding the 

elf-optimizing controlled variables for unconstrained optimization 

roblems, that was used by Skogestad (20 0 0) , and was also stud- 

ed by Larsson and Skogestad (20 0 0) and Govatsmark and Skoges- 

ad (2005) . 

For processes with many candidate measurements, it may be 

edious and time consuming to evaluate the economic loss for 

he all the possible candidate controlled variables. A more nu- 

erically efficient approach is to use the “maximum-gain rule”, 

hich uses the steady-state gain (denoted by G ) from the uncon- 

trained degree of freedom to the candidate controlled variable 

 Halvorsen et al., 2003 ). Here, the gain matrix is scaled as shown

elow 

 

′ = diag 

{ 

1 

span (c i ) 

} 

G 

here c i is a set of candidate controlled variables. The maxi- 

um gain rule states that self-optimizing variables should be se- 

ected that maximizes the scaled gain matrix G 

′ , or more precisely 

aximize the minimum singular value of the scaled gain matrix 

 Halvorsen et al., 2003 ). The maximum gain rule can be used to 

elect a few good alternative candidate self-optimizing variables. 

rute force method can then be used to analyze the economic 

osses for the short-listed CV candidates. The interested reader is 

lso referred to a recent survey paper on self-optimizing control 

y Jäschke et al. (2017) for a more detailed discussion of this ap- 

roach. 

.1.2. Linear measurement combination 

In this approach, instead of a selecting a single measurement, 

he controlled variable is chosen as a linear combination of the 

vailable measurements 

 = Hy 

he objective is then to find the best measurement selection ma- 

rix H using the process models offline. Most approaches are 

ased on local linearization around some nominal optimal point. 
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Fig. 5. Self-optimizing control using linear measurement combination as the opti- 

mal controlled variable, where the self-optimizing controlled variables are identified 

using the models offline ( Alstad and Skogestad, 2007; Alstad et al., 2009 ). 
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he two most popular approaches to find the optimal mea- 

urement combination are the nullspace method proposed by 

lstad and Skogestad (2007) and the exact local method pro- 

osed by Halvorsen et al. (2003) and further developed by 

lstad et al. (2009) and Yelchuru and Skogestad (2012) . Fig. 5 

hows the block diagram for self-optimizing control. 

emark 1. Note that in the case of single measurements selected 

sing direct loss evaluation (cf. Section 3.1.1 ) the elements of the 

 matrix would comprise of 0s and 1s. 

Nullspace method The nullspace method, is the simplest ap- 

roach for finding the optimal selection matrix H for the case with 

o implementation error. This method assumes that the number of 

easurements n y ≥ n u + n d . 

Let the disturbance variation around some nominal point d 0 be 

enoted as δd := d − d 0 , and the corresponding change in the op-

imal measurement be denoted as δy ∗ := y ∗ − y ∗
0 
. The optimal sen- 

itivity matrix, which describes how the optimal value varies with 

he disturbance, is given by 

 = 

∂y ∗

∂d 

(16) 

The optimal selection matrix H is selected such that it is in the 

ullspace of the optimal sensitivity matrix F , i.e. 

F = 0 (17) 

lstad (2005 , Chapter 3) proved that computing the selection ma- 

rix H such that HF = 0 leads to zero loss for small disturbance 

hange �d . The setpoint for the optimal measurement combina- 

ion c is often computed using the nominal optimal measurement, 

.e. c sp = Hy ∗0 . 
Exact local method : This method is an extension of the nullspace 

ethod which takes into account the measurement and imple- 

entation error, and avoids the limitation that n y ≥ n u + n d . The 

tarting point is to approximate the nonlinear economic optimiza- 

ion problem (5) with a constrained quadratic programming (QP) 

roblem that minimizes the average loss. This is based on Taylor 

eries expansion of the cost around the nominal optimum u 

∗
0 

for a 

iven disturbance d 

(u , d ) ≈ J(u 

∗
0 , d ) + J u 

T δu ︸ ︷︷ ︸ 
=0 

+ 

1 

2 

δu 

T J uu δu (18) 

rom which the loss function can be written as 

oss = J(u , d ) − J(u 

∗
0 , d ) = 

1 ‖ z ‖ 

2 (19)

2 

8 
here z := J uu 
1 / 2 δu . 

Using the linearized measurement model, 

y = 

∂g 

∂u ︸︷︷︸ 
G y 

δu + 

∂g 

∂d ︸︷︷︸ 
G y 

d 

δd (20) 

nd 

 = Hy m 

= Hy + H e y (21) 

e can express 

 = J uu 
1 / 2 ( HG 

y ) −1 H 

[
F W d W e y 

]︸ ︷︷ ︸ 
:= Y 

[−d 

′ 

−e y 
′ 

]
(22) 

here d = d 

′ W d is the normalized disturbance, e y = e y 
′ W e y is the 

ormalized implementation error, and W d and W e y are diagonal 

caling matrices for the expected values of the disturbance and im- 

lementation error, respectively. 

Since Loss = 

1 
2 ‖ z ‖ 2 , from (22) , we can see that z is minimized if

Y is minimized with J uu 
1 / 2 ( HG 

y ) −1 = I . Therefore, the minimiza- 

ion of the average loss can be achieved by minimizing the follow- 

ng, 

in 

H 
‖ HY ‖ F (23) 

s.t. HG 

y = J uu 
1 / 2 

rom which H can be obtained analytically as, 

 

T = ( YY 

T ) −1 G 

y (24) 

ee Alstad et al. (2009) for a detailed derivation of the exact local 

ethod. 

emark 2. It is worth noting that exact local method is the only 

pproach that explicitly takes into account measurement noise and 

mplementation error. 

Note that the optimal sensitivity matrix (16) may be de- 

ermined numerically by perturbing the disturbances and re- 

ptimizing. Alternatively, one can use the analytical expression. As- 

uming that we in y ∗ include in addition to outputs y also the in-

uts u , the analytical expression for the sensitivity matrix becomes 

 = 

[
∂y ∗

∂d 
∂u ∗
∂d 

]T = 

[
G 

y 

d 
− G 

y J uu 
−1 J ud 

J uu 
−1 J ud 

]
(25) 

here 

 uu := 

∂ 2 h 

∂u 

2 
J ud := 

∂ 2 h 

∂ u ∂ d 

The nullspace and the exact local methods are based on lo- 

al linearization around some nominal optimal point. As a re- 

ult, the steady-state loss increases, as the process is operated 

ar away from the nominal optimal conditions. In order to extend 

he economic performance to be globally acceptable, global self- 

ptimizing control methods have also been proposed, see for e.g. 

e et al. (2015, 2017) . Ye et al. (2012) also proposed to approxi-

ate the necessary conditions of optimality using regression tech- 

iques such as least squares or artificial neural networks, which 

an then be used as self-optimizing controlled variables. In recent 

ears, there have been several developments that focus on using 

easurement combination as self-optimizing variables, leading to 

ts own survey article ( Jäschke et al., 2017 ). 
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.1.3. Neighboring extremal control (NE) 

In this approach, the cost gradient around the nominal optimal 

onditions is estimated from the variations in d around the nomi- 

al operating point where the gradient is zero. The change in the 

ost gradient δJ u resulting from the parametric variations δd can 

e expressed as 

J u = J uu δu + J ud δd (26) 

ince the parametric variations δd may be unknown, it is inferred 

rom the input and measurement variations δu := u − u 0 and δy := 

 − y 0 respectively. This is obtained by using the linearized mea- 

urement model (20) . Hence, 

d = 

(
G 

y 

d 

)† (
δy − G 

y δu 

)
(27) 

ubstituting (27) in (26) results in, 

J u = J ud 

(
G 

y 

d 

)† 
δy + 

[ 
J uu − J ud 

(
G 

y 

d 

)† 
G 

y 
] 
δu (28) 

hich is the gradient at nominal conditions. The estimated gradi- 

nt (at nominal conditions) is then controlled to a constant set- 

oint of zero. 

Comparing the optimal sensitivity matrix F in (25) with (28) , it 

an be seen that the nullspace method and the neighboring ex- 

remal control approaches are equivalent ( François et al., 2014 ). 

hat is (28) can equivalently be written as 

 = δJ u = H 

[
δy 

δu 

]
(29) 

here 

 = 

[ 
J ud 

(
G 

y 

d 

)† 
J uu − J ud 

(
G 

y 

d 

)† 
G 

y 

] 
nd from (25) one can see that HF = 0 , which is the same as in

he nullspace method. 

emark 3. The connection between the nullspace method and the 

eighboring extremal method shows that, although the nullspace 

ethod aims to find a linear measurement combination as the 

elf-optimizing variable, it can also be seen as estimating the 

ost gradient (i.e. ideal-self optimizing variable). In other words, 

he nullspace method gives J u = 0 at nominal conditions, see also 

Jäschke and Skogestad, 2011, Appendix B) . 

Although the standard neighboring extremal control ( Gros et al., 

009 ) does not take into account measurement noise, variations of 

his approach that considers the measurement noise has also been 

roposed ( de Oliveira et al., 2015 ). 

.2. Online model-based gradient estimation 

.2.1. Two-step approach 

This approach is closely related to the traditional two-step RTO 

pproach, where the steady-state cost gradient is computed ana- 

ytically using the model Eq. (15). The disturbances d are estimated 

sing the measurements y meas using any parameter estimation al- 

orithm. 
 

˙ ˆ x 

˙ ˆ d 

] 

= K e (y meas − g (x , u , d )) (30) 

ith 

ˆ d being the estimated parameter and K e is the estimation 

ain. Once the model parameters ˆ d k are estimated, the analytical 

acobian can be evaluated using the updated model. The estimated 

radient ̂  J u ,model is then driven to a constant setpoint of zero using 

ny feedback control law. This approach is schematically shown in 

ig. 6 a. The two-step approach of estimating model parameters us- 

ng a dynamic model in the context of feedback optimizing control 

as proposed by Adetola and Guay (2007) . 
9 
.2.2. Feedback RTO using transient measurements (FRTO) 

This approach proposed by Krishnamoorthy et al. (2019c) es- 

imates the steady-state cost gradient using a nonlinear dynamic 

odel and the process measurements y meas by linearizing the non- 

inear dynamic model from the cost to the inputs. Any combined 

tate and parameter estimation scheme (e.g. extended Kalman fil- 

er) may be used to estimate the states ˆ x and the unmeasured dis- 

urbances ˆ d using the dynamic model of the plant and the mea- 

urements y m 

. Once the states and unmeasured disturbances are 

stimated, (15a) and (15c) are linearized to obtain a local linear dy- 

amic model from the inputs u to the objective function J, 

˙ x = A x (t) + B u (t) (31) 

 model (t) = Cx (t) + D u (t) 

here A ∈ R 

n x ×n x , B ∈ R 

n x ×n u , C ∈ R 

1 ×n x and D ∈ R 

1 ×n u . The system

atrices are evaluated around the current estimates ˆ x and 

ˆ d , 

 = 

∂f (x , u , d ) 

∂x 

B = 

∂f (x , u , d ) 

∂u 

 = 

∂h (x , u , d ) 

∂x 

D = 

∂h (x , u , d ) 

∂u 

ssuming that A is invertible, the corresponding steady-state gra- 

ient is then given as 

 

 u ,model = −CA 

−1 B + D (32) 

his approach is schematically shown in Fig. 6 b. It is also worth 

oting that (32) was also used by Bamberger and Isermann (1978) , 

arcia and Morari (1981) among others to estimate the steady- 

tate gradient from linear dynamic models (cf. Remark 4 ). The es- 

imated gradient is then driven to zero using any feedback con- 

roller. The reader is referred to Krishnamoorthy et al. (2019c) for 

ore detailed discussions, as well as comparison with the 

raditional RTO framework. This approach was successfully 

ested in a wide range of case examples, see for exam- 

le Krishnamoorthy et al. (2019c) , Bonnowitz et al. (2018) , 

rishnamoorthy et al. (2018b) , Krishnamoorthy et al. (2019b) . 

. Model-free methods 

In this section, we review different model-free methods to 

chieve optimal operation using feedback control. In Section 3.2 , 

e saw how process models can be used online to estimate the 

teady-state cost gradient, which can be controlled to a constant 

etpoint of zero. Model-free methods on the other hand involve es- 

imating the steady-state cost gradient directly from the cost mea- 

urement without the need for detailed process models. 

The underlying principle of model-free gradient estimation is 

ia online experimentation. Simply put, the inputs are perturbed, 

nd the corresponding change in the cost measurement is ob- 

erved, which is then used to estimate the steady-state cost gra- 

ient. Therefore, all the model-free methods reviewed below as- 

ume that direct cost measurements J are available. Below we re- 

iew different model-free gradient estimation. and for the sake of 

implicity we consider only the unconstrained case. 

.1. Finite-difference (FD) 

Finite-difference approach is probably the oldest and the most 

traightforward approach to estimate the steady-state cost gradi- 

nt. Here, the inputs are perturbed by a small value �u around 

he current operating point u k over a time period T , 

 (t) = 

{
u k 2 kT ≤ t < (2 k + 1) T 

u k + �u (2 k + 1) T ≤ t < (2 k + 2) T 
(33) 
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Fig. 6. Online model-based gradient-estimation methods: (a) Gradient from adapted model using the two-step approach. (b) Feedback RTO ( Krishnamoorthy et al., 2019c ). 

T

s

m

Ĵ
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he time period T is chosen such that the system reaches steady- 

tate within the time period. The gradients are then calculated by 

easuring the corresponding variation in the cost measurement. 

 

 u = 

�J 

�u 

= 

J((2 k + 2) T ) − J((2 k + 1) T ) 

�u 

(34) 

Finite difference method is a popular approach due to its sim- 

licity and ease of implementation, and has been used in several 

eedback optimizing control methods such as NCO-tracking con- 

rol ( François et al., 2005; Jäschke and Skogestad, 2011 ) and hill- 

limbing control ( Kumar and Kaistha, 2014; Shinskey, 1996 ). Fi- 

ite difference approach has also been used in other numerical 

ptimization based methods that use cost gradients such as the 

ntegrated system optimization and parameter estimation (ISOPE) 

lgorithm ( Roberts and Williams, 1981 ) and modifier adaptation 

 Marchetti et al., 2009 ). 

The finite-difference approach has shown to provide gradi- 

nt estimates with sufficient accuracy for systems with relatively 

ast dynamics and high signal-to-noise ratio (SNR). However, it 

s known to be inefficent for processes with long settling times 

which requires large T ), and measurements corrupted by large 

oise (which requires large �u ). 

In addition to the classical finite difference approach mentioned 

bove, other variants of finite-difference approximation have also 

een used in literature. For example, Roberts (20 0 0) , Gao and En-

ell (2005) and Rodger and Chachuat (2011) used Broyden’s for- 

ula to estimate the steady-state gradient from current and past 

easurement, without the need for additional perturbations. Brdy ́s 

nd Tatjewski (1995) proposed an alternative variant, where past 

perating points are used to calculate the gradients without addi- 

ional perturbations. 

.2. Classical extremum seeking control 

Extremum seeking control, as the name suggests, is a con- 

rol system that is used to seek and maintain the extremum 

alue of a static map between the input and the cost function 

 Ariyur and Krstic, 2003 ). This approach dates back to the 1950s 

ith the work of Draper and Li (1951) , where extremum seek- 

ng control was studied under the context of adaptive control. 

his method gained huge popularity since the work of Krsti ́c 

nd Wang (20 0 0) , and remains to be a popular approach to this

ay. Extremum seeking control has been applied to a wide ar- 

ay of application domains including, but not limited to, pro- 

ess control, aerospace, automotive, robotics, solar power, wind 

ower, oil and gas, medical and biomedical applications etc., 

o name a few. Extremum seeking control has also been used 

n controller design such as optimal tuning of PID controllers 
10 
 Killingsworth and Krstic, 2006 ). Since 2000s, there has been sev- 

ral advancements in extremum seeking (ES) methods including, 

east square-based ES ( Hunnekens et al., 2014 ), sliding-mode ES ( Fu 

nd Özgüner, 2011; Pan et al., 2003 ), greedy ES ( Trollberg and Ja- 

obsen, 2016 ), discrete-time ES ( Choi et al., 2002 ), newton-based 

S ( Ghaffari et al., 2012 ), Lie-bracket approximation based ES 

 Dürr et al., 2013 ) to name a few. 

In the classical extremum seeking approach, a slow periodic 

ither signal in the form of a sinusoidal wave a sin ωt is superim- 

osed on to the input signal, 

 (t) = 

ˆ u + a sin ωt (35) 

he frequency ω of the sinusoidal perturbation is chosen to be 

low such that the dynamic plant appears as a static map. This in- 

uces a periodic response in the cost measurement with the same 

requency ω. A high-pass filter with cut-off frequency ω h is used 

o remove the static bias (also known as the DC-component) from 

he cost measurement, 

˙ = −ω h η + ω h J (36) 

J − η) is then correlated with the input perturbation and the static 

ias of the product of the two sinusoids is extracted using a low- 

ass filter with cut-off frequency ω l , 

˙ = −ω l ξ + ω l (J − η) a sin ω t (37) 

rom which the cost gradient can be obtained as 

 

 u = 

a 2 

2 

ξ (38) 

he estimated gradient is then driven to a constant setpoint of zero 

sing an integral controller. This is schematically represented in 

ig. 7 a. 

As mentioned above, the dither frequency must be chosen rela- 

ively small such that the plant dynamics do no interfere with the 

xtremum seeking scheme, and in addition the integral gain must 

e small such that the convergence to the optimum does not in- 

erfere with the sinusoidal perturbation. Hence this approach has 

 clear timescale separation between 

• plant dynamics (fastest) 
• sinusoidal perturbation (medium) 
• convergence to the optimum (slow) 

In order to extend the dither-demodulation approach to the 

ultivariable case, each input channel is perturbed individually. 

he perturbation frequencies must be chosen such that the dif- 

erent frequency components are unique, in order to ensure that 

nique persistence of excitation condition is satisfied i.e. ω i � = ω j , 
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Fig. 7. Model-free gradient estimation methods: (a) classical extremum seeking control ( Krsti ́c and Wang, 20 0 0 ). (b) Least squares-based extremum seeking control 

( Hunnekens et al., 2014 ). 
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 ω i � = ω j , ω i + ω j � = ω k for any distinct i , j, and k ( Ghaffari et al.,

012; 2015 ). 

Although extremum seeking control has gained popularity in 

lectrical and mechanical systems, for most chemical and biochem- 

cal processes, the timescale separation requirement leads to pro- 

ibitively slow convergence to the optimum (typically convergence 

o the optimum in the range of several hours to days). 

.3. Least squares-based gradient estimation 

In this approach, the steady-state cost gradient is estimated by 

sing a first-order least squares fit, and was presented in the con- 

ext of extremum seeking control by Hunnekens et al. (2014) . The 

ast N samples of input u and cost J are used to fit a local linear

tatic model of the form, 

 = ̂

 J T u u + m (39) 

here m is the intercept/bias. At the current sample time k , let 

 = [ J k , J k −1 , . . . , J k −N+1 ] 
T denote the vector of the past N cost mea-

urements, and U = [ u k , . . . , u k −N+1 ] 
T be the vector of the past N

amples of the input data. A moving window of fixed length N is 

hen used to estimate the gradient using a linear least squares es- 

imation 

ˆ = arg min 

θ
‖ Y − 
T θ‖ 

2 
2 (40) 

o which the analytical solution is given by 

ˆ = [
T 
] −1 
T Y (41) 

here θ = [ ̂ J T u , m ] T and 
 = [ U , 1 ] T . This approach is schematit- 

ally represented in Fig. 7 b. 

The application of the least squares method requires that N > 

 u . In theory, this method does not require a constant perturba- 

ion using additional dither signal. However, a small perturbation 

n practice is recommended in order to track changes in the opti- 

um and also to avoid an ill-conditioned problem in (41) . 

Instead of solving a linear least squares problem using (41) , one 

an also solve a recursive least squares problem with forgetting 

actor to estimate θ = [ ̂ J T u , m ] T as described by Chioua et al. (2016) ,

ewasme et al. (2011) . 

.4. Kalman filter-based gradient estimation 

In this approach, a Kalman filter is used to estimate the steady- 

tate cost gradient. Here, the underlying assumption is to fit a local 

inear static model (39) around the current operating point, which 

s the same as in the least squares approach (cf. Section 4.3 ). In-

tead of using least squares estimation, Henning et al. (2008) pro- 

osed to use an extended Kalman filter (EKF), where the two un- 

nowns x = J u and x = m are the states of the Kalman filter. A
1 2 

11 
iscrete time model for the two parameters is given by, 

ˆ J u k + 1 

m k +1 

]
= 

[
1 0 

0 1 

][
ˆ J u k 

m k 

]
+ w k (42) 

or the system (42) to be observable, two distinct measurements 

f the input-cost pairs at two different times are required ( Henning 

t al., 2008; Gelbert et al., 2012 ). Consequently, the measurement 

odel is given by, 

J k 

J k −i 

]
= 

[
u k 1 

u k −i 1 

][
ˆ J u k 

m k 

]
+ v k (43) 

here the input-cost measurement data at the current time step 

 and the measurement at time step k − i are used, where i can 

e chosen by looking at the observability gramian as explained by 

elbert et al. (2012) . The vectors w k and v k denote Gaussian white 

oises. An extended Kalman filter can now be used to estimate the 

states” ˆ J u and m using the "system model" (42) and the "measure- 

ent model" (43) . 

.5. Gradient estimation using fast Fourier transform (FFT) 

So far, we can see that the model-free gradient estimation ap- 

roaches involve perturbing the input with additional dither sig- 

als, and the effect of the input perturbation on the cost is used 

o estimate the steady-state cost gradient. A natural and powerful 

pproach to analyze the effect of periodic perturbations in any sig- 

al is to use the Fourier transform for spectral analysis, which tells 

s what is the contribution of each frequency component present 

n the signal. Therefore, one could periodically perturb the inputs 

nd simply analyze the frequency spectrum of the cost measure- 

ent at the input perturbation frequency to obtain the cost gradi- 

nt. In other words, the amplitude spectrum of the cost measure- 

ent provided by the fast Fourier transform (FFT) is equivalent to 

he magnitude of the cost gradient at the input perturbation fre- 

uency . 

FFT is a fast, easy and robust numerical approach to extract 

he amplitude spectrum at different frequencies. This makes it a 

ery favorable approach for multivariable systems, where the dif- 

erent inputs are perturbed with periodic signals with unique fre- 

uency components. The amplitude spectrum of the cost mea- 

urement at the different frequency components then provides 

he cost gradients with respect to each input. This intuitive na- 

ure of FFT has led to its use in a few engineering applications, 

ee for example Corti et al. (2014) and Beaudoin et al. (2006) . 

rishnamoorthy (2021b) formalized the FFT-based extremum seek- 

ng scheme and analyzes its properties under a static map setting. 

In fact, the classical extremum seeking control presented in 

ection 4.2 can be seen as a special case of the Fourier transform, 
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Fig. 8. Model-free gradient estimation methods: (a) Gradient estimation using Fast Fourier Transform ( Krishnamoorthy, 2021b; Corti et al., 2014 ) (b) Gradient estimation 

from black-box system identification, e.g. ARX ( Bamberger and Isermann, 1978; Garcia and Morari, 1981 ). 
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here the cost measurement is demodulated with a sinusoidal sig- 

al of the same frequency as the input perturbation, instead of dif- 

erent frequencies. 

In this approach, each input is perturbed with a unique periodic 

inusoidal signal a i sin ω i t . Consequently, the cost measurement is 

 function of the all the sinusoidal frequencies, which is extracted 

y performing FFT over a sliding window of fixed length with N

ast data samples (similar to the least squares method presented 

n Section 4.3 ). To perform FFT, the cost measurement has to be 

etrended, such that it has zero mean. The detrending may be per- 

ormed using any suitable method, for example the moving average 

lter. Note that this is analogous to using the high-pass filter in the 

lassical extremum seeking control (cf. Section 4.2 ) to remove the 

tatic bias. The discrete Fourier transform then extracts the differ- 

nt frequency components of the detrended cost measurement J 0 

 (ω l ) = 

N−1 ∑ 

k =0 

J 0 (k ) e − j 2 πN l k ∀ l = 0 , . . . , N − 1 (44)

ote that the product of the complex exponential function and 

he detrended cost signal is analogous to the demodulation of the 

ither and the cost measurement in the classical extremum seek- 

ng control (cf. Section 4.2 ). 

The magnitude of the gradient of the cost with respect to the 

 th input, perturbed using ω i can then be obtained by looking at 

he amplitude spectrum |J (ω i ) | . Since the amplitude spectrum 

J (ω i ) | > 0 , to determine the sign of the cost gradient, the phase

pectrum of the cost φJ (ω i ) with respect to the phase spectrum 

f the input signal φu i (ω i ) is used. This is schematically shown in 

ig. 8 a. 

Together, the gradient of the cost w.r.t to the i th input is then

stimated as follows: 

 

 u i = 

̂ ∂ J 

∂u i 

= 

2 

a i 
| J (ω i ) | sgn 

[
φJ (ω i ) 

φu i (ω i ) 

]
∀ i = 1 , . . . , n (45) 

lternatively, the estimated gradient can be computed directly as 

 

 u i = 

̂ ∂ J 

∂u i 

= 

Re (J (ω i )) 

Re (U i (ω i )) 

∀ i = 1 , . . . , n (46) 

here Re (·) is the real part of a complex number, and U i (ω) is the

iscrete Fourier transform of the i th input. 

Much like any multivariable model-free gradient estimation 

cheme, the input perturbation frequencies must be unique, and 
12 
hould not lie in the harmonics of other dither frequencies, i.e. 

 i � = ω j , 2 ω i � = ω j , ω i + ω j � = ω k for any distinct i , j, and k . 

It is also important to note that accuracy of the cost gradient 

t any particular frequency is sensitive to the choice of N. This is 

ecause the discrete Fourier transform treats the data window of 

ength N as if it is periodic and produces only l = 1 , . . . , N discrete

requency components in (44) . Therefore, if the exact perturbation 

requency is not part of the discrete frequency array l = 1 , . . . , N,

his leads to inaccurate gradient estimation at the perturbation fre- 

uencies. To avoid this, the minimum length N is given by the 

east common multiplier of the different perturbation time peri- 

ds 2 π/ω i . For a more detailed description and analysis of this ap- 

roach, see Krishnamoorthy (2021b) . 

.6. Gradient from multiple units 

As mentioned earlier, model-free gradient estimation methods 

equire perturbing the input in order to estimate the gradient. 

owever, in some applications, these perturbations are not desired, 

specially since when the effect of the perturbations are carried 

ver to downstream processes. For example, in continuous pro- 

esses, although some perturbations may be tolerated in unit pro- 

esses in order to optimize the process, the perturbations may not 

e accepted at the product supply to the customer. 

In processes with multiple units, one can carefully design the 

erturbations, such that the overall perturbations cancel out each 

ther. One such approach was presented by Srinivasan (2007) , 

here in the presence of multiple units, the inputs to the units 

iffer by an offset �, 

 i = u i,k + 

�
2 

 j = u j,k − �
2 

nd the gradient is then estimated using the finite difference 

ethod (cf. Section 4.1 ). 

 

 u = 

J i − J j 

�
(47) 

imilar synchronization methods for extremum seeking control 

ere also recently presented by Pavlov et al. (2017) and Silva and 

avlov (2020) . 

.7. Gradient estimation using transient measurements 

A common trait in all the model-free gradient estimation meth- 

ds presented so far is that it requires the assumption that the 

ynamic plant acts likes a static map between the input and the 
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1 for example using idss and d2c command in MATLAB 
ost. In order for this assumption to be valid, the input perturba- 

ion must be much slower than the plant dynamics, such that the 

ynamic plant can be approximated as a static map. Furthermore, 

he controller gain to drive the steady-state gradient to zero must 

e sufficiently small such that the convergence to the optimum is 

uch slower than the perturbation signal. In summary, this means 

hat the overall convergence rate is about two orders of magnitude 

lower than the original plant dynamics ( Krsti ́c, 20 0 0; Tan et al.,

010 ). 

Although this is not a major bottleneck for many electro- 

echanical systems, for many chemical and biochemical processes, 

he settling times are often in the range of minutes to hours. The 

imescale separation thus leads to prohibitively slow convergence. 

espite the very appealing characteristic of not requiring a detailed 

odel, many model-free gradient estimation methods may there- 

ore be impractical for real-time optimization in the chemical pro- 

ess industry. 

In order to address this issue, one potential solution is to ex- 

licitly include the plant dynamics in the model-free gradient esti- 

ation scheme. The use of measurements to repeatedly identify 

 black-box local linear dynamic model around the current op- 

rating point for online optimization of slow chemical processes 

as first proposed by Bamberger and Isermann (1978) . Here, black- 

ox system identification models such as ARX models are repeat- 

dly identified online. The cost gradient is then estimated from 

he identified black-box models, which is driven to a constant set- 

oint of zero. This approach was further analyzed by Garcia and 

orari (1981) , where the authors recursively identified local lin- 

ar dynamic models to estimate the steady-state gradient and 

rive the process to its optimum using a gradient descent algo- 

ithm. Later in 1989, McFarlane and Bacon (1989) presented an 

mpirical strategy for open-loop online optimization using black- 

ox ARX models similar to the one proposed by Bamberger and 

sermann (1978) and Garcia and Morari (1981) . As such, the 

ethod proposed by Bamberger and Isermann (1978) ; Garcia and 

orari (1981) and McFarlane and Bacon (1989) can be seen as 

 dynamic variant of extremum seeking control for Hammerstein 

lants, where the cost measurement is used to repeatedly iden- 

ify a local linear dynamic model, which is then used to estimate 

he steady-state gradient (cf. (32) ). Model-free gradient estimation 

sing transient measurements by identifying local linear dynamic 

odels have also recently been used in the context of modifier 

daptation ( Vaccari et al., 2020; Oliveira-Silva et al., 2021 ). 

In this approach, black-box ARX model of the form 

(t) = −a 1 J(t − 1) − · · · − a n a J(t − n a ) 

+ b ′ u (t − 1) + · · · + b ′ n b u (t − n b ) + e (t) 
(48) 

re repeatedly identified using process measurements. The inputs 

re perturbed using pseudo-random binary signal (PRBS) and the 

erturbation frequency could be chosen in the same time scale 

s the plant dynamics, leading to one order of magnitude faster 

onvergence to the optimum compared to classical sinusoidal ex- 

remum seeking scheme that requires two orders of magnitude 

ime scale separation. 

The ARX model is identified repeatedly by solving the least 

quares problem 

ˆ = arg min 

θ
‖ ψ − 
T θ‖ 

2 
2 (49) 

here ψ , θ and 
 are given by the expressions 

 = J 

= [ −J(t − 1) . . . − J(t − n a ) u (t − 1) . . . u (t − n b )] T 

= [ a 1 · · · a n a b ′ 1 · · · b ′ n b ] 
13 
ntroducing the notation, 

 poly (q ) = 1 + a 1 q 
−1 + · · · + a n a q 

−n a 

nd 

 poly (q ) = b ′ 1 q −1 + · · · + b ′ n b q 
−n b 

ith q −1 being the unit delay operator, the gradient is then esti- 

ated as, 

 

 u = A 

−1 
poly 

B poly (50) 

emark 4. It is interesting to note that the identified ARX poly- 

omials A poly (q ) and B poly (q ) , when converted to continuous time 

tate-space system 

1 as shown below, 

˙ 
 = Ax + Bu 

 = Cx + Du 

esults in the expression 

 

 u = 

(
−CA 

−1 B + D 

)
or the steady-state gradient, which is he same as (32) in 

he feedback RTO using transient measurements approach (cf. 

ection 3.2.2 ). 

Alternatively, one could also repeatedly identify an ARMAX 

odel or any other black-box model to estimate the steady-state 

ost gradient. For example, Golden and Ydstie (1989) used a sec- 

nd order Hammerstein model of the form 

(t) = −a 1 J(t − 1) − · · · − a n a J(t − n a ) 

+ b ′ u (t − 1) + · · · + b ′ n b u (t − n b )+ 

c ′ u 

2 (t − 1) + · · · + c ′ n b u 

2 (t − n b ) + e (t) 

However, with such high order ARX, ARMAX models or second 

rder Hammerstein models such as the one used by Golden and 

dstie (1989) , the number of parameters that needs to be repeat- 

dly estimated increases. If the excitation of the process is not suf- 

cient, then all the black-box model parameters may not be esti- 

ated accurately. In the context of real-time optimization, this is 

specially a problem as the system approaches its optimum, where 

he steady-state relation between the input and the cost is typi- 

ally flat. This challenge is illustrated using simple counter exam- 

les in Krishnamoorthy, 2019 , Chapter 5. 

One simple solution to this problem is to simply turn off the 

radient estimation once the plant reaches its optimum, as done 

y Bamberger and Isermann (1978) , McFarlane and Bacon (1989) . 

owever, in practice, it is desirable to keep estimating the gradi- 

nt even after reaching the optimum. This is to ensure that the 

hanges in the optimum are tracked. 

Alternatively, if the nominal linear dynamics are known, this 

an be fixed, such that we only estimate the unknown local steady- 

tate effect. 

 = J u 

(
b 1 q 

−1 + · · · + b n b q 
−n b 

1 + a 1 q −1 + · · · + a n a q 
−n a 

)
︸ ︷︷ ︸ 

fixed 

u (51) 

ixing the linear dynamic part enables us to effectively use tran- 

ient measurements, thereby avoiding the steady-state wait time 

ssue ( Krishnamoorthy, 2019 , Chapter 5). In this case, the least 

quares problem (49) is solved with 

 = J(t) + a 1 J(t − 1) + · · · + a n a J(t − n a ) 

= b 1 u (t − 1) + · · · + b n b u (t − n b ) 



D. Krishnamoorthy and S. Skogestad Computers and Chemical Engineering 161 (2022) 107723 

Fig. 9. Combination of model-free gradient estimation method with (a) self-optimizing control i.e. models used offline to determine H (b) model-based gradient estimation, 

i.e. models used online. 
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2 Note that MA is typically formulated for the full optimization problem (1) , 

which includes additional modifier terms for the constraints as well. However for 

the sake of simplicity, we only consider the reduced unconstrained optimization 

problem (5) . 
= J u 

More recently, van Keulen et al. (2020) proposed to apply a 

ultisine dither signal to identify the local linear dynamic model 

f the plant, where the perturbation frequency is in the same 

imescale as the plant dynamics. The transfer function of the lo- 

al linear dynamic system at the multisine dither frequencies are 

stimated using Fourier Transform of the past N samples of input 

nd cost measurement (much like the FFT-based gradient estima- 

ion described in Section 4.5 ). The local steady-state gradient is 

hen estimated by using an online complex curve fitting, by tak- 

ng a frequency domain approach to system identification. 

Another approach to account for the plant dynamics is to com- 

ensate for the phase shift introduced by the plant dynamics, such 

hat the static map assumption can be relaxed. For example, one 

an estimate the different harmonics using a Kalman filter, and 

rive the high frequency harmonics to zero when the input per- 

urbations are in the same timescale as the plant dynamics ( Atta 

t al., 2015; Trollberg and Jacobsen, 2016 ). In other words, the gra- 

ient estimation problem is replaced by a problem of estimating 

he harmonics, and this is used to drive the process to its steady- 

tate optimum. 

. Combination of model-free and model-based approaches 

It can be seen that the model-based and model-free methods 

or the unconstrained optimization problem have their own ad- 

antages and disadvantages. In short, one of main strengths of 

he model-based methods is that it converges faster, whereas the 

ain weakness is the dependence on a model (making it sus- 

eptible to plant-model mismatch). On the other hand, one of 

he main strengths of the model-free methods is that it circum- 

ents the need for developing models (hence is not susceptible to 

lant-model mismatch), whereas the main weakness is the pro- 

ibitively slow convergence to the optimum. Note that the model- 

ased and model-free methods are complementary and not contra- 

ictory. In general the model-free methods work in the slow time 

cale, whereas model based methods work in the fast time scale. 

his time scale separation can be exploited to combine the model- 

ased and model-free methods in a hierarchical fashion. For exam- 

le, any model-based method may be used on the fast timescale, 

nd a slow varying model-free method can be used on the on top 

o account for any plant-model mismatch. 
14 
.1. Setpoint correction using model-free gradient estimation 

When using the models offline to determine the self-optimizing 

V (cf. Section 3.1 ), this is based on some nominal conditions. 

s mentioned earlier, as the operation drifts far away from the 

ominal operating condition, this leads to steady-state losses. 

odel-free gradient estimation approaches can be used to ad- 

ust the setpoint of the self-optimizing CVs in order to account 

or the steady-state losses, as shown in Fig. 9 a. Such synergistic 

ombinations of model-free methods and self-optimizing control 

ere shown to provide an improved performance, compared to 

ach of the method used individually. For example, Jäschke and 

kogestad (2011) proposed to combine NCO-tracking with self- 

ptimizing control and the improved performance was demon- 

trated using a CSTR example from Economou et al. (1986) . Sim- 

larly, Straus et al. (2019) proposed to combine the least squares- 

ased extremum seeking control with self-optimizing control, and 

emonstrated the performance improvement on a 3-bed ammonia 

eactor case example. In both the approaches, the setpoint of the 

elf-optimizing variable c sp was updated by the model-free method 

n a cascaded fashion as shown in Fig. 9 a. 

Modifier adaptation is another RTO scheme that was proposed 

y Marchetti et al. (2009) to address the plant-model mismatch. 

ere, the main idea is to estimate the plant gradients directly from 

he measurements, and use this to correct the optimization prob- 

em. For the unconstrained optimization problem (5) , the modifier 

daptation scheme iteratively solves 

in 

u 
J model ( u , d ) + εk 

J + δk 
J 

(
u − u 

k 
)

(52) 

here 

J = J − J model 

J = ̂

 J u − ˆ J u ,model 

re the so-called modifier terms. 2 Here, the plant gradient ˆ J u is 

stimated using any model free gradient estimation techniques re- 

iewed in Section 4 . 

emark 5 (Modifier Adaptation) . Although MA uses model-free 

radient estimation algorithms, it is not a feedback optimizing con- 

rol approach, since it is based on solving the numerical optimiza- 

ion problem (52) in real-time. To this end, Modifier Adaptation 
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an be seen as a combination of the model-free gradient estima- 

ion approach with the traditional steady-state optimization (SRTO) 

hown in Fig. 2 . 

A similar approach to modifier adaptation, but one that does 

ot require explicitly solving (52) would be to use the modifier 

erm δJ = ̂

 J u − ˆ J u ,model as the setpoint to the gradient controller 

s shown in Fig. 9 b. By doing so, we add a bias correction to

he model-based gradient estimate to account for the plant-model 

ismatch in the slow time scale. 

.2. Discrepancy modeling framework 

Discrepancy modeling framework is an alternative approach 

o updating the setpoints using a model-free gradient estimation 

ethod in a cascade fashion. Here the main idea is to approximate 

he “unmodeled” effects using direct cost measurements. That is, 

he residual between the cost measured from the plant J and the 

ost predicted by the model J model is used to estimate the cost gra- 

ient ̂  J u . For example, one can train a function approximator φε(u ) 

hat predicts the zeroth order bias correction term εJ , and use the 

erivative of the trained function φε(u ) to account for plant-model 

ismatch. 

J = J − J model ≈ φε(u ) (53) 

here φε(u ) can either be parametric function approximators (e.g. 

eural networks), or non-parametric function approximators (e.g. 

aussian processes). The plant gradient is then estimated as the 

um of the model gradient ̂  J u ,model and the gradient of the function 

pproximator. 

 

 u = ̂

 J u ,model + 

∂φε

∂u 

(54) 

uch an approach for estimating the plant gradient was recently 

sed in the context of modifier adaptation by Gao et al. (2016) , 

atias and Jäschke (2019) , del Rio Chanona et al. (2019) . Although 

hese methods were applied in modifier adaptation, the estimated 

radient (54) can also be directly driven to a constant setpoint of 

ero using feedback control, which to the best of our knowledge, 

as not been shown earlier. 

. Operation with changing active constraints 

The set of active constraints change with changing operating 

onditions. Feedback optimizing control must be able to automat- 

cally handle these changes and ensure that the process is oper- 

ted optimally at steady-state over different operating conditions. 

ection 6.1 details how this is handled in the case of region-based 

ontrol (paradigm 1), and Section 6.2 details how this is handled 

n the case of primal-dual feedback control (paradigm 2). 

.1. Region-based control 

As mentioned earlier in Section 2.1 , paradigm 1 first involves 

dentifying the potential active constraint regions. Control struc- 

ures are then designed in each active constraint region by parti- 

ioning the available degrees of freedom into constrained and un- 

onstrained degrees of freedom (cf. Theorem 1 ). The set of active 

onstraints change with changing operating conditions, which re- 

uires selecting different set of controlled variables and reconfigu- 

ation of the control loops. 

The identification of the current active constraint region, may 

e done by tracking the constraints and self-optimizing variables 

n all neighboring regions, and we switch region if any of these 

ecome active (usually identified by a sign change ( Manum and 

kogestad, 2012 )). Note that this means that the switching is based 

n the controlled variables (CVs). The controllers in each region 
15 
ay in principle by completely different and may be multivariable 

e.g. MPC). 

However, a simpler approach in terms of implementation is to 

air each constraint with one particular input. This is the approach 

tudied in this paper. In this case, we implement a controller for 

ach CV (constraints and self-optimizing variables) and the switch- 

ng is done based on the controller output ˜ u , that is, on the ma- 

ipulated variables (MVs). The advantage is that one may use the 

ame controllers in many regions, and the switching may be per- 

ormed using standard max/min-selectors. The disadvantage is that 

e need to pair each potential constraint with one specific input. 

his may not be possible in some cases with many constraint com- 

inations, because it requires that the constraints paired with a 

iven input are never optimally active at the same time. 

.1.1. CV-MV pairing 

To this end, this requires choosing CV-MV pairing in each active 

onstraint region. There is no systematic approach that provides 

 unique CV-MV pairing. However, this can generally be done in 

ractice by using some rule of thumb. 

• Pair-close rule - In order to avoid large time delays and slug- 

gish control, it would also be wise to control a CV using an MV 

that is physically close to one another ( Skogestad and Postleth- 

waite, 2007 ). 
• Non-negative relative gain array (RGA) - The pairing must be 

chosen such that the steady- state RGA of the resulting transfer 

matrix is non-negative and close to identity matrix at crossover 

frequencies ( Skogestad and Postlethwaite, 2007 ). 
• Pair on large gain - One must also try to avoid pairing im- 

portant CVs with MVs that quickly saturate, and instead pair 

such MVs with less important CVs that may be given up 

( Skogestad, 2004 ). 

Additionally, the constraint grouping when using selectors to 

witch between the different CVs (cf. step S1 in Section 6.1.3 ), also 

nfluence the MV-CV pairing. Note that there may be several dif- 

erent possible MV-CV pairings to achieve the same objectives, and 

he pairing rules listed above can guide in selecting a good con- 

rol structure design that would help reduce the number of logic 

locks required to reconfigure the control loops. 

Once the different control loops are designed for each active 

onstraint region, we then have to design a switching strategy be- 

ween the different active constraint regions. Switching between 

ctive constraint regions can be achieved by using classical ad- 

anced control elements, such as selectors, split-range control, 

alve position control etc. as detailed below. 

.1.2. MV-MV switching 

MV-MV switching can be achieved using three alternative clas- 

ical control elements, namely, 

1. Split-range control ( Reyes-Lúa et al., 2018; Reyes-Lúa and Sko- 

gestad, 2019b ) 

2. Valve position control ( Reyes-Lúa and Skogestad, 2019b ) 

3. Individual controllers for each MV with different setpoints 

( Reyes-Lúa and Skogestad, 2019a ) 

Split-range control Split range control (SRC), dates back to 1940’s 

 Eckman, 1945 ) and is very commonly used in process control in- 

ustries. Here, there is a controller that produces a control sig- 

al v , typically between 0 - 100%, that is input to the split-range

lock, which then translates the control signal v to the physical 

anipulated variables u i . A typical split range block with two MVs 

s shown in Fig. 10 a, where u 1 is used to control the CV and u 2 
s saturated when the control signal is below the split value v ∗, 

hereas u 2 is used to control the CV and u 1 is saturated when the 

ontrol signal is above the split value v ∗. The reader is referred to 
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Fig. 10. MV-MV switching using (a) split range control (b) Valve position control (c) controllers with different setpoints. 
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eyes-Lúa et al. (2018) , Reyes-Lúa and Skogestad (2019b) for 

ore detailed information on using split-range control for MV-MV 

witching. 

Valve position control Valve position control (VPC), also known as 

nput-resetting control, is often used in industrial practice to im- 

rove the dynamic performance, by allowing one MV to take care 

f the fast response, and another of the long-term control. How- 

ver, here it is used to extend the steady-state range when im- 

lemented as shown in Fig. 10 b. Here, u 1 is used to control the

V, while u 2 is not used, i.e. it is kept at its desired limiting value,

.g. u lim 

2 
= 0 . However, when u 1 is approaching its limit, u 2 controls

 1 to a setpoint of u lim 

1 
+ ε in order to prevent u 1 from saturating

 Shinskey, 1996; Reyes-Lúa and Skogestad, 2019a ). 

Controllers with different setpoints Another alternative is to use 

ndependent controller for each input, and the setpoint for the dif- 

erent controllers vary by a small amount, as shown in Fig. 10 c. 

or example, u 1 is used to control the CV y at its optimal setpoint

 

sp , and u 2 is used to control the CV y at a setpoint of y sp + �y sp ,

here �y sp is large enough such that only one controller is active 

t any given time. It is important to note that this approach leads 

o some steady-state loss, when u 2 is used to control the CV at 

 

sp + �y sp . However, it may be possible to reduce the loss of hav-

ng different setpoints. The simplest is to have a master controller 

hich slowly resets y sp so that y sp + �y sp returns the truly de- 

ired setpoint. An alternative approach with individual controllers 

hat completely avoids different setpoints, is the somewhat differ- 

nt “Baton strategy” ( Reyes-Lúa and Skogestad, 2020 ), where each 

ontroller needs to identify when it has saturated. The reader is re- 

erred to Reyes-Lúa et al. (2018) , Reyes-Lúa and Skogestad (2019b, 

020) for more detailed information on using controllers with dif- 

erent setpoints to extend the steady-state operating range. 

.1.3. CV-CV switching 

A CV constraint that is optimally active, may no longer be ac- 

ive when a disturbance changes. In this case, a different variable 

another CV constraint, or a self-optimizing CV) must be controlled 

n order to operate the process optimally for the new disturbance. 

o switch between the CVs, one can use individual controllers for 

ach CV. The MV value that is implemented on the plant is then 

elected among the controller outputs using one or more selector 

locks ( Krishnamoorthy and Skogestad, 2019; Reyes-Lúa and Sko- 

estad, 2019b ). 

To design selectors, we pair each MV with a set of constraints a 

riori , such that for a given MV u , the potential controlled variables

re: 

• N CV inequality constraints, denoted by y i for all i = 1 , . . . , N
• at most one CV y 0 with a setpoint that may be given up (i.e.

self-optimizing CV) 
• MV inequality constraints 

A systematic design procedure for designing selector blocks was 

ecently proposed by Krishnamoorthy and Skogestad (2020b) . The 

ain steps of the systematic design procedure of selectors for each 

V u with different potential CVs can be summarized as follows: 

1(constraint grouping) Group the candidate CV constraints into 

wo sets, Y 

+ and Y 

−

16 
• The set Y 

+ consists of all constraints that are satisfied with a 

large input u . This includes a max-constraint on u ( u max ) 
• The set Y 

− consists of all constraints that are satisfied with a 

small input u . This includes a min-constraint on u ( u min ) 

S2 (SISO control loops) Design individual SISO control loops to 

ompute the input for each CV constraint ( u i ) and for the CV set-

oint controller ( u 0 ). Note that in this case it is important to imple-

ent anti-wind up for all the controllers, such that the controller 

hat is not selected, does not keep integrating. 

S3a (Choice of selector) 

• Use a min-selector on u i for constraints that are satisfied with 

a large input, u = min Y + u i 
• Use a max-selector on u i for constraints that are satisfied with 

a small input, u = max Y − u i 

S3b (Feasibility) For the set of constraints to be consistent, that 

s, to have feasible operation, we need u > u ( Krishnamoorthy and 

kogestad, 2020b ), where u is the output from the min-selector 

nd u is the output from the max-selector. 

S4 (Optimality) When the problem is feasible, the optimal in- 

ut is given by u = mid( u , u 0 , u ) , where u 0 is the control input

omputed by the controller that controls the self-optimizing CV, 

.g. steady-state cost gradient. This can be achieved using a mid- 

elector block in addition to the min- and max-selector blocks in 

tep S3a to compute u and u , respectively as shown in Fig. 11 a. Al-

ernatively, this can also be achieved using a min-max or max-min 

elector block in series as shown in Fig. 11 b and c, respectively. 

he three structures shown in Fig. 11 are equivalent when the con- 

traints are feasible (cf. step S3b). If we only have one constraint 

et Y 

+ or Y 

−, then we only need a single selector block, namely, a

in- or max-selector block, respectively. 

S5 (Constraint Priority) If the constraints are conflicting, that is 

 < u , then the three structures shown in Fig. 11 are not equivalent. 

n this case, the constraint priority can be used to decide the ap- 

ropriate selector block. If the constraints in Y 

+ take a higher pri- 

rity than the constraint in Y 

−, then we can use a max-min struc- 

ure ( Fig. 11 c). If not, we can use a min-max structure ( Fig. 11 b).

f necessary, one can find another MV v to control the constraint 

iven up by the original MV u . This would involve MV-MV switch- 

ng as described above in Section 6.1.2 . 

.1.4. Summary of switching strategies 

To this end, the step-by-step procedure to design suitable 

witching strategies under paradigm 1 can be summarized as: 

• Step 1 - Identify the set of active constraints (CV with limits), 

self-optimizing CVs (CV with setpoints) and the manipulated 

variables (MV). 
• Step 2 - Organize the constraints in a priority list. The priority 

list may be used to decide which constraints may be given up, 

in situations where it may not be possible to control all the ac- 

tive constraints (e.g. when the no. of active constraints is more 

than the number of degrees of freedom, or if the constraints 

are conflicting as described in step S5 above). 
• Step 3 - Identify relevant active constraint regions. 
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Fig. 11. CV-CV switching using (a) min-max-mid selector blocks (b) min-max selector blocks (c) max-min selector blocks. 
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Fig. 12. Proposed control structure used in Sections 7.1 and 7.2 for achieving opti- 

mal operation of a Williams-Otto reactor using feedback control. 
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3 The MATLAB codes that were used to generate the plots in this section can 

be found in https://github.com/dinesh- krishnamoorthy/Feedback- based- RTO/tree/ 

master/OverviewFeedbackRTO 
• Step 4 - Design the control structure for nominal operating 

conditions. Typically this would be the most common or im- 

portant operating region. 
• Step 5 - Design the control structure of the identified active 

constraint regions from step 3, and design MV-MV and/or CV- 

CV switching strategies between the different active constraint 

regions, as described above. Note that it may not always be 

possible to find simple switching schemes based on min- and 

max-selectors to achieve this. In such cases, some alternative 

logic scheme may be needed in some constraint regions. 

Recent works such as Reyes-Lúa and Skogestad (2019b) , Reyes- 

úa and Skogestad (2019a) , Reyes-Lúa et al. (2018) , Krishnamoorthy 

nd Skogestad (2019, 2020b) provides a detailed discussion on 

witching between active constraint regions along with a wide 

ange of application examples in the context of feedback optimiz- 

ng control. It is important to note that explicitly designing the 

witching strategies requires one to identify all the different pos- 

ible active constraint switching a priori and carefully design the 

witching logic to account for all the possible switching. As such, 

his is more suited for small-scale processes with only a few active 

onstraint regions that can be easily managed using such switching 

ogics. 

.2. Primal-dual feedback optimizing control 

In the case of primal-dual feedback controllers as described in 

ection 2.2 , the CV-MV pairing is rather straightforward, where 

or the dual controllers, it is natural to pair the Lagrange multi- 

lier with its corresponding constraint control, and for the primal 

ontrollers, it is natural to pair diagonally (i.e. pair u i with ∇ u i L )

s long as the determinant of the Hessian det (∇ 

2 
uu L ) does not 

hange sign. More precisely, here, we pair the physical MVs ˜ u to 

rive the controlled variables c = ∇ ˜ u L (λ, ̃  u , d ) to zero, and the La-

range multipliers (i.e. the dual variables) must be paired to their 

orresponding constraints. By doing so, when an active constraint 

ecomes inactive as the disturbance changes, the max-operator 

n (14) would make the corresponding Lagrange multiplier λ = 0 

nd hence changes in active constraints are handled automatically 

ithout the need for additional switching strategies. 

. Illustrative example - Williams-Otto reactor 

In this section, we use a benchmark Williams-Otto reactor ex- 

mple ( Williams and Otto, 1960 ) to provide an illustrative compar- 

son of the different model-based and model-free feedback opti- 

izing control approaches discussed above. The Williams-Otto re- 

ctor converts the raw materials A and B to useful products P and 

, along with by-products C and G, through a series of reactions 

 + B → C k 1 = 1 . 6599 × 10 

6 e −6666 . 7 /T r 

 + C → P + E k 2 = 7 . 2177 × 10 

8 e −8333 . 3 /T r 
17 
 + P → G k 3 = 2 . 6745 × 10 

12 e −11111 /T r 

The process is controlled using the feed stream F B with pure 

 component and the reactor temperature T r , i.e. the process has 

wo physical manipulated variables. The feed stream F A with pure 

 component is a disturbance to the process. The objective is to 

aximize the profits from the valuable products P and E, subject 

o purity constraints on G and A in the product stream. the steady- 

tate optimization problem is formulated as, 

in 

T r,F B 

− 1043 . 38 x P (F A + F B ) − 20 . 92 x E (F A + F B ) 

+ 79 . 23 F A + 118 . 34 F B 

s.t. x G ≤ 0 . 08 , 

x A ≤ 0 . 12 

nd the objective is to asymptotically drive the system to its opti- 

al operating point using feedback control. 

We will first only consider the case where the constraint x G = 

 . 08 is the only active constraint, and is controlled using the re- 

ctor temperature T r as shown in Fig. 12 . We then have one un- 

onstrained degree of freedom, namely feed stream F B , for which 

e compare the performance of different model-based and model- 

ree approaches detailed in Sections 3 and 4 . This is schematically 

epresented in Fig. 12 , where the self-optimizing CV c is given by 

he different methods. The simulation results shown in this sec- 

ion were performed using MATLAB v2020b 3 . 

https://github.com/dinesh-krishnamoorthy/Feedback-based-RTO/tree/master/OverviewFeedbackRTO
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Fig. 13. Comparison of four different model-based feedback optimizing control approaches on the benchmark Williams-Otto reactor example. 
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emark 6. Note that the focus of the simulation results through- 

ut this paper is the asymptotic behavior of the different ap- 

roaches, and not the transient behavior. As such, one may find 

lternative tuning parameters for the controllers that provides a 

ifferent transient behavior. 

.1. Model-based approaches 

In this section, we consider the case with no plant-model mis- 

atch. The model used in this section is based on the three re- 

ction model shown in Appendix B.1 . For the unconstrained de- 

ree of freedom, F B , we compare the use of two offline methods 

amely, nullspace method ( Section 3.1.2 ) and neighboring extremal 

ontrol ( Section 3.1.3 ), and two online methods; two-step approach 

 Section 3.2.1 ) and Feedback RTO ( Section 3.2.2 ). 

The nullspace method and neighboring extremal control were 

esigned around the nominal operating conditions of F A = 1 . 3 kg/s. 

ig. 13 shows the simulation results using the different model- 

ased approaches. The true steady-state optimum is shown in 

lack dotted lines. 

The simulation starts at the nominal condition of F A = 1 . 3 kg/s, 

nd one can see that all the four methods asymptotically con- 

erge to the optimum. At time t = 2 h, the disturbance changes to 

 A = 1 kg/s. As the process is driven away from the nominal oper-

ting conditions, self-optimizing control and neighboring extremal 

ontrol leads to some steady-state offset from the true optimum, 

ince these are based on local linear approximation around the 

ominal operating conditions. The online model-based methods, 

n the other hand, are able to asymptotically drive the process to 

ts optimum, since these are based on local linear approximation 

round the current operating point. In general, it can be seen that 

he model-based approaches converge to the optimum in the same 

ime scale as the plant dynamics. 

.2. Model-free approaches 

In this section, we now compare the model-free approaches 

or the unconstrained optimum. Fig. 14 shows the simulation re- 
18 
ults where the steady-state cost gradient is estimated using four 

ifferent approaches, namely, the classical extremum seeking con- 

rol ( Section 4.2 ), least squares estimation approach ( Section 4.3 ), 

ast Fourier transform ( Section 4.5 ) and the Kalman filter approach 

 Section 4.4 ). It can be clearly seen that all the four methods are

ble to asymptotically drive the process to its optimum without 

he need for rigorous nonlinear process models. However, the con- 

ergence to the optimum is significantly slower compared to the 

odel-based approaches shown in Fig. 13 . 

.3. Combination of model-based and model-free approaches 

We now consider the case with plant-model structural mis- 

atch by considering a model with only two reactions and five 

omponents, as shown in Appendix B.2 , whereas the plant is given 

y the three reaction system as shown in Appendix B.1 . 

We first use the model-based gradient estimation method (from 

ection 3.2.2 ), where the gradient is estimated using the struc- 

urally wrong model without any additional correction. The sim- 

lation results are shown in Fig. 15 (red solid), where it can be 

learly seen that the true plant optimum (shown in black dotted) 

s not reached due to the model structural mismatch. 

We now consider two approaches to account for the steady- 

tate error induced by the structural mismatch. The first approach 

s based on the setpoint correction using the modifier term δJ 

hich is computed based on the plant gradient and the model 

radient (cf. Section 5.1 ). The simulation results using the modi- 

ed setpoint is shown in Fig. 15 (black solid), where it can be seen

hat by modifying the setpoint using the estimated plant gradient, 

e are able to asymptotically drive the system to its true optimum 

shown in black dotted) despite using a structurally wrong model. 

The second approach that is used here is based on the dis- 

repancy modeling framework (cf. Section 5.2 ). Here we use a Ra- 

ial Basis Function network (RBFN) as the function approximator 

ε (u ) to account for the discrepancy between the model predicted 

ost and the measured cost εJ = J − J model , as done by Matias and

äschke (2019) . The estimated gradient is given by (54) as de- 

cribed in Section 5.2 . The simulation results using this approach 
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Fig. 14. Comparison of four different model-free feedback optimizing control approaches on the benchmark Williams-Otto reactor example. 

Fig. 15. Simulation results showing the effect of plant-model mismatch, and comparison of two approaches that combines model-based and model-free methods to handle 

structural mismatch. 
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s shown in Fig. 15 (red dashed), where it can be seen that the

lant is asymptotically driven to its true optimum (shown in black 

otted) despite using a structurally wrong model. 

.4. Handling changes in active constraint sets 

So far, we considered a case where the set of active con- 

traints remained the same. We now consider a case, where 
19 
he disturbances varies as shown in the bottom right subplot in 

ig. 17 which causes the set of active constraints to change. The 

wo paradigms (cf. Sections 2.1 and 2.2 ) to handle the changes in 

he active constraint sets are compared in this section. 

.4.1. Region-based control 

In this approach, we have to predetermine the different active 

onstraint regions and design control structures for each active 
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Fig. 16. Control structure design (a) Region-based control with selectors to switch between the active constraint regions (cf. paradigm 1 in Fig. 3 a) (b) Primal-dual feedback 

control approach (cf. paradigm 2 in Fig. 3 b). 
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onstraint region and switch between the different regions using 

lassical control elements as detailed in Section 6.1 . 

Here we show how to identify the different active constraint 

egions without using process models. Since there are two con- 

traints, we can at most have 2 2 = 4 possible active constraint re- 

ions, namely, 

1. x G and x A active 

2. only x G active 

3. only x A active 

4. no active constraints 

However, the purity constraint on x G is very low such that the 

ne can expect the constraint on x G to be always active. Therefore, 

e can eliminate regions 3 and 4, and design control structures 

or regions 1 and 2 only, and design a suitable switching strategy 

etween these two regions. It is important to note that eliminating 

ctive constraint regions 3 and 4 without solving the optimization 

roblem offline requires good process understanding and insight. 

In region 1, optimal operation occurs when the purity con- 

traints on x G and x A are active. Therefore, this region corresponds 

o active constraint control. One possible control structure design 

ere is to control x G at its limit of 0.08 kg/kg using the reactor

emperature T r and control x A at its limit of 0.12 kg/kg using the 

eed rate F B . 

In region 2, optimal operation occurs when the purity con- 

traints on x G is active, which is controlled using the reactor 

emperature, and we have one unconstrained degree of freedom, 

amely F B , which should be used to control a self-optimizing vari- 

ble. Here we use the steady-state cost gradient computed using 

he model (assuming no structural mismatch). 

Automatic switching between the two regions can be achieved 

y using a max selector. Fig. 16 a shows the proposed control struc- 

ure design using this approach. The simulation results are shown 

n Fig. 17 (red dashed), where it can be seen that as the distur- 

ance changes from F a = 1 . 4 kg/s to F a = 1 . 9 kg/s at time t = 3 h,

he max constraint on x A becomes active, and the max-selector 

witches from the gradient controller to the x A composition con- 

roller, hence achieving asymptotic optimal operation, as the op- 

rating condition changes. Similarly, at time $t = 6$h, the distur- 

ance reduces to $F_a = 1.5$kg/s, and the selector switches from 

he $x_A$ composition contrtoller to the gradient controller. 

.4.2. Primal-dual feedback optimizing control 

Alternatively, one can use the primal-dual feedback controllers 

s detailed in Section 2.2 , where we consider the dual variables λx A 

nd λx G as additional degrees of freedom which are used to con- 

rol the constraints to its limit, while ensuring that these are non- 
20 
egative using a max-selector. The primal MVs F B and T r are used 

o control the gradient of the Lagrangian function to a constant 

etpoint of zero. The proposed control structure using the primal 

nd dual variables is shown in Fig. 16 b. Here, the cost and con- 

traint gradients are estimated using a model (assuming no struc- 

ural mismatch). The simulation results are shown in Fig. 17 (black 

olid), where it can be seen that as the disturbance changes from 

 a = 1 . 4 kg/s to F a = 1 . 9 kg/s at time t = 3 h, and again at time

t = 6$h to $F_a = 1.5$kg/s, the proposed control structure is able to 

chieve asymptotic optimal operation without the need to iden- 

ify the active constraint regions a priori , and without the need to 

xplicitly design additional switching strategies. However, this ap- 

roach is less robust to faulty control loops since the constraints 

re controlled indirectly by updating the Lagrange multipliers. For 

xample, we simulated a case where F B saturates at 4 kg/s for the 

ame disturbance profile. In the primal-dual approach, the con- 

traints on x G as well as x A were violated, since the constraints 

re controlled indirectly by updating λ. Whereas in region-based 

pproach, the constraint on x G was still feasible, since this was di- 

ectly controlled by T r and is therefore not affected when F B satu- 

ates. This is as expected and the simulation results are not shown 

ere for the sake of brevity. 

. Discussion 

In this section, we discuss the main distinguishing properties of 

he different feedback optimizing control approaches. 

.1. Rigorous process models 

Model-free methods, as the name suggests, does not need rig- 

rous nonlinear models, circumventing the modeling related chal- 

enges. Rigorous nonlinear process models are required only by 

he model-based methods. The offline model-based approaches 

eviewed in Section 3.1 requires steady-state process models to 

hoose the best measurement combination as self-optimizing con- 

rolled variables. Models are used online to estimate the cost gra- 

ient, which are then controlled to a constant setpoint of zero. 

f the steady-state models are used online, then the models can 

e updated only using the steady-state process measurements. 

his leads to steady-state wait time issues ( Darby et al., 2011 ). 

herefore, in order to use transient measurements, it is recom- 

ended to use dynamic models for online model-based methods 

 Krishnamoorthy et al., 2019c ). 
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Fig. 17. Comparison of region-based control with selectors (cf. paradigm 1 in Fig. 3 a) and the primal-dual feedback control approach (cf. paradigm 2 in Fig. 3 b) on the 

benchmark Williams-Otto reactor example. 
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.2. Measurement requirements 

Since optimal operation is achieved using feedback control, the 

hoice of measurements that are available affects the applicability 

f the different methods. 

For active constraint control, direct measurements of the con- 

traints are required. It is reasonable to assume that the constraints 
21 
re typically measured in most applications, since these are re- 

uired for monitoring the process operations anyway. 

For the unconstrained optimum, models can be used offline to 

elect a linear combination of a subset of the available measure- 

ents (cf. Section 3.1 ). Online model-based gradient estimation 

ethods, that relies on the use of state and parameter estimators, 

equires sufficient measurements such that the states and the pa- 



D. Krishnamoorthy and S. Skogestad Computers and Chemical Engineering 161 (2022) 107723 

r

t

r

b

c

c

c

J

w  

p  

r

s

r

8

t

a

t

i

e

i

m

s

c

W

a

m

p

i

f

fl

e

l

a

c

(  

i

p

f

c

t

o

m

d

n

t

b

n

o

8

d

p

e

s

o

t

e

t

c

F

f

p

c

(

e

t

s

R

s

n

p

m

a

8

c

c

m

t

t

a

v

p

m

g

t

p

fi

m

i

8

q

c

r

c

p

F

e

a

s

p  

p

o

h

t

g

f

l

i

8

t

e

ameters being estimated are observable. Since the model maps 

he measurements to the cost, direct cost measurements are not 

equired for model-based methods (cf. Section 3.2 ). 

On the other hand, the model-free methods require the cost to 

e directly measured. However, note that in many chemical pro- 

esses, direct measurement of the cost is often not available, espe- 

ially, if the cost function is comprised of several terms. A typical 

ost function of a chemical process has the form 

 = p Q Q + p F F − p 1 P 1 − p 2 P 2 + . . . (55) 

here Q, F , P 1 and P 2 are the flow rates (in [kg/s]) of utility, feed,

roducts 1 and 2 respectively, and p Q , p F , p 1 and p 2 are the cor-

esponding prices (in [$/kg]). This means that accurate flow mea- 

urements of all the components comprising of the cost function is 

equired, in order to employ model-free methods. 

.3. Accuracy 

The offline model-based methods are based on local lineariza- 

ion around some nominal optimal point. Consequently, controlling 

 linear measurement combination leads to steady-state losses if 

he operation drifts far away from the nominal optimal point, even 

f there is no plant-model mismatch. 

Furthermore, in the presence of plant-model mismatch, the 

stimated gradient differs from the actual plant gradient, lead- 

ng to suboptimal operation. In the presence of structural mis- 

atch, parameter estimators (such as the one used in the two- 

tep method and the feedback RTO method) are not sufficient to 

lose the optimality gap, as clearly demonstrated by Roberts and 

illiams (1981) , Chachuat et al. (2009) to name a few. This was 

lso demonstrated in Fig. 15 . Consequently, in online model-based 

ethods, where the cost gradient is estimated using the model, 

lant-model mismatch implies that the plant may not be driven to 

ts true optimum. 

Since model-free methods estimate the plant-gradient directly 

rom the cost measurement, the estimated gradient in theory re- 

ects the true plant gradient under the assumption that the gradi- 

nt estimation algorithm is properly implemented. If not, this can 

ead to estimation errors, leading to suboptimal operation. For ex- 

mple, poor choice of the tuning parameters in extremum seeking 

ontrol has been shown to lead to inaccurate gradient estimation 

 Krsti ́c, 20 0 0 ). This important caveat is often overlooked, and there

s a clear need to better understand the sensitivity of the tuning 

arameters on the gradient estimation accuracy in many model- 

ree gradient estimation methods. 

Furthermore, as mentioned earlier, a typical cost function in a 

hemical process plant may comprise of several flowrate terms. Of- 

en, the operational profit is made by shifting smaller amounts 

f feed to the most valuable product, and very accurate flow 

easurements are required in order to capture this. In practice, 

ata reconciliation using nonlinear process models may then be 

eeded to get accurate flow estimates. In such cases, it is impor- 

ant to keep in mind that the model-free methods will not truly 

e “model-free” and may suffer from structural mismatch, since a 

onlinear process model is needed to get a measurement/estimate 

f the cost. 

.4. Disturbance rejection 

Model-based methods can handle unmeasured, but expected 

isturbances, i.e. the model captures the effect of the antici- 

ated disturbances. Whereas, model-free methods can handle un- 

xpected and unmeasured disturbances. However, it has been 

hown that changes in any disturbance may affect the accuracy 

f the gradient estimation in model-free methods. This is because, 

he effect of the disturbances on the cost measurement is often not 
22 
xplicitly accounted for in the model-free gradient estimation rou- 

ines. That is, the model-free methods typically assume that any 

hange observed in the cost measurement is induced by the input. 

or example, abrupt changes in disturbances may temporarily af- 

ect the gradient estimate, before converging to the true gradient. 

Disturbance measurements, if available, may be used to im- 

rove the gradient estimation, by explicitly accounting for the 

hange in the cost measurements caused by the disturbances, 

 Krishnamoorthy et al., 2016 ). Alternatively, one can also use an 

vent-based supervisory control to halt the gradient estimation 

emporarily following abrupt/abnormal changes in the cost mea- 

urement, similar to the steady-state detection used in traditional 

TO. This approach has been used in the context of extremum 

eeking control by Marinkov et al. (2014) . It is also important to 

ote that disturbances occurring in the same frequency as the in- 

ut perturbation leads to inaccurate gradient estimation since this 

akes it impossible to differentiate the effect of the disturbance 

nd the input on the observed cost measurement. 

.5. Convergence time 

The process knowledge available in the form of rigorous pro- 

ess models enables model-based methods to converge signifi- 

antly faster than their model-free counterparts. In model-based 

ethods, the convergence time is predominantly determined by 

he PID controller tuning. 

Model-free methods presented in Sections 4.1 –4.6 assume that 

he dynamic plant behaves like a static map. The time scale sep- 

ration required for this assumption to be valid, makes the con- 

ergence of model-free methods to be very slow. In the chemical 

rocess industry, the settling times are typically in the range of 

inutes to hours, which often leads to prohibitively slow conver- 

ence, typically in the range of hours to even days. This is one of 

he main reasons why model-free methods are not used widely in 

rocess industries, despite the popularity of such methods in other 

elds. Addressing this challenge can broaden the applicability of 

odel-free gradient estimation approaches in the chemical process 

ndustry. 

.6. Perturbation 

Model-based gradient estimation methods in general do not re- 

uire additional perturbation signals to estimate the steady-state 

ost gradient, whereas all model-free gradient estimation methods 

equire additional perturbations in order to estimate the steady 

ost gradient accurately. As a rule of thumb, the amplitude of the 

erturbations must be such that the signal-to-noise ratio SNR > 1. 

or multivariable processes, it is also important that the differ- 

nt inputs are perturbed with unique frequencies in order to be 

ble to extract the gradient from each input channel. Although 

ome dither-free ( Hunnekens et al., 2014 ) or diminishing dither ap- 

roaches ( Wang et al., 2016 ) have been studied in the literature, in

ractice some kind of additional perturbation is always required in 

rder to track changes in the optimum. In many process industries 

owever, the additional perturbations may not be desirable, since 

his can affect the product flow and quality specifications, and de- 

rade the process equipment such as valves and pumps leading to 

requent maintenance and production shutdown. This potentially 

imits the applicability of model-free gradient estimation methods 

n some process applications. 

.7. Ease of implementation and tuning 

Development of rigorous nonlinear models is a major bot- 

leneck for implementing model-based methods. Once the mod- 

ls are available, the implementation is straightforward. Meth- 
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ds such as self-optimizing control using linear gradient combina- 

ion is perhaps the easiest to implement, since it uses only stan- 

ard controllers such as PID, that have been in use for several 

ecades. Standard PID tuning rules, such as the SIMC tuning rules 

 Skogestad, 2003 ) can be used to tune the PID controllers. 

Model-free methods, on the other hand, circumvents the chal- 

enge of developing rigorous models. However, model-free gradi- 

nt estimation algorithms may require several tuning parameters, 

uch as the controller gain, perturbation frequency and amplitude. 

n addition to these, the different methods have their own tuning 

arameters. For example, the classical extremum seeking control 

equires tuning the cut-off frequencies for the high-pass and low- 

ass filters. The finite difference method has the time period T as a 

uning parameter. The least squares method, FFT-based gradient es- 

imation, and the dynamic model identification requires tuning the 

ize of the moving window length N. The dynamic model identi- 

cation also requires choosing the model structure and the model 

rder, which may not be trivial. All these tuning parameters af- 

ect the accuracy and robustness of the gradient estimation, and 

he speed of convergence to the optimum. The model-free gradi- 

nt estimation methods are predominantly tuned using trial and 

rror method, and the lack of tuning guidelines can make the im- 

lementation non-trivial. 

.8. Handling nonconvexity 

So far, we assumed that the stationary point u 

∗ of the uncon- 

trained optimization problem (5) is also the local minimum (cf. 

ssumption 1 ). It may happen that this assumption may not hold 

or some processes. In this case, when we estimate the steady-state 

ost gradient and drive it to a constant setpoint of zero, this does 

ot always correspond to the optimal operating point. By driving 

he cost gradient to zero, the system in principle only converges to 

 stationary point. This means that if Assumption 1 does not hold, 

hen the stationary point may be a saddle point or even a local 

aximum. 

Bayesian optimization is an alternative model-free approach 

hat can be used to drive the processes to the global minimum 

ithout the need for detailed process models. Bayesian optimiza- 

ion is a black-box optimization approach where the real-time cost 

easurement is used to update a Gaussian process (GP) model. 

hat is, it builds a surrogate model for the objective function, 

hich is updated online by conditioning on the observed cost 

easurements. An acquisition function defined using the GP sur- 

ogate model is then optimized to compute the next control in- 

ut ( Mockus, 2012; Jones et al., 1998; Frazier, 2018; Shahriari et al., 

015 ). The acquisition function is chosen to trade-off exploitation 

s. exploration in order to find the global minimum. Bayesian opti- 

ization can be seen as a model-free approach that drives the pro- 

esses to its global minimum using only the real-time cost mea- 

urement. However, it is not strictly a feedback control problem, 

ince it involves optimizing the acquisition function at each time 

tep to compute the next input. 

.9. Scalability to large-scale systems 

The scalability of feedback-optimization in general is rather lim- 

ted compared to traditional RTO framework, and there are differ- 

nt facets to the scalability issue, as discussed below: 

Complicated control structure design- With large multivariable 

lants with several inputs and constraints, the number of relevant 

ctive constraint regions increases. This implies to poor scalabil- 

ty for region-based control (paradigm 1) discussed in Section 2.1 . 

irstly, identifying all the relevant active constraint regions a pri- 

ri can be challenging. Secondly, designing control structures for 

ach active constraint region and designing switching strategies 
23 
etween the different control configurations can lead to a com- 

licated and messy control structure design. Furthermore, it may 

lso happen that it may not be possible to find a pairing for the 

electors that is unique in all constraint regions. This makes main- 

enance and monitoring of the control loops more challenging, and 

erhaps one would then be better off with the traditional RTO 

ramework. 

Alternatively, the scalability issues can be handled by using 

he primal-dual feedback control paradigm detailed in Section 2.2 . 

his is because, this approach does not require identifying the 

ctive constraint regions a priori . Secondly, the CV-MV pairing is 

ather straightforward in this approach as discussed in Section 6.2 . 

urthermore, the controlled variables for both the dual con- 

rollers and the primal controllers remain the same throughout 

cf. (14) ). This was also one of the main motivations behind 

he distributed feedback optimizing control structure proposed by 

rishnamoorthy (2021a) 

Multivariable gradient estimation - In most model-free gradient 

stimation methods, the gradient estimation gets more challeng- 

ng as the number of inputs increases. This is due to the unique 

erturbation frequency required to extract the effect of the input 

n the cost measurement. Due to the time scale separation re- 

uirement, the integral gain is limited by the slowest perturbation 

requency, affecting the convergence speed. Furthermore, in large- 

cale processes, the cost may be measured several units down- 

tream from the input perturbation. This causes additional time 

elays in the process dynamics, which subsequently affects the 

onvergence speed due to the time scale separation requirement. 

n such large scale processes, it is also important to ensure that the 

egulatory control loops that does not have an impact on steady- 

tate economics (such as level control or pressure control), does 

ot attenuate or amplify the perturbations, as this can lead to er- 

oneous gradient estimation. Therefore, the model-free gradient es- 

imation algorithms typically are more suited for unit operations, 

here the cost is measured locally. 

. Summary 

In this paper we provided a comprehensive overview of the dif- 

erent approaches that aims to achieve asymptotic optimal oper- 

tion using feedback control without the need to solve numeri- 

al optimization problems online. We firstly conclude this review 

y pointing out that there exists a wide array of different meth- 

ds that can be used to achieve asymptotic optimal process opera- 

ion using feedback control, as an alternative to traditional steady- 

tate RTO. Secondly, we showed that the different methods have 

heir own advantages and disadvantages, and differ on key proper- 

ies ranging from the choice of controlled variables, the degrees of 

reedom, type of measurements used, the need for process mod- 

ls, convergence speed, accuracy, ease of implementation, scalabil- 

ty etc. Understanding the key distinguishing properties of the dif- 

erent feedback optimizing control methods is important to choose 

he right tool for the right problem, such that the benefits of online 

rocess optimization can be exploited in a wide range of applica- 

ions. 
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ppendix A. Loss due to back-off

Consider the optimization problem (1) , but with the set of ac- 

ive constraints given by additional back-off

 A ( ̃  u , d ) + ε = 0 

he Lagrangian function is then given as 

 (λ, ̃  u , d , ε ) = J( ̃  u , d ) + λT 
A 
(C A ( ̃  u , d ) + ε ) (A.1)

ssuming there exists a unique solution for each ε , the necessary 

onditions of optimality 

∂L 

∂ ̃  u 

= 

∂ J 

∂ ̃  u 

+ λT 
A 

∂C A 

∂ ̃  u 

= 0 (A.2a) 

 A ( ̃  u , d ) + ε = 0 (A.2b) 

etermines the optimal primal and dual variables ˜ u 

∗( ε ) and λ∗
A 
( ε ) 

espectively, as a function of the back-off parameter ε . 
Since C A depends on ε through 

˜ u , differentiating (A.2b) w.r.t ε 
ives 

∂C A 

∂ ̃  u 

∂ ̃  u 

T 

∂ ε 

+ 1 = 0 (A.3) 

Let the optimal value function be denoted as J ∗( ε ) = 

( ̃  u 

∗( ε ) , d ) , and the sensitivity of the optimal value function w.r.t

 can be expressed as 

∂ J ∗( ε ) 

∂ ε 

= 

∂ J 

∂ ̃  u 

∂ ̃  u 

T 

∂ ε 

(A.4) 

rom (A.2a) and (A.3) , this can be rewritten as, 

∂ J ∗( ε ) 

∂ ε 

= −λT 
A 

∂C 

∂ ̃  u 

∂ ̃  u 

T 

∂ ε 

= λT 
A 

(A.5) 

herefore it can be seen that the sensitivity of the optimal value 

unction is given by the Lagrange multiplier. 

ppendix B. Williams-Otto reactor model 

1. Williams-Otto reactor model with 3 reactions 

The Williams-Otto reactor model with three reactions and six 

omponents: 

 + B → C k 1 = 1 . 6599 × 10 

6 e −6666 . 7 /T r 
24 
 + C → P + E k 2 = 7 . 2177 × 10 

8 e −8333 . 3 /T r 

 + P → G k 3 = 2 . 6745 × 10 

12 e −11111 /T r 

nd is given by the following set of ordinary differential equa- 

ions: 

˙ 
 A = 

1 

m r 
(F a − (F a + F b ) x A ) − x A x B k 1 ) (B.1) 

˙ 
 B = 

1 

m r 
(F b − (F a + F b ) x B ) − x A x B k 1 − x B x C k 2 ) (B.2) 

˙ 
 C = − 1 

m r 
(F a + F b ) x C + 2 x A x B k 1 − 2 x B x C k 2 − x C x P k 3 (B.3) 

˙ 
 p = − 1 

m r 
(F a + F b ) x P + x B x C k 2 − 0 . 5 x P x C k 3 (B.4) 

˙ 
 E = − 1 

m r 
(F a + F b ) x E + 2 x B x C k 2 (B.5) 

˙ 
 G = − 1 

m r 
(F a + F b ) x G + 1 . 5 x P x C k 3 (B.6) 

here m r = 2105 kg is the reactor holdup and x (·) are the com-

onent mass fractions. This set of equations is used to simulate 

he plant through out this paper, and is also used as the model in 

ections 7.1 and 7.4 . 

2. Approximate Williams-Otto reactor model with 2 reactions 

Plant-model mismatch is demonstrated by using a two-reaction 

pproximation of the Williams-Otto reactor, which considers the 

ollowing two reactions with five components: 

A + 2 B → P + E k 1 = 1 . 655 × 10 

8 e −8077 . 6 /T r 

 + B + P → G k 2 = 2 . 611 × 10 

13 e −12438 . 5 /T r 

nd is given by the following set of ordinary differential equa- 

ions: 

˙ 
 A = 

1 

m r 
(F a − (F a + F b ) x A ) − x A x 

2 
B k 1 − x A x B x P k 2 (B.7) 

˙ 
 B = 

1 

m r 
(F b − (F a + F b ) x B ) − 2 x A x 

2 
B k 1 − x B x B x P k 2 (B.8) 

˙ 
 P = − 1 

m r 
(F a + F b ) x P + x A x 

2 
B k 1 − x A x B x P k 2 (B.9) 

˙ 
 E = − 1 

m r 
(F a + F b ) x E + 2 x A x 

2 
B k 2 (B.10) 

˙ 
 G = − 1 

m r 
(F a + F b ) x G + 3 x A x B x P k 2 (B.11) 

his set of equations is used as the model in Section 7.3 , whereas

he plant is still given by the three reaction model. 
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