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Abstract
Recirculating Aquaculture Systems are known to have its water quality conditions controlled, de-
spite being common to have a simple control structure and a lot of human interaction to achieve
that. To avoid long-term exposure to toxic levels of carbon dioxide and ammonia, its concentration
needs to be monitored more often than manual measurements are available. In this work, we ana-
lyze the multilayer perceptron’s ability to monitor water quality components that are important for
the development of the fish. This alternative method for monitoring complements the current sen-
sor structure and has the potential to substitute the laboratory procedures for manual measurement
collection.
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1. Introduction

Recirculating Aquaculture Systems (RAS) have two dynamic sub-systems: fish metabolism and
water treatment. The water treatment system is responsible by keeping the water quality at high
standards, reducing water consumption, and reducing contact with external pathogens (European
Market Observatory for Fisheries and Aquaculture Products, 2021).

Regarding the water quality, some components are important to be monitored and controlled due
to toxicity, but are hard or not able to be measured continuously, such as ammonia. In addition, it
requires either several sensors or a central sensor station with sampling system to get information
about the levels of dissolved carbon dioxide and ammonia in all fish tanks and water treatment
system. One way of using information of the process to estimate the concentration of these toxic
components is by using soft sensors (Fortuna et al., 2007).

The soft sensor technique is a combination of data, for parameter estimation, and process knowl-
edge, for feature selection. The development of the data-driven models can be done, for example,
using machine learning models, such as feedforward neural networks (FNN). In this work, the
main objective is to apply multilayer perceptron (MLP) (Werbos, 1974), which is a classic type of
FNN and a universal approximator (Hornik et al., 1989), as a soft sensor for recirculating aqua-
culture of Atlantic salmon (Salmo salar).

In RAS, even if fish, feed and waste production increase in an exponential way, the goal is that the
water quality should be kept stable and good. Measurements of ammonia are performed manually
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daily, whereas CO2 is measured continuously at least in one point in the system. However, their
levels might vary during the day depending on feeding and other factors, and data about this may
be missed. Optimizing the water quality and fish growth would be easier with higher resolution
of information. In addition, manual collection and laboratory analyzes are time consuming and
therefore costly. Therefore, it is useful to develop an alternative method to monitor these water
quality variables.

As the system is assumed to reach a steady state after each day, the water treatment system is
approximated to a steady-state model developed in previous work (Dos Santos et al., 2021). The
training and validation data are acquired from this model, where some parameters are considered
as uncertainties. To improve the soft sensor identification, the uncertainties are changed using latin
hypercube sampling (LHS) (Jin et al., 2005), so it contains the operating region, which provides
condition for fish optimal growth. After addition of white noise, the data is used to train different
MLP configurations for predicting carbon dioxide, ammonia and ammonium concentrations.

2. Process Description

Figure 1 shows a diagram of the RAS this work is foccused on. The process consists of a fish
tank, a biofilter, a stripper and an oxygen cone. The model is a simplified version of the process,
as it does not consider the effect of the water quality on the fish metabolism, if the conditions are
kept within bounds. This assumption is reasonable for each phase of the fish life, which can last
from weeks to years depending on a lot of factors. Therefore, this work is only valid for the phase
the model represents, which is the smolt phase. This could be easily extended to other phases
by changing some parameters in the model, such as the amount of product generated by the fish
metabolism per kg of fish feed.

The measurements that are available from sensors or human addition include recirculating volu-
metric flow rate, q; pH; fish feed rate, F ; buffer additions, ṁbu f f er; base additions, ṁbase; makeup
water, qm; air inlet flow rate, ṁair; makeup oxygen, ṁO2 ; average salinity, S; average temperature,
T . More details about the process can be found in Dos Santos et al. (2021).
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Figure 1: Process diagram of a recirculating aquaculture system
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3. Methodology

In order to develop a soft sensor, a standard procedure was followed. Gather data, preprocess it
and divide it into training and validation data. After that, fit the model and choose the best model
of validation phase. And finally, test it with industrial data.

3.1. Training and Validation Data Acquisition

For the training and validation data acquisition, 6967 steady-state data points were generated
within the region described by Table 1, using CasADi v3.5.5 (Andersson et al., 2019) in Python
v3.8.8. 5967 of these data points were generated using latin hypercube sampling (LHS) built in
pyDOE package in Python. LHS is a popular algorithm for planning computer experiments cov-
ering the entire range of uncertainties and disturbance in an optimally and distributed way for
training. The rest was generated randomly within the same region for validating the soft sensor.
After that, 1% white noise was added to both input and output data of both training and validation
data.

Table 1: Region of operation

Parameter Mean Unit Range Description

G/L 2.7 - ± 50% Gas-liquid ratio in equilibrium over the stripper
ξB 0.8 - ± 25% Biofilter efficiency
T 14 ◦C ± 30% Average temperature of the system
pHm 7.0 - ± 10% pH of the makeup water
yin

CO2
4.15e-04 - ± 10% CO2 composition in the air inlet

S 15.95 ppt ± 30% Average salinity of the system
pHB

des 7.2 - ± 1% Desired pH for the biofilter
q 20 m3/min ± 50% Recirculating volumetric flow rate
F 580.6 g/min + 50% Fish feed rate

3.2. Data Preprocessing

Some concentrations are really low in RAS, when comparing with other concentrations. There-
fore, it is essential that all data is submitted to preprocessing. As the soft sensor model applied
in this work is a deep learning neural network, the normalization of the datasets uses a minmax
calculation of the training dataset. After that, the datasets are ready to be used to train and validate
the soft sensor.

3.3. Soft Sensor

The feedforward neural network (FNN) architectures were created and optimized using Auto-keras
package (Jin et al., 2018), which is a package in Python that automatizes the neural architecture
search (NAS) of models supported by another python package named Keras.

In this work, the FNNs are multilayer perceptron (MLP), trained using backpropagation method
with a batch size of 500 samples. The objective function of the NAS was the validation loss, the
loss function was the mean squared error, and the maximum number of trials is 50. The features
were chosen based on knowledge of the process and the available measurements in a real RAS.

After choosing the model with the lowest validation loss, the MLP performance was tested pre-
dicting the targets concentration from real data. To avoid breaking the non-disclosure agreement,
the collected industrial data was normalized. The performances were compared using the root
mean squared error between scaled predicted and scaled data.
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4. Results

The choice of inputs was based on the available measurements from sensors or manual insertion
of inlet streams described on the previous section. Three types of models were tested: multiple-
input, single-output MLP (MISO-MLP), multiple-input, multiple-output MLP (MIMO-MLP), and
a hybrid model, which consists of a MIMO-MLP predicting ammonium and dissolved CO2 con-
centrations with ammonia concentration being calculated using the equilibrium equation, see Eq.
1. The inputs of the models were the same for MISO-MLPNH+

4
and MISO-MLPNH3 models: fish

feed rate, F , recirculating volumetric flow rate, q, pH in the tank, pHT . The MIMO-MLP, MISO-
MLPH2CO3 and the hybrid models’ features included the same as the previous with addition of a
new feature: air inlet flow rate, ṁair.

cT
NH3

=
K3(S,T ) cT

NH+
4

cT
H+

(1)

where the equilibrium constant, K3, is dependent on salinity and temperature, and the concentra-
tions unit is mmol/L.

Figure 2 shows the prediction of the validation data using the MISO-MLP models, Figure 3 shows
the results using the hybrid model, and Figure 4 shows the results using the MIMO-MLP model.
Comparing Figures 2 and 3, prediction of ammonium and dissolved carbon dioxide were similar,
but ammonia predictions are worse using the hybrid model. Comparing Figures 2 and 4, prediction
of ammonia is slightly worse on the extremes using MIMO-MLP, and the other predictions were
similar.
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Figure 2: Prediction of validation data using the MISO-MLP models separately
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Figure 3: Prediction of validation data using the hybrid model

In Table 2, we summarize the performance of the models at the validation phase using the RMSE
index. The best MLP architecture for this case study was the MISO-MLP models put together,
which gave the lowest final RMSE at the validation phase, and MIMO-NLP model was the second
best giving similar, but slightly higher, RMSE.
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Figure 4: Prediction of validation data using the MIMO-MLP model

Table 2: Summary of the models performance at the validation phase - RMSE index

Output MISO-MLPs Hybrid MIMO-MLP

cT
H2CO3

0.0645 0.0787 0.0694
cT

NH+
4

0.1204 0.1201 0.1230

cT
NH3

0.1322 0.2611 0.1351
Final 0.1097 0.1720 0.1129

Their architecture of the MLPs are described in Table 3. MISO-MLPH2CO3 model has two dense
hidden layers with 32 nodes each using the rectified linear activation function (ReLU), while the
others have one dense hidden layer, but with 64 and 128 nodes using the same activation function
on MISO-MLPNH+

4
and MISO-MLPNH3 models, respectively.

Table 3: Number of nodes in each layer of each MISO-MLP model

Layers MISO-MLPH2CO3 MISO-MLPNH+
4

MISO-MLPNH3

Input 4 3 3
Normalization 3 3 3
Dense1 32 64 128
Dense2 32 0 0
Dropout 0 64 128
Output 1 1 1

The prediction of the industrial data using the MISO-MLP models is shown in Figure 5. The
predicted values of ammonia concentration seem to be closer to the real data compared with am-
monium predictions, which is unexpected. The predicted cH2CO3 were the same for the first few
samples, which means that the model could not extract enough information from the features on
those points.

5. Discussion

The prediction of ammonia was revealed to be much harder than of ammonium, resulting in a poor
prediction of that variable. This might be due to the noise of the input variables that affects a lot
the ammonia concentration, as its magnitude is much smaller. This effect does not disappear after
preprocessing the data; it expands instead, as the magnitude after normalization is approximately
1000 times higher.

The MISO-MLP models gave the best performance due to different input features to each model,



6 A.M. dos Santos et al.

5 10 15
Sample number

0.0

0.5

[H
2C

O 3
] [

m
m

ol
/L

] Actual values
Predicted values

(a) Prediction of cT
H2CO3

5 10 15
Sample number

0.0

0.5

1.0

[N
H

+ 4
] [

m
m

ol
/L

] Actual values
Predicted values

(b) Prediction of cT
NH+

4

5 10 15
Sample number

0.0

0.5

[N
H 3

] [
m

m
ol

/L
] Actual values

Predicted values

(c) Prediction of cT
NH3

Figure 5: Prediction of industrial data using the MISO-MLP models

as adding not so important features can make NAS more complex and add a lot of useless cases, as
happened with the MIMO-MLP model. This could be solved by increasing the maximum number
of trials at the NAS step, but it would take longer, and would still have the possibility of finding
different local minimum, for better or worse.

6. Conclusion

The measurement of key waste products are not always easy to collect in real-time or at a required
frequency, which reduces the possibility to stabilize and optimize the water quality for the fish.
This can be improved by using machine learning models, such as multilayer perceptron.

The MLP models trained in this work are deep neural networks, and its architectures were opti-
mized used an automated neural architecture search and tuning of hyperparameters. Three config-
urations were compared: MISO-MLPs; hybrid model; and MIMO-MLP. The best configuration
was the MISO-MLP models together, although their performance was not so good. This might
be due to the possibility of NAS reaching a local minimum or the models could not capture the
information it needed, so a different type of model could perform better. A digital twin using these
models for monitoring would perform better than the hybrid model, and the MIMO-MLP model,
but would also complement the manual measurements, when estimating dissolved CO2 and NH3
concentrations.
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