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Abstract 

This work proposes a strategy to track steady-state changes in active constraints and 

minimize dynamic constraint violations in order to achieve system-wide optimal 

operation using simple feedback control structures and logic blocks. The strategy is based 

on the recently proposed primal-dual feedback-optimizing control scheme that optimally 

handles steady-state changes in active constraints. However, the constraints are controlled 

in a slow time scale by updating the dual variables (Lagrange multipliers). To reduce 

dynamic constraint violations, we propose a “fix-up” to the primal-dual scheme with 

direct control of hard constraints. We show that the improved method can reduce profit 

loss in the long run by allowing for smaller back-off from hard constraints. The 

application is to coordinated control of gas-lifted oil wells. 

Keywords: Distributed feedback-optimizing control, Oil/gas, Production optimization. 

1. Introduction 

The optimal process operation involves making decisions in real-time to meet production 

goals. This is typically done in the context of real-time optimization (RTO) using 

mathematical concepts, process models, and real-time measurements. In the 80s, there 

was an increasing interest in replacing model-based numerical solvers with a simple 

feedback loop, named feedback-optimizing control. The idea is to translate the economic 

objective into a process control objective by finding a function of the controlled variables 

(CVs), and when it is held constant, it leads to the optimal adjustment of the manipulated 

variables (MVs). These MVs drives the process to optimal operating condition (Morari 

et al., 1980). Twenty years later, Skogestad (2000) suggested replacing the term “optimal 

adjustments” with “acceptable adjustments” (in terms of the loss). This idea is known as 

self-optimizing control (SOC). In SOC, “when the optimum lies at some constraints, we 

use active constraint control where the available MVs tightly control the constrained 

variables”. When the optimum may be unconstrained, the self-optimizing CVs are 

measured variables or combinations of them. We need a good model to determine 

(offline) an accurate self-optimizing CV, and it can be time-consuming if we have a 

complex and large-scale system. Not considering noise, the ideal self-optimizing CV is 

the gradient of the cost function w.r.t. the control input, that when we keep at a constant 

setpoint of zero, it satisfies the necessary conditions of optimality (Halvorsen et al., 2003). 

In constrained cases, the process reaches ideal optimal operating conditions when the 

gradient of the Lagrange function w.r.t. to control input is kept at a constant setpoint of 

zero. If the objective function is additively separable, we can decompose the problem and 

let each local system controls its local gradients of the Lagrange function w.r.t. local 
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control input. In this framework, we need a central coordinator to update the shadow 

price of shared constraints and broadcast it to every subsystem (Wenzel et al., 2016). 

2. Recent Works and Problem Statement 

Consider the following steady-state optimization problem of 𝑁 different subsystems. 

min
𝐮

 𝐽(𝐮, 𝐝) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
 (1a) 

𝑠. 𝑡.   𝐠s(𝐮, 𝐝) ≤ 𝟎 (1b) 

where 𝐮𝑖 ∈ ℝ𝑛𝐮𝑖  denotes the MVs for subsystem 𝑖 , 𝑛𝐮𝑖
 is the number of MVs in 

subsystem 𝑖, and 𝐮 = [𝐮1 . . . 𝐮𝑁]T, 𝐝𝑖 ∈ ℝ𝑛𝐝𝑖  denotes the disturbances in subsystem 

𝑖 , 𝑛𝐝𝑖
 is the number of disturbances in subsystem 𝑖 , and 𝐝 = [𝐝1 . . . 𝐝𝑁]T , 

𝐽𝑖: ℝ𝑛𝐮𝑖 ×  ℝ𝑛𝐝𝑖 →  ℝ  is a function that denotes the local objective of subsystem 𝑖 , 

𝐠𝐬: ℝ𝑛𝐮 ×  ℝ𝑛𝐝 →  ℝ𝑛𝐠𝐬 is a function that denotes the inequality (shared) constraints. 𝑛𝐠𝐬
 

is the number of constraints. The Lagrangian function of problem (1) is ℒ(𝐮, 𝐝, 𝝀𝒈,𝒔) =

∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁
𝑖=1 + 𝝀𝒈,𝒔

𝑇 𝐠s(𝐮, 𝐝) , where 𝝀𝒈,𝒔 ∈ ℝ𝑛𝐠𝐬  is the shadow price of the (shared) 

resource constraints. The goal of problem (1) is to determine optimal MVs to achieve 

system-wide steady-state optimal operation. Our motivation is to solve problem (1) using 

a feedback control structure that handles changing active constraints.  

One possible approach is the reduced gradient approach or region-based control (Jäschke 

and Skogestad, 2012). This method is easy to implement for a simple case with a few 

regions, and the result usually converges faster than the decomposed one for a large-

scale problem. However, this method can be problematic for a complex and large case 

as the number of the region is equal to 2𝑛𝐠𝐬 . Another attractive framework is distributed 

feedback-based real-time optimization, which is also known as primal-dual feedback-

optimizing control (Dirza et al., 2021; Krishnamoorthy, 2021). This method can avoid 

solving numerical optimization problems online by having real-time iteration of 

dual/Lagrange decomposition (e.g., Wenzel et al. (2016)). Consequently, it has a central 

coordinator acting as a "slow" central constraint controller. This structure makes primal-

dual flexible in the presence of changing active constraints. The problem with this method 

is that the constraint is controlled only on the slow time scale through the manipulation 

of the shadow prices, which is only indirectly through the unconstrained optimization 

layer that affects the (physical) MVs. This causes the shadow prices (broadcasted to the 

actual plant) to be suboptimal during the transient. This condition may lead to dynamic 

violation during the transient, and later lead to an infeasible operation. This violation is 

unacceptable when we have a hard constraint. Thus, it is necessary to introduce a “back-

off” from that constraint. Note that this back-off will also apply at a steady-state 

condition, and it may then result in a considerable economic penalty, which can lead to 

profit loss. This work addresses this violation issue and aims to minimize the profit loss. 

3. Proposed Control Structure 

Mathematically, the profit loss scale is linear with the back-off parameter. One can 

express this as 𝐿𝑜𝑠𝑠 =  −𝝀𝒈,𝒔
𝑇𝜻𝒃𝒐, where 𝜻𝒃𝒐 is the back-off parameter, which means 

that by reducing the back-off parameter, one can reduce the profit loss in the long run. 
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Therefore, this paper proposes an additional structure to control a hard constraint tightly 

in the primal-dual framework to minimize the back-off parameter. 

Because the primal-dual approach only has a central constraint controller that control the 

constraints on a slow time scale, we introduce direct constraint control as a ”fix-up” to 

reduce dynamic constraint violation. The direct constraint control is based on pairing the 

constraint with a particular MV using a selector. This tightly controls any active (shared-

) hard constraints on a fast time scale. This structure automatically switches back to the 

unconstrained mode when none of those existing constraints turns active. We introduce 

this proposed control structure as primal-dual feedback-optimizing control with direct 

constraint control. The implementation is discussed in detail in Section 4 (see Fig. 2(b)). 

Selectors, which are well-known tools in the industries, are used for active constraint 

switching (Krishnamoorthy and Skogestad, 2020). The switching determines the assigned 

value to the specified MV. When using selectors, only one of some control actions is the 

actual input to the plant at any given time. For the ones that are not selected, the feedback 

loop is “broken”. Consequently, the integral term is possibly building up. Thus, it is 

essential to implement anti-windup using a back-calculation scheme. 

4. Implementation in Subsea Oil Production Network 

We consider a subsea gas-lifted oil well 

production system, consisting of 𝑁 clusters, 

that lift oil from the different reservoirs, 

completed with a fixed shared gas-lift 

compressor with limited available power. The 

production system model is like the one used 

in Dirza et al. (2021) and an additional model 

to calculate power consumption of the 

compressor as a linear function: 𝑃𝑜𝑤𝑔𝑙 =

𝜃 ∑ ∑ 𝑤𝑔𝑙,𝑖,𝑗
𝑁𝑖
𝑗=1

𝑁
𝑖=1 , where 𝜃 is a function of a 

fixed ratio of outlet and inlet pressure of the 

compressor. Further, 𝑁𝑖 is the total number of 

wells in cluster 𝑖, and 𝑤𝑔𝑙,𝑖,𝑗 is the gas-lift rate 

injected to well 𝑗 in cluster 𝑖.  

The objective function is to maximize the oil production income while minimizing the 

cost of the gas lift. The optimization problem is as follows. 

min
𝐰𝑔𝑙

 ∑ (− 𝑝𝑜,𝑖 ∑ 𝑤𝑝𝑜,𝑖,𝑗

𝑁𝑖

𝑗=1
+ 𝑝𝑔𝑙,𝑖 ∑ 𝑤𝑔𝑙,𝑖,𝑗

𝑁𝑖

𝑗=1
)

𝑁

𝑖=1
 (2a) 

𝑠. 𝑡.   𝐟(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝟎 (2b) 

         𝐠(𝐱, 𝐰𝑔𝑙 , 𝐝) ≤ 𝟎 (2c) 

        𝐠s(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝑃𝑜𝑤𝑔𝑙 - 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 ≤ 0 (2d) 

where 𝑝𝑜,𝑖 , 𝑝𝑔𝑙,𝑖 , and 𝑤𝑝𝑜,𝑖,𝑗  are the price of produced oil, the cost of gas-lift, and the 

produced oil rate of well 𝑗 in cluster 𝑖, respectively. 𝑃𝑜𝑤𝑔𝑙  is the total power consumed 

by the fixed compressor to inject the total gas-lift rate 𝑖, and 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 is the maximum 

available power, which can also be a function of back-off parameter, 𝜁𝑏𝑜. Further, 𝐱 ∈

 

Figure 1: Field illustration 
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ℝ𝑛𝐱 , and 𝐝 ∈ ℝ𝑛𝐝  are the vectors of states, and disturbance (i.e., gas-oil-ratio) for the 

entire system. 𝐰𝑔𝑙 ∈ ℝ
𝑛𝐰𝑔𝑙  is the vector of inputs for the entire system, which can be seen 

as a vector of gas-lift rate from each well, 𝐰𝑔𝑙 = [𝑤𝑔𝑙,1,1 . . . 𝑤𝑔𝑙,𝑁,𝑁𝑁]T. 

Constraint (2b) and (2c) 

represent model and physical 

constraints, respectively. We 

assume that one locally 

manages constraint (2c) to 

maintain the focus of the 

discussion. The objective 

function (2a) is additively 

separable. Moreover, Eq. (2d) is 

a linear and hard constraint. 

Thus, we can decompose the 

problem into 𝑁  subproblems. 

This case study considers 𝑁 =
3  subsea clusters, where each 

cluster has two production 

wells (see Fig. 1) and has 

different oil prices to indicate 

the type of oil produced by each 

reservoir is different. 

As primal-dual can converge to 

optimal steady-state conditions 

(Dirza et al., 2021; 

Krishnamoorthy, 2021), this 

simulation compares primal-

dual (as shown in Fig. 2(a)) 

with the proposed control 

structures (as shown in Fig. 

2(b)). Note that 𝐲 indicates the real-time measurements set. The grey boxes represent the 

physical system. The white boxes with solid blue lines represent a faster timescale 

computation block, and the white boxes with dashed red lines represent the slower ones. 

In the proposed control structure, we assume that well 1 of cluster 1 is technically more 

feasible to control hard constrained variables tightly. We have the original constraint 𝐠s ≤
0, and by using step response, we obtain that 

𝑑𝐠𝑠

𝑑𝑤𝑔𝑙,11
> 0. This means that a small value of 

𝑤𝑔𝑙,1,1 is good in terms of satisfying the constraint and a min selector is needed,  

 

Figure 2: (a) Primal-dual control structure; (b) 

Proposed control structure which combines primal-dual 

optimization with direct constraint control. 

Table 1: Controlled Variables, Setpoints, and Manipulated Variables 

Well 𝐶𝑉 𝐶𝑉𝑆𝑃 Calculated 𝑀𝑉 Physical 𝑀𝑉 

1,1 (indirect) 𝐶𝑉1,1,𝑖𝑛𝑑 = 𝛻𝑤𝑔𝑙,1,1
ℒ1,1 0 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 𝑤𝑔𝑙,1,1 

1,1 (direct) 𝐶𝑉1,1,𝑑𝑖𝑟 = 𝑃𝑜𝑤𝑔𝑙  𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 𝑤𝑔𝑙,1,1 

𝒊, 𝒋∗ 𝐶𝑉𝑖,𝑗,𝑖𝑛𝑑 = 𝛻𝑤𝑔𝑙,𝑖,𝑗
ℒ𝑖,𝑗 0 𝑤𝑔𝑙,𝑖,𝑗,𝑖𝑛𝑑 𝑤𝑔𝑙,𝑖,𝑗  

*: For the remaining well 𝒋 in cluster 𝒊 
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𝑤𝑔𝑙,1,1 =  𝑚𝑖𝑛(𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 , 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑), where 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 is the MV computed by the direct 

constraint controller, and 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 is the primal MV by the optimization block. Note that 

we, at the optimal steady-state, must have 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 ≥ 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑  or equivalently �̃�s =

𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 − 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 ≤ 𝟎 . This is the constraint controlled in the proposed new 

structure. Table 1 shows the CVs, Setpoints, and the MVs in this case study, where 

∇𝑤𝑔𝑙,𝑖,𝑗
ℒ𝑖,𝑗 = ∇𝑤𝑔𝑙,𝑖,𝑗

𝑱 + 𝜆𝒈,𝒔
𝑇 ∇𝑤𝑔𝑙,𝑖,𝑗

𝐠𝑠. Additionally, we use the same method as Dirza et 

al. (2021) to estimate steady-state cost and constraint gradient, labelled by ∇𝑤𝑔𝑙,𝑖,𝑗
�̂� and 

∇𝑤𝑔𝑙,𝑖,𝑗
�̂�𝑠, respectively. 

The key idea is that we adjust the shadow price 𝜆𝑔,𝑠 so that on the long run the value of 

the MV computed by the direct constraint control (when it is active) is equal to the optimal 

primal value computed by the layer above (see Fig. 2(b)). To determine the applied 𝜆𝑔,𝑠, 

one can use a PI controller as a central constraint controller equipped with a max selector 

that gives 0 when the constraint is no longer active. The anti-windup is necessary to avoid 

𝜆𝑔,𝑠  keeps changing in this case. Thus, this selector selects either 0 or the calculated 

shadow price �̂�𝑔,𝑠. Further, that shadow price �̂�𝑔,𝑠 at iteration 𝑘 is as follows. 

�̂�𝑔,𝑠 = 𝜆𝑔,𝑠
𝑘 + 𝐾𝑝�̃�s

𝑘 + ∑ (𝐾𝐼�̃�s
𝜏 + 𝐾𝑎𝑤(𝜆𝑔,𝑠  −  �̂�𝑔,𝑠)

𝜏
)

𝑘

𝜏=𝑘−1
 (3) 

where 𝐾𝑝, 𝐾𝐼 , and 𝐾𝑎𝑤  are proportional, integral, and anti-wind-up gain, respectively.  

PI controllers are tuned using the SIMC tuning method introduced by Skogestad (2003). 

The local controllers and the direct constraint controller have a sampling time of 1 sec. 

The central constraint controller updates the shadow price every 2.5 min because it may 

take more time to gather information from every cluster. 

 
Figure 3: Left: Both Primal-dual and Proposed structure reach optimal steady-state 

conditions, but the constraint violation is much smaller for the proposed structure. Right: 

After implementing back-off from the power constraint. 

Fig. 3 (left subplot) shows the simulation results when we consider 𝜁𝑏𝑜 = 0. At time t =
3  hrs, the available power increases, and the shared constraint becomes inactive. 

Consequently, the gas-lift injection rates respond accordingly to achieve the optimal total 

available gas-lift allocation. Both primal-dual and proposed structure result in no dynamic 

violation at this time. At time t = 7 hrs, GOR dramatically decreases in all wells and 

causes extreme responses by the associated PI controllers. As a result, primal-dual 

significantly violates the constraint during the transient. We obtain a different result when 

applying the proposed control structure where Fig. 3 shows no dynamic constraint 

violation. At time t = 12 hrs, the GOR in most wells decreases, and the constraint is still 

active. The primal-dual has significant constraint violation during the transient for some 

time. As a comparison, the proposed structure responds accordingly and can reduce the 

magnitude and duration of that violation. At time t = 18 hrs, the GOR in most wells  
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increases, and the constraint is still active. Both methods have no dynamic violation at 

this time. In general, the proposed structure can reduce those dynamic violations (in 

constrained cases) because (conceptually) direct constraint control selects the calculated 

direct constraint control input instead of the indirect one, which is calculated based on 

suboptimal shadow price during the transient.  

In terms of dynamic violation magnitude, primal-dual and proposed structure can reach 

7.4955 MW and 1.0329 MW, respectively. When the maximum available power is a 

hard constraint, the proposed structure outperforms primal-dual as it can reduce more 

'required' back-off, 𝜁𝒃𝒐 or even eliminate it (see Fig.3). Fig. 4 shows the profit obtained 

by both methods in this simulation. The result indicates that 

the proposed one can reduce profit loss as much as 22,207.00 

price unit (0.18 %) in 24 hours when one implements a back-

off strategy for the same case and duration. 

5. Conclusions 

This work shows that the proposed structure with direct 

constraint control and primal-dual decomposition for 

optimization, is able to provide both tight constraint control 

on a fast timescale and optimal operation on a slow timescale. 

This strategy offers the possibility to reduce the back-off from 

constraints, which can give a large economic benefit. 
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