
Control Engineering Practice 126 (2022) 105253

E
o
R
D

A

K
P
D
F
R
E
O

1

t
o
r
s
e
s

s
(
N
E
p
f
&
o
c
&
K
d

N

(

h
R
A
0
(

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

xperimental validation of distributed feedback-based real-time
ptimization in a gas-lifted oil well rig✩

isvan Dirza, Jose Matias, Sigurd Skogestad, Dinesh Krishnamoorthy ∗

epartment of Chemical Engineering, Norwegian University of Science & Technology (NTNU), Trondheim, NO-7491, Norway

R T I C L E I N F O

eywords:
roduction optimization
istributed optimization
eedback-optimizing control
eal-time optimization
xperimental validation
il & gas

A B S T R A C T

This paper considers the problem of steady-state real-time optimization (RTO) of large-scale processes with a
common constraint for several units, for example, a shared resource. Such problems are often studied under
the context of distributed optimization, where each subsystem is locally optimized for a given shadow price of
the shared resource. A central coordinator is then used to coordinate the allocation of the shared resource. In
traditional RTO, such a framework would require repeatedly solving the subproblems and the central problems
until convergence, which can be computationally expensive. To address this issue, we use a feedback-based
distributed RTO scheme based on Lagrangian decomposition, where the local subproblems and the central
problems are converted into feedback control problems. That is, by appropriately choosing the controlled
variables in each subproblem, the overall process can be asymptotically driven to its optimal operation using
feedback controllers. In this paper, we validate this approach using a lab-scale experimental rig that emulates
a subsea oil production network, where the common resource is the gas lift that must be optimally allocated
among the wells. We also benchmark its performance with a numerical optimization-based RTO scheme.
. Introduction

Operating a process optimally involves taking decisions in real-time
o meet production targets and ensure constraint satisfaction as the
perating conditions change. This is typically done in the context of
eal-time optimization (RTO). The traditional RTO paradigm involves
olving a numerical optimization problem using detailed process mod-
ls that are updated using process measurements corresponding to
teady-state operating conditions.

Many process systems involve operation of several parallel units/
ubsystems that are coupled by streams of energy or material flows
typically in the form shared resources) (Jose & Ungar, 2000; Martí,
avia, Sarabia, & De Prada, 2012; Stojanovski, Maxeiner, Kramer, &
ngell, 2015; Wenzel et al., 2016). For example, in large industrial
rocesses a common power plant may be used to deliver steam to dif-
erent subprocesses (Jose & Ungar, 2000; Nazari, Sonntag, Stojanovski,

Engell, 2015; Stojanovski et al., 2015), or in oil production networks,
il wells from different reservoirs may share the same topside pro-
essing facility (Dirza, Skogestad, & Krishnamoorthy, 2021a; Gunnerud

Foss, 2010; Krishnamoorthy, Aguiar, Foss and Skogestad, 2018;
rishnamoorthy, Valli, & Skogestad, 2020). In such processes, it is often
esirable to decompose the problem and optimize the subprocesses
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locally for various reasons. For example, distributed decision-making
tools are often easier to implement and maintain, as opposed to a
large-scale centralized optimization. They offer more flexibility and
resilience, and also enable coupling with subsystems from different
companies/stakeholders with limited data sharing. However, when the
subsystems are coupled in one form or another, the local decision,
must also be coordinated to account for the coupling. This can be
done by using a centralized coordinator that ensures optimal operation
of the overall process. One common framework is the Lagrangian
decomposition (also known as dual decomposition), where the differ-
ent subproblems are solved for a given shadow price (i.e., Lagrange
multiplier corresponding to the shared resource constraint), and a
central coordinator updates the shadow prices and broadcasts to the
local subproblems. This results in a tatonnement process or price-based
coordination in an Walrasian auction, where each subsystem adjusts its
consumption of the shared resource based on its price, and the cen-
tral coordinator updates the price to reach market equilibrium (Boyd,
Parikh, Chu, Peleato, & Eckstein, 2011; Uzawa, 1960).

Under the traditional RTO paradigm, such a framework involves
repeatedly solving the optimization subproblems and the central co-
ordinator until convergence. This implies that at each time step, the
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subproblems are repeatedly solved several times, which can be compu-
tationally intensive, or may even be susceptible to numerical issues. It
is also important to note that, although the numerical RTO problem is
decomposed, it is still a ‘‘centralized’’ solution as seen from the process,
because all the results, i.e. the setpoints from the optimization are
generated at the same time, obtained upon convergence of the overall
distributed RTO problem.

In order to circumvent the need for a centralized numerical solver,
one can solve the decomposed optimization problem using feedback
controllers in a distributed manner (Krishnamoorthy, 2021). Firstly,
this may avoid some of the numerical problems just described. Sec-
ondly, the solution may be easier to implement, maintain and tune
by plant personnel because it is more transparent. Lastly, and more
importantly, it allows for a separation in time scale of the subproblems
and central coordinator problem. That is, the manipulated variables
from the subproblems can be updated on a faster time scale than
that of the central coordinator problem. Furthermore, it is possible
to have different tunings, closed-loop time constants, and sampling
intervals for individual subproblems. This may be a significant advan-
tage in many large-scale industrial processes, for example, because the
process dynamics, measurement delays, etc., may vary for different
subprocesses.

To implement the RTO problem using feedback controllers, the
economic objectives must be translated into control objectives, such
that the economic optimal operation is asymptotically achieved us-
ing feedback controllers. This notion of feedback optimizing control
was first introduced by Morari, Arkun, and Stephanopoulos (1980).
Here, the main objective is to find the right controlled variables,
which when kept at constant setpoint, leads to economically optimal
operation. Since then there has been several developments in the
direction of feedback optimizing control, see Chachuat, Srinivasan, and
Bonvin (2009), Engell (2007), Krishnamoorthy and Skogestad (2022)
and Skogestad (2000) and the references therein. Some approaches,
such as self-optimizing control, focus on how to select the controlled
variables (Skogestad, 2000). Whereas other approaches, such as NCO-
tracking, hill-climbing control, extremum seeking control, feedback
RTO etc., are based on the idea of estimating1 and driving the steady-
state cost gradient to zero (Ariyur & Krstić, 2003; François, Srinivasan,
& Bonvin, 2005; Krstić & Wang, 2000; Tsamardinos, Brown, & Aliferis,
2006).

Most of these approaches only considers the unconstrained op-
timization problem. That is, they assume that the different active
constraint regions are identified a priori, and in each active con-
straint region, the active constraints are tightly controlled, and only
consider the reduced unconstrained optimization problem (which we
categorize as region-based methods Krishnamoorthy & Skogestad, 2022).
The changes in the active constraint regions are typically handled by
classical advanced control tools such as selectors, split-range etc.

An alternative approach to region-based approach (which is also
the focus of this paper), is to transform the constrained economic op-
timization problem into an unconstrained optimization problem using
Lagrangian relaxation. Economically optimal operation is then asymp-
totically reached by controlling the constraints using the Lagrange
multipliers (dual variables) in the slow time scale, and the gradient
of the Lagrangian is controlled to zero using the physical manipulated
variables (i.e., the primal decision variables) in a cascade fashion.
This approach is also known as primal–dual feedback optimizing control.
See Krishnamoorthy and Skogestad (2022) for more detailed discussion
on the different approaches to feedback optimizing control.

The decomposed version of primal–dual feedback optimizing con-
trol was developed for a distributed optimization problem by Krish-
namoorthy (2021), where the dual decomposition method was con-
verted to a distributed feedback control problem by relaxing the share

1 These methods essentially differ on how the steady-state cost gradient is
stimated.
2

resource constraints. Here, the central coordinator problem updates
the Lagrange multipliers for the shared resource constraints in the
slow time scale, and the local subproblems control the gradient of the
Lagrangian for the given shadow prices on a faster time scale. This
distributed feedback-based optimization problem with linear coupling
constraints was also analytically shown to converge to the stationary
point of the overall optimization problem under reasonable assump-
tions by Krishnamoorthy (2021). This approach was then applied in
a simulation study to a large-scale subsea production system with
both linear and nonlinear coupling constraints by Dirza et al. (2021a),
where it was shown that the distributed feedback-based RTO (DFRTO)
approach was able to drive the system to its overall optimal operation
without the need to repeatedly solve numerical optimization problems
online.

Building on our previous work (Dirza et al., 2021a; Krishnamoorthy,
2021), we now experimentally validate this approach on a lab-scale
gas-lifted oil well rig consisting of three wells with the lift gas being
the shared resource that couples the three wells together (Matias,
Oliveira, Roux, & Jaschke, 2021). To this end, the main contribution
of this paper is to experimentally validate the distributed feedback-
based RTO (DFRTO) scheme (Dirza et al., 2021a; Krishnamoorthy,
2021) and benchmark its performance with a numerical optimiza-
tion based RTO. The reminder of the paper is organized as follows.
Section 2 describes the primal–dual and the distributed feedback-based
RTO scheme. Section 3 describes the experimental facility and the
implementation of DFRTO, and Section 4 presents the results from the
experimental facility.

2. Problem formulation for DFRTO scheme

Consider a steady-state optimization problem

min
𝐮

𝐽 (𝐮,𝐩) (1a)

s.t. 𝐠 (𝐮,𝐩) ≤ 0, (1b)

𝐮 ∈  (1c)

here 𝐮 ∶= [𝑢1,… , 𝑢𝑁 ] are the set of manipulated variables, 𝐩 ∈ R𝑛𝑝

enotes the set of parameters/disturbances, 𝐽 ∶  ×R𝑛𝑝 → R is the cost
function, 𝐠 ∶  × R𝑛𝑝 → R𝑛𝑔 denotes the constraints.

Introducing the Lagrange function  (𝝀,𝐮,𝐩) = 𝐽 (𝐮,𝐩)+𝝀⊤𝐠 (𝐮,𝐩) the
necessary conditions for optimality (KKT conditions) for the problem
(1) can be expressed as

∇𝐮𝐽 (𝐮,𝐩) + ∇𝐮𝐠(𝐮,𝐩)⊤𝝀 = 𝟎 (2a)

𝐠(𝐮,𝐩) ≤ 𝟎 (2b)

𝝀 ≥ 𝟎 (2c)

𝜆𝑖𝑔𝑖(𝐮,𝐩) = 0, ∀𝑖 = 1,… , 𝑛𝑔 (2d)

The unknown variables in equation set (2) are 𝐮 and 𝝀. The equation
set can be solved using dual ascent (Boyd et al., 2011). Here we solve
(2a) with respect to 𝐮 with a fixed value of 𝝀, and then iteratively
change 𝝀 in an outer loop to satisfy the remaining equations, where
the most important is to keep 𝐠 = 𝟎 for the case when the constraints
are active, which corresponds to a nonzero 𝝀.

Since the constraint value 𝐠 is often measured, this provides an
excellent opportunity to use feedback control to solve the equations.
For example, we may use an I-controller, (or a PI-controller for faster
convergence). The use of feedback control for solving (2) with respect
to 𝝀 has the additional advantage that we do not actually use the model
for the constraints 𝐠 in (2b) and (2d), which means that we do not
need to update this part of the model. It is also possible to use feedback
control to solve Eq. (2a) with respect to 𝐮, but this does not come with
the additional feedback advantages because the cost and constraints
gradients are not measured.

Therefore, we can reach stationarity condition at steady-state by
controlling 𝑐(𝝀) ∶= ∇ 𝐽 (𝐮,𝐩) + ∇ 𝐠(𝐮,𝐩)⊤𝝀 to a constant setpoint of
𝐮 𝐮
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𝑢

𝑐𝑠𝑝 = 𝟎 for any given 𝝀. The fast time-scale gradient controllers (also
known as primal controllers) are responsible for this task.

In an outer loop, the Lagrange multipliers 𝜆𝑖 are then used as ma-
nipulated variables to control their corresponding constraints 𝑔𝑖(𝐮,𝐩) to
its limit of 𝟎 for all 𝑖 = 1,… , 𝑛𝑔 . By pairing 𝜆𝑖 to 𝑔𝑖(𝐮,𝐩) and using a max
selector, the conditions that 𝝀 ≥ 𝟎 (2c) as well as the complementary
slackness condition (2d) are satisfied. The slow time-scale centralized
constraint controllers (also known as dual controllers) are responsible
for this task. Therefore, the primal and dual controllers together satisfy
the necessary conditions of optimality (2) at steady-state.

Considering only integral action, the primal–dual feedback law in
this case can be expressed in continuous time as
[

�̇�
�̇�

]

=
[

𝐾𝐼 0
0 𝜶

] [

∇𝐮𝐽 (𝐮,𝐩) + ∇𝐮𝐠(𝐮,𝐩)⊤𝝀
𝐠(𝐮,𝐩)

]

(3)

𝝀 = max(0,𝝀) (4)

where 𝐾𝐼 and 𝜶 are the gain matrix for gradient controllers and central
constraint controllers, respectively. This is done in a cascade fashion
as shown in Fig. 1. The discrete representation of the primal–dual
feedback law shown in (3)–(4) is as follows.

𝐮𝑘+1 = 𝐮𝑘 +𝐾𝐼
[

∇𝐮𝐽 (𝐮𝑘,𝐩𝑘) + ∇𝐮𝐠(𝐮𝑘,𝐩𝑘)⊤𝝀𝑘
]

(5)

𝝀𝑘+1 = max
[

𝟎,𝝀𝑘 + 𝜶𝐠(𝐮𝑘,𝐩𝑘)
]

(6)

where 𝑘 is the discrete sample time, which in this case is assumed to be
the same for all the controllers, although in general, one can implement
the different controllers with different sampling times.

Now consider the case of a large scale process with 𝑁 subsystems
with a shared resource constraint that couples the different subsystems
together. In this case, the optimization problem (1) has a special
structure,

𝐽 (𝐮,𝐩) ∶=
𝑁
∑

𝑖=1
𝑓𝑖(𝑢𝑖, 𝑝𝑖) (7a)

𝐠(𝐮,𝐩) ∶=
𝑁
∑

𝑖=1
𝑔𝑖(𝑢𝑖, 𝑝𝑖) − 𝑔𝑚𝑎𝑥 (7b)

where 𝑓𝑖 is the local cost of the subsystem, 𝐮 = [𝑢1,… , 𝑢𝑁 ], 𝐩 =
[𝑝1,… , 𝑝𝑁 ] with 𝑢𝑖 and 𝑝𝑖 being the decision variables and the param-
eters in the local subsystem,  ∶= 1 ×⋯ ×𝑁 , and 𝑔𝑚𝑎𝑥 is the limit
of the constraint.

In this case, the controlled variable

𝑐(𝝀) ∶=
𝑁
∑

𝑖=1
∇𝑢𝑖𝑓𝑖(𝑢𝑖, 𝑝𝑖) + 𝝀⊤

𝑁
∑

𝑖=1
∇𝑢𝑖𝑔𝑖(𝑢𝑖, 𝑝𝑖)

is additively separable. Therefore, we can easily decompose this and in
each subsystem control the following

𝑐𝑖(𝝀) ∶= ∇𝑢𝑖𝑓𝑖(𝑢𝑖, 𝑝𝑖) + 𝝀⊤∇𝑢𝑖𝑔𝑖(𝑢𝑖, 𝑝𝑖)

to a setpoint of 𝑐𝑠𝑝𝑖 = 0 by manipulating the primal variable 𝑢𝑖,

̇ 𝑖 = 𝐾𝐼,𝑖𝑐𝑖(𝝀) (8)

where 𝐾𝐼,𝑖 is the integral gain.
The Lagrange multiplier 𝝀 is then updated to control the constraints

𝐠(𝐮,𝐩) to its limit of 𝟎 with a max selector, i.e., the central coordinator
is given by

�̇� = 𝜶
𝑁
∑

𝑖=1
𝑔𝑖(𝑢𝑖, 𝑝𝑖) (9a)

𝝀 = max (0,𝝀) (9b)

where 𝜶 is the integral gain.
To this end, in each subsystem we control 𝑐𝑖(𝝀) in the fast time

scale, and in the slow time scale we update the Lagrange multipliers 𝝀

to control the coupling constraint 𝐠(𝐮,𝐩). Assuming that the stationary

3

Fig. 1. Block diagram of primal–dual DFRTO scheme. The gray box represents a
given plant. The white boxes represent computational blocks. The red and blue
boxes represent controller blocks with different timescales. If the objective function
(1a) is additively separable, one can decompose problem (the inner loop control
structure located inside dashed black lines) into 𝑁 subproblems. A more detailed
and case-oriented control structure is shown in Section 3.3. The symbol of hat (.̂)
represents estimated values, and 𝐲 denotes the measurement set (output variables). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

point is also the local minimum, this leads to optimal operation of the
local subsystem for a given Lagrange multiplier 𝝀. As central constraint
controller (9) updates 𝝀, this leads to optimal performance of the
overall optimization problem (1).

Note that the local controlled variables 𝑐𝑖(𝝀) in each subsystem
requires local cost and constraint gradient information. The gradient of
the Lagrange function ∇𝐮(𝐮,𝐩,𝝀) is not a directly measured variable.
Therefore, it is necessary to utilize the measurement set to estimate this
gradient. See Krishnamoorthy and Skogestad (2022) and Srinivasan,
François, and Bonvin (2011) for several available gradient estima-
tion techniques that could be used with this approach. In this work,
we use the forward sensitivity analysis to estimate the gradient (see
Appendix A for the detailed description)

Remark 1. It is important to emphasize that Primal–Dual DFRTO
scheme mainly consists of central constraint controllers (or dual con-
trollers) and gradient controllers (or primal controllers), which can be
implemented using simple tools such as PID controllers. Therefore, this
framework can achieve optimal performance asymptotically without
any numerical optimization solver.

Remark 2. It is interesting to note that the estimation of the local
steady-state cost and constraint gradients in each subsystem needs
only the models and the real-time process measurements of the local
subsystem. This is a useful property that enables implementation of
DFRTO in systems where privacy and data sharing issues are important
as indicated by Krishnamoorthy (2021) and Wenzel et al. (2016) for
example.

3. Experimental setup

In subsea production systems, wells are located on the seabed to
extract the hydrocarbons trapped in the underground reservoir. The
produced oil and gas is transported along the seabed in pipelines to
the processing facility where the riser pipeline takes it from the seabed
to the surface. If the reservoir pressure is low, either naturally or
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Fig. 2. Experiment schematic. Adapted from Matias et al. (2021). The system measurements 𝐲𝐩 are the well top pressures (PI101, PI102 and PI103), the pump outlet pressure
(PI104), the liquid flowrates (FI101, FI102, and FI103), and the gas flowrates (FI104, FI105, and FI106). Three PI controllers are used for controlling the gas flowrates,

𝐮 =
[

𝑄𝑔𝑙,1 𝑄𝑔𝑙,2 𝑄𝑔𝑙,3
]⊤, to the calculate setpoints, 𝐮𝑠𝑝 =

[

𝑄𝑠𝑝
𝑔𝑙,1 𝑄𝑠𝑝

𝑔𝑙,2 𝑄𝑠𝑝
𝑔𝑙,3

]⊤
. The reservoir valve openings (CV101, CV102, and CV103) are the system disturbances.

hey change during the experiments for representing different reservoir behaviors, while the pump outlet pressure is kept constant by a PI controller.
o
w
M
c

3

i
l
i
e

𝐽

ue to depletion, artificial lift methods may be needed to overcome
he pressure losses and bring the hydrocarbons to the surface. Gas-
ift is a commonly used artificial lift method, in which compressed
ases are injected into the well tubing to reduce the fluid mixture
ensity and, consequently, the hydrostatic pressure losses. However,
njecting too much gas increases the frictional pressure drop in the well
ubing, which has a counteracting effect (Aamo, Eikrem, Siahaan, &
oss, 2005). Therefore, each well has a local optimum corresponding
o the gas lift injection rate. The total available lift gas is often a limited
esource that must be optimally allocated among the wells to maximize
he production from the overall production network. For more practical
nformation of production optimization in oil and gas industry, the
eader is referred to Bieker, Slupphaug, and Johansen (2007) and Dirza,
kogestad, and Krishnamoorthy (2021b) and the references therein.

.1. Experimental rig as a subsea production system

To emulate the subsea gas-lifted oil production system, we use a lab-
cale experimental rig that uses water and air as working fluids instead
f oil and gas for simplification. The choice of working fluids does not
nfluence the gas lift phenomenon, which one can still see in the lab rig.
hus, the rig is suited for studying production optimization methods,
here the gas lift effect is the phenomenon of interest. Fig. 2 shows a

implified flowsheet of the system indicating three sections: a reservoir,
ell, and riser section.

The reservoir section contains a stainless steel tank, a centrifugal
ump, and the three control valves (CV101, CV102, and CV103). These
alves are used to represent disturbances from reservoir (for example,
o emulate pressure oscillations, or reservoir depletion). With this
etup, the reservoir produces only liquid with outflow rates ranging
rom 2 L/min to 15 L/min. Flow meters (FI101, FI102, and FI103)
re located before the reservoir valves to measure the outflow rates.
he pump’s outlet pressure (PI104) is kept constant at 0.3 barg in this
xperiment using a PI controller that adjusts the pump rotation.

The wells consist of three parallel flexible hoses with 2 cm inner
iameters and length of 1.5 m. Approximately 10 cm after the reservoir
alves, pressurized air at approximately 1 barg is injected by three air
low controllers (FIC104, FIC105, and FIC106) within the range of 1
L/min to 5 sL/min.

The risers are three vertical pipelines, orthogonal to the well section,
ith 2 cm inner diameters and 2.2 m high. We measure the pressures
n top of the risers (PI101, PI102, and PI103). After the sensors, three

anual valves are kept open during the experiments. The air is vented

4

ut to the atmosphere, and the liquid is recirculated to the reservoir
ater tank. More detailed description of the test setup can be found in
atias et al. (2021). The pictures of this rig showing the three sections

an be found in Appendix D.

.2. Optimization problem setup

The objective of the optimization problem in this experimental setup
s to maximize the network liquid flow rate (i.e. the summation of the
iquid production of the three wells) given a limited amount of gas-lift
njection. Considering problem (1) with a special structure (7), we can
xpress the economic objectives as follows,

(𝐮,𝐩) ∶=
3
∑

𝑖=1
𝑓𝑖(𝑢𝑖, 𝑝𝑖)

= −20𝑄𝑙,1
(

𝑢1, 𝑝1
)

− 25𝑄𝑙,2
(

𝑢2, 𝑝2
)

− 30𝑄𝑙,3
(

𝑢3, 𝑝3
)

(10)

where 𝑄𝑙,1, 𝑄𝑙,2, and 𝑄𝑙,3 are the produced liquid flowrates of wells 1,
2, and 3, respectively. For illustration, we assume that the wells have
different hydrocarbon prices as shown above. The input vector is given
by

𝐮 =
[

𝑄𝑔𝑙,1 𝑄𝑔𝑙,2 𝑄𝑔𝑙,3
]⊤

where 𝑄𝑔𝑙,1, 𝑄𝑔𝑙,2, and 𝑄𝑔𝑙,3 are the injected gas flowrates of wells 1,
2, and 3, respectively.

In the context of optimization, these flowrates are the decision
variables. Meanwhile, for the plant, these flowrates are the setpoints
that need to be tracked. As shown in Fig. 2, the experimental lab
rig has flow indicator and controllers (FICs) 104, 105, and 106 to
regulate the air injection flowrates to their setpoints. Therefore, we
denote these decision variables of the optimization problem as 𝐮𝑠𝑝 =
[

𝑄𝑠𝑝
𝑔𝑙,1 𝑄𝑠𝑝

𝑔𝑙,2 𝑄𝑠𝑝
𝑔𝑙,3

]⊤
. One may consider the valve opening of FICs

as the decision variables. However, this alternative may face some
practical issues due to the non-linearity and the hysteresis behavior of
the valves. Furthermore, three elements of 𝐩, which are the reservoir
valve openings CV101, CV102, and CV103, are time-varying. It implies
that the cost is also a function of 𝐩.

The total gas availability, which is a shared (input) constraint, can
also be expressed using the structure shown in (7), where:

𝑔 (𝐮,𝐩) ∶=
3
∑

𝑖=1
𝑔𝑖(𝑢𝑖, 𝑝𝑖) − 𝑔𝑚𝑎𝑥

𝑚𝑎𝑥

(11)

= 𝑄𝑔𝑙,1 +𝑄𝑔𝑙,2 +𝑄𝑔𝑙,3 −𝑄𝑔𝑙
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Fig. 3. DFRTO control structures implemented in the experimental lab rig. The diagram has three subproblems because the economic objective (10) is additively separable. The
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(

𝑄𝑔𝑙,𝑖
)

are states in the plant. The decision variables for DFRTO scheme are the gas-lift flowrates setpoints
(

𝑄𝑠𝑝
𝑔𝑙,𝑖

)

. Using the flow controllers, the real manipulated variables for the well
rig are the valve openings, labeled by 𝑣𝑜,𝑖. The well rig has both input and output measurement noises labeled by 𝜂𝑖,𝑖 and 𝜂𝑜,𝑖, respectively. Using local measurement set

(

𝐲𝑖
)

, and
the local dynamic model adaptation, we estimate differential states

(

�̂�𝑖
)

, algebraic states
(

�̂�𝑖
)

, and parameters/disturbances,
(

�̂�𝑖
)

. In this work, the ‘‘Dynamic Model Adaptation’’
is an extended Kalman filter (see Appendix A). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where we directly measure the constraint, and we use FICs to drive 𝑄𝑔𝑙,𝑖
to 𝑄𝑠𝑝

𝑔𝑙,𝑖.

Remark 3. Note that the total gas availability in general is an in-
equality constraint. However, in this experimental setup, we found
that the gas lift constraint is always active at the optimum, which is
also common in many gas-lifted oil fields. Hence we can equivalently
consider the coupling constraint to be an equality constraint, and then
we do not need the max selector (9b) for 𝝀 update in the constraint
control.

3.3. Distributed feedback RTO setup

Control structure design. Based on the problem formulation from Sec-
tion 2, we now implement the distributed feedback-based RTO
(DFRTO) structure for our experimental setup. Given that we have three
wells in the experimental setup, we decompose the problem into three
subsystems. For each subsystem, we use a local gradient estimator that
estimates the gradient of the local cost ∇𝑄𝑙,𝑖 and the constraint ∇𝑄𝑔𝑙,𝑖
cf. Remark 1). Each subsystem has a local PI controllers that controls
𝑖(𝜆) to 0 (gradient controller). The output from the gradient controller,
enoted by 𝑄𝑠𝑝

𝑔𝑙,𝑖 is then given as setpoint to the flow controller FIC𝑖 that
manipulates the air injection valve opening to achieve these setpoints.
The control structure implemented in the lab-rig is illustrated in Fig. 3.

For the central constraint controller, we can directly measure the
constraint 𝐠 value for updating the Lagrange multiplier. However, we
have to estimate both cost and constraint gradient for the gradient
controllers (i.e primal controllers) as shown in Eq. (3). Since a reliable
dynamic model of the system is available, we use forward sensitivity
analysis to estimate these values (see Appendix A). To compute the
local sensitivities, we also need to estimate the current states of the
system (both differential and algebraic). Here, an extended Kalman
filter (EKF) is used in each subsystem to estimate the states using
only the local measurements. However, any suitable dynamic estimator
can be applied, as long as it provides accurate estimates of the states,
filtering the measurement noise properly.
5

Controller tuning. Once the control structure is defined, we need to tune
the controllers. In the experimental rig, the fastest possible sampling
rate of the data acquisition software is 1 s. In theory, we could execute
both the gradient and the central constraint controllers at the same
rate. However, depending on their tuning, they might compete against
each other, which might drive the system to instability. Therefore,
we need a time scale separation between these controllers. Given
the cascaded structure, and need for proper timescale separation for
smooth operation, we now provide in depth discussion on how the
controllers were tuned.

The idea of dual decomposition is that the subproblems (represented
by the dotted boxes in Figs. 1 and 3) are solved for each update
(iteration) of the central coordinator problem (represented by the
central constraint controller). However, the subproblems controlling
𝑐𝑖(𝜆) to a setpoint of 𝑐𝑠𝑝𝑖 are also solved by iteration, so in practice
the subproblems will not reach full convergence to their setpoint of
𝑐𝑠𝑝𝑖 within each central coordinator problem update. Fortunately, it is
ossible to estimate the approach to convergence when solving the
quations using feedback controllers, as in this paper.

The rate of convergence to the setpoint in each subproblem is
iven by the closed-loop time constant 𝜏𝑐𝑖 of the corresponding control
oop. More specifically, for a linear first-order system, the approach to
onvergence (or steady state) is (1 − 𝑒−𝑡∕𝜏𝑐𝑖 ) where 𝜏𝑐𝑖 is the closed-
oop time constant of the 𝑖th control loop, and 𝑡 is the convergence
ime of the central coordinator problem (9). Thus, the approach to
onvergence increases from 63% to 95.0% to 99.3% as 𝑡∕𝜏𝑐𝑖 increases
rom 1 to 3 to 5. Thus, at 5 time constants the approach is 99.3%, and
onvergence (or steady state) has for practical purposes been reached.
his may be regarded as the basis for the rule of thumb of requiring a
ime scale separation between control layers of at least 5 (Skogestad

Postlethwaite, 2005). If the time scale separation gets too small,
ypically 3 or less, the layers will start interacting and we may ex-
erience undesired oscillatory behavior or even instability (Baldea &
aoutidis, 2007). A larger value (larger than 5) allows for robustness to
rocess gain variations which will affect the closed-loop time constants
f the control loops. However, with a too large value, the overall
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convergence (including the central constraint controller) will be slow,
so for practical purposes, a value for the time scale separation of 5 to
10 is often recommended.

The limiting case of infinite time scale separation corresponds to
𝜖 = 𝜏𝑐𝑖∕𝑡 → 0, which is the singular perturbation condition in the
mathematical literature. Note that a time scale separation between 5
and 10, corresponds to 𝜖 between 0.2 and 0.1.

Remark 4. Recently, it was shown analytically by Krishnamoorthy
(2021) that the distributed feedback RTO framework is guaranteed to
converge to the stationary point (2a) of the overall optimization prob-
lem under the assumption of perfect control of the subproblems. This
assumption is also satisfied by using a timescale separation between 5
and 10.

In summary, the constraint should be controlled in a slow timescale
(𝜏𝜆,𝑐), and the gradient in a fast timescale (𝜏𝐮,𝑐), where we typically
select the ratio to be 5 to 10. In this paper, we use integral controllers
that are tuned using SIMC-rules (Skogestad, 2003). For the central
constraint controller the integral gain is given by

𝜶 = 1
𝐾𝜆

(

𝜏𝜆,𝑐 + 𝜃𝜆
) (12)

where 𝐾𝜆 and 𝜃𝜆 are the step response and the time delay of the
constraint by the dual variable (Lagrange multiplier), and 𝜏𝜆,𝑐 is the
time scale that governs the evolution of 𝐠. For the three local gradient
controllers, the integral gain is given by

𝐾𝐼,𝑖 =
1

𝐾𝐮𝑖

(

𝜏𝐮𝑖 ,𝑐 + 𝜃𝐮𝑖
) (13)

here 𝑖 = 1, 2, 3 is the well index, 𝐾𝐮𝑖 and 𝜃𝐮𝑖 are the step response
nd the time delay of the gradient by the primal variable (Decision
ariables/inputs), and 𝜏𝐮𝑖 ,𝑐 is the time scale that governs the evolution
f 𝑐𝑖(𝝀).

To determine 𝐾𝜆, 𝜃𝜆, 𝐾𝐮𝑖 , and 𝜃𝐮𝑖 , we analyze the step responses.
eanwhile, 𝜏𝐮𝑖 ,𝑐 and 𝜏𝜆,𝑐 are the tuning parameters that should carefully

onsider the concept of time scale separation, where 𝜖𝑖 =
𝜏𝐮𝑖 ,𝑐
𝜏𝜆,𝑐

should be
less than 1, which implies that the outer loop has slower time scale than
the inner one. We can ideally choose 𝜏𝑢𝑖 ,𝑐 = 1 since want to drive the
nner loop to the steady-state as fast as possible. However, it may be too
ggressive. Therefore, we adjust them (i.e., the controller’s parameter
uning) based on our practical justification and observation.

Besides avoiding ‘‘too aggressive’’ controllers, we also consider the
act that local gradient controllers are not the lowest in the hierarchy
see Fig. 3), and thus the timescale of the gradient controllers should
e slower than the plant (that contains the FICs and the lab rig).

The type of PID Controller of FICs is designed by the manufac-
ure, where the valve drive is calculated based on the following PID
ontroller equation.

𝑣𝑘𝑜,𝑖 = 𝐼𝑘−1𝐹𝐼𝐶,𝑖 + 𝐼𝑘𝐹𝐼𝐶,𝑖 −
𝐾𝑃 ,𝐹𝐼𝐶,𝑖

65.536
𝑄𝑘

𝑔𝑙,𝑖 (14a)

𝐼𝑘𝐹𝐼𝐶,𝑖 =
𝐾𝐼,𝐹𝐼𝐶,𝑖

65.536

(

𝑄𝑠𝑝
𝑔𝑙,𝑖 −𝑄𝑘

𝑔𝑙,𝑖

)

(14b)

here 𝐼𝐹𝐼𝐶,𝑖 is the integral value, 𝐾𝑃 ,𝐹𝐼𝐶,𝑖 is the proportional gain,
𝐼,𝐹𝐼𝐶,𝑖 is the integral gain, and 𝛿𝑣𝑜,𝑖 is the valve drive. This controller

ontributes in creating plant dynamic in which the time constant may
ary between 5–10 s.

Table 1 shows the controller and tuning parameters that we obtain.
more detailed Table showing the step response parameters can be

een in Appendix C. Note that the largest 𝜖𝑖 is 0.2113, indicating that
he time-scale ratio of the overall experimental oil rig system is still

ithin the acceptable condition of the time-scale separation concept. (

6

Table 1
Controller and Tuning parameters.

Description Variable Value

Experimental rig sensors sampling time 𝑇𝑠 1 s

HRTO

Execution periods 𝛥𝑡𝐻𝑅𝑇𝑂 10 s
HRTO Input filter gain 𝐾𝑢 0.4
EKF parameters See codes in Github

DFRTO

Execution periods 𝛥𝑡𝑃𝐷 2 s
Central constraint controller step length 𝛼 0.0117
Gradient controller Input 1 gain 𝐾𝐼,1 0.0769
Gradient controller Input 2 gain 𝐾𝐼,2 0.0444
Gradient controller Input 3 gain 𝐾𝐼,3 0.0893
FIC 104 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,1 8560
FIC 105 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,2 8560
FIC 106 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,3 8560
FIC 104 Integral gain 𝐾𝐼,𝐹𝐼𝐶,1 100
FIC 105 Integral gain 𝐾𝐼,𝐹𝐼𝐶,2 100
FIC 106 Integral gain 𝐾𝐼,𝐹𝐼𝐶,3 50

Controller tuning validation. Before implementing the D-FRTO in the
experimental rig, we first validated the controller tunings in a lab rig
model developed in MATLAB. The model is a high-fidelity dynamic
model of the rig, that includes the lower layer controller dynamics,
i.e. FICs, input and output noise. The noise was tuned according to
the information obtained from the rig. This modeling structure implies
that both the lower layer controller dynamics and the noise are part
of the plant as presented by the diagram block shown in Figs. 1 and
3. The reader is referred to the code available on our Github page2

for detailed parameters. In addition, Matias et al. (2021) contains a
detailed description of the model.

Remark 5. Note that the simulator model of the test rig is only used
to determine the controller tuning parameters, before it is implemented
on the actual rig. All results that are presented later in Section 4 are
from the actual experimental rig, and not the simulator.

Benchmark method. To benchmark the performance of the distributed
feedback-based RTO approach, this paper considers the Hybrid Real-
time Optimization (HRTO)3 that solves the centralized numerical opti-
mization problem. We choose the HRTO approach as our benchmark
since this circumvents the steady-state wait time issue in traditional
steady-state RTO (see Krishnamoorthy, Foss and Skogestad (2018)
and Matias and Le Roux (2018)). Simply put, HRTO continuously
estimates the parameters using dynamic models and transient measure-
ments, e.g. by applying an extended Kalman filter. Then, the corre-
sponding updated steady-state model is used for computing the solution
of the economic optimization problem. In our experimental setup, we
use the exact same state and parameter estimator for the HRTO and our
proposed DFRTO scheme. The optimal setpoints 𝐮𝑠𝑝 computed by the
HRTO layer are given to the flow controllers FIC. We consider HRTO
with the execution period of 10 s in this experiment. Fig. 4 illustrates
this method.

To summarize, the HRTO and DFRTO differ in the fact that in HRTO,
a steady-state optimization problem is solved to determine the optimal
setpoint 𝑢𝑠𝑝, whereas in DFRTO the optimal setpoints 𝑢𝑠𝑝 are given by
the feedback controllers. Thus, HRTO is a good benchmark for DFRTO.

4. Experimental results and discussions

Utilizing the control and tuning parameters shown in Table 1,
we implemented our proposed DFRTO and the HRTO to serve as

2 https://github.com/Process-Optimization-and-Control/ProductionOptRig.
3 HRTO is the same as RTO with persistent parameter adaptation

ROPA) (Matias & Le Roux, 2018).

https://github.com/Process-Optimization-and-Control/ProductionOptRig
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Fig. 4. Block diagram of Hybrid RTO (HRTO). The gray box represents a given plant.
The white boxes represent computational blocks. In this work, the ‘‘Dynamic Model
Adaptation’’ is an Extended Kalman Filter (see Appendix A).

Fig. 5. The change of reservoir valve openings (CV101, CV102, and CV103) during
he experiments for representing different reservoir behaviors. These reservoir valve
penings are system disturbances.

enchmark. Fig. 5 shows the reservoir valve openings (𝐶𝑉 101, 𝐶𝑉 102,
𝑉 103) that we consider as the disturbance in this experiment. The first
isturbance occurs when the opening of 𝐶𝑉 101 gradually decreases
rom 𝑡 = 5 to 𝑡 = 11 min. We expect a decrease in the gas-lift injection
n well 1, and a redirection of the gas supply to the other wells. The
econd disturbance occurs when the opening of 𝐶𝑉 103 also gradually
ecreases from 𝑡 = 13 to 𝑡 = 16.5 min. We expect that the gas supply
o well 3 reduces with larger rate since the ‘‘hydrocarbon price’’ of this
ell is higher. Meanwhile the other wells will obtain more gas supply
ith larger rate as well. We try to avoid sudden disturbance to ensure

hat the controller can adjust the plant smoothly.
In the rig, we used a programming environment (LABVIEW Bitter,

ohiuddin, & Nawrocki, 2006) to automate the implementation of
hese disturbance. Therefore, it is possible to repeat the independent
xperiments with the same disturbance profile.

omparison of the optimal setpoints. We first run the experimental re-
ults comparing DFRTO and HRTO, which are presented in Figs. 6–8.
ig. 7 depicts the actual gas-lift flow rate. The measured trajectories
re slightly different from the calculated input setpoint shown in Fig. 6.
his difference occurs due to input measurement noise and the fact that
he gas flowrates controllers (FIC 104, FIC 105, FIC 106, see Fig. 2)
eed time to settle the actual gas-lift flow rate 𝐮 to the setpoint of gas-
ift flow rate 𝐮𝑠𝑝. Sometimes the setpoint change calculated by HRTO is
uite significant such that the gas flowrates controllers results in input
pikes (see around 𝑡 = 11 min in Fig. 7). The number of these spikes
s reduced because we have implemented first order input filter in the
etpoints computed by HRTO, i.e.:
𝑠𝑝,𝑘+1 = 𝐮𝑠𝑝,𝑘 +𝐾𝑢

(

𝐮𝑠𝑝,⋆,𝑘 − 𝐮𝑠𝑝,𝑘
)

here 𝐮𝑠𝑝,⋆ is the optimal setpoint given by HRTO solver. Mean-
hile, DFRTO does not have the input filter because it has gradient

ontroller(s) as input filter.
 n

7

Fig. 6. The gas-lift flow rate setpoint
(

𝐮𝑠𝑝 = 𝐐𝑠𝑝
𝑔𝑙

)

of every wells due to reservoir
parameter changing (disturbance) from the experimental lab rig. Each plot has a
magnifying plot in the time window 9 to 12 min. These plots show that when
disturbance 𝑝1 start settling down at around 11 h, the calculated input setpoints 𝐮𝑠𝑝
seem slightly off initially.

Fig. 7. The measured gas-lift flow rate (𝐮) of every wells due to reservoir parameter
changing (disturbance) from the experimental lab rig.

Figs. 6–7 show that DFRTO is slower in responding to the sec-
ond disturbance (see around 𝑡 = 15 min). This slow response is the
consequence of considering time-scale separation concept explained in
Section 3.3.

Fig. 8 shows the constraint satisfaction and its associated Lagrange
multiplier, where the initial guess of the Lagrange multiplier is slightly
off in DFRTO. The Lagrange multiplier 𝜆 of the DFRTO is around 9.5 at
= 0 min. Meanwhile, the mean value of Lagrange multiplier 𝜆 of HRTO

is around 9.1 at that time. However, DFRTO slowly drives the Lagrange
multiplier to converge to a better value that is closer to HRTO solver
obtains. We can observe the effect of the more accurate 𝜆 estimate
n the performance of DFRTO, since, around 𝑡 = 6 min, the active
onstraint is slightly better controlled. In any case the difference here
s not significant, and the variations are mainly due to measurement
oise.
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Fig. 8. Constraint satisfaction and Lagrange multiplier evolution due to reservoir
parameter changing (disturbance) from the experimental lab rig.

From around 𝑡 = 12 min, DFRTO converges slower than HRTO
following the second disturbance. This is mainly due to the tuning of
the constraint controller, where it can be seen in Fig. 8 that the 𝜆
converges slower than the HRTO. As 𝜆 converges, the DFRTO converges
to the same value as HRTO at around 𝑡 = 18 min, confirming that
DFRTO is able to provide the same asymptotic performance as HRTO.
This behavior is expected as we carefully design the central constraint
controller. By considering the timescale separation concept, we avoid
undesired behaviors, such as oscillatory behavior. On the other hand,
the constraint control performance becomes relatively slow, and thus
any dynamic constraint violation may last quite some time. Since we
expressed the total gas capacity constraint as an equality constraint (see
Eq. (11)), the dynamic constraint violation also includes the situation
when the total of gas-lift flowrates is less than 𝑄𝑚𝑎𝑥

𝑔𝑙 .
Due to various process and measurement noise, the actual system

is noisy. However, it can be seen that the general process trend clearly
reaches steady-state. Due to this condition, tightly controlling the hard
constraints maybe a challenging task for DFRTO (which may need
a back-off depending on the noise levels). Nevertheless, DFRTO still
drives the system to the optimal steady-state value.

In addition, the control structure of DFRTO allows the possibility
to have other sources of error such as additional control dynamic from
central constraint coordinator, gradient estimation error, transmission
error, and measurement error. Any error (due to improper tuning
or design) from one of them leads to the additional disturbance for
constraint satisfaction.

Surprisingly, although the Lagrange multiplier calculated by HRTO
is sometimes slightly off and less smooth than DFRTO, HRTO has a
relatively good constraint satisfaction. This condition happens because
here the constraints are on the inputs. Therefore, even a high degree
of plant-model mismatch does not influence the constraint satisfaction
performance. In other words, the constraint model ends up with a sim-
ple summation of a ‘known’ input. Therefore, HRTO may have a better
constraint satisfaction performance in handling an input constraint in
this specific case.

To summarize, by observing Figs. 6–9, we can conclude that the
solutions of the two compared approaches, i.e., DFRTO and HRTO are
similar in this experiment run.

To ensure reproducibility, we then re-run the experiments once
again with the same set of disturbance profile for the different ap-
proaches. The average results from the two independent experiment
8

Fig. 9. Total production comparison due to reservoir parameter changing (disturbance)
from the experimental lab rig.

runs are shown in Appendix B. This confirms that DFRTO can provide
very similar performance as HRTO, without the need for numerical
solvers.

Comparison of the optimal cost. To analyze the optimization perfor-
mance of DFRTO and HRTO, we compare the profit (from both indi-
vidual experiments) obtained by the two approaches with the naive
approach, where we consider fixed inputs, i.e.,

𝐮 =
[

𝑄𝑠𝑝
𝑔𝑙,1 𝑄𝑠𝑝

𝑔𝑙,2 𝑄𝑠𝑝
𝑔𝑙,3

]⊤
=
[

𝑄𝑚𝑎𝑥
𝑔𝑙
3

𝑄𝑚𝑎𝑥
𝑔𝑙
3

𝑄𝑚𝑎𝑥
𝑔𝑙
3

]⊤

The naive approach illustrates the case in which no information about
the system is available. Hence, the best alternative is to divide the
available gas equally among the wells. This latter approach is another
benchmark to show that the optimization methods, i.e, DFRTO and
HRTO, will give more profit compared to not doing any optimization
at all.

To measure the performance, we plot the difference, in percent-
age, between the instantaneous profit of the approach of interest
(i.e. DFRTO or HRTO) and the naive approach. The difference is
calculated as

𝐽𝑑𝑖𝑓𝑓 =
𝐽 − 𝐽𝑛𝑎𝑖𝑣𝑒
𝐽𝑛𝑎𝑖𝑣𝑒

.100 (15)

where 𝐽 is the profit of the approach of interest, and 𝐽𝑛𝑎𝑖𝑣𝑒 is the profit
of the naive approach. In addition, we use a 60 s moving average for
smoothing the profiles, because the instantaneous profit measurements
are noisy.

Fig. 10 shows that DFRTO and HRTO are more profitable than the
naive strategy. Although both the approaches converge to the same
optimal steady-state solution, DFRTO had slower transients (especially
around 𝑡 =15 min) due to the chosen controller tuning parameters. This
resulted in a slightly smaller cumulative profit ∑

𝐽𝑑𝑖𝑓𝑓 compared to
HRTO.

5. Conclusion

In this work, we have done experiments to validate the DFRTO
method. Based on the experiments we can conclude that

• DFRTO is able to provide the same asymptotic optimal perfor-
mance as HRTO. The transient behavior is slightly different which
is affected by the choice of the controller tuning parameters.

• In the DFRTO framework, it is necessary to consider the timescale
separation between the gradient and constraint controllers. If the
central constraint controller is tuned to be in the same timescale
as the gradient controllers, then it can lead to instability or
oscillatory behavior. However, if the central constraint controller
is tuned to be too slow, then the convergence to the optimal
steady-state can be too slow. This was also seen in the presented
experiment results, where DFRTO converges slightly slower than

the HRTO following some disturbances.
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Fig. 10. The average profit from the experimental lab rig. The bottom subplot shows
he cumulative average profit.

As future work, we suggest the following,

• In this experiment, the shared resource constraint was on the
inputs, leading to linear coupling constraints. Since the experi-
mental rig does not have topside separation of liquid and gas, we
are not able to include the total produced gas capacity constraint,
as done in Dirza et al. (2021a). Validating the DFRTO approach
for nonlinear coupling constraints such as in Dirza et al. (2021a)
could be a valuable future research.

• We also used integral controllers in the DFRTO framework for
its simplicity. Another future research direction could be to con-
sider more advanced controllers for the gradient and constraint
controllers in the DFRTO framework.
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ppendix A. Steady-state gradient estimation

This paper uses forward sensitivity analysis to estimate the gradient.
his gradient estimation has two main steps. First, we use the current
lant information to update the state and parameters of the model using
dynamic adaptation scheme (here, extended Kalman filter). Next, we
se the updated model to compute the steady-state gradients via the
orward sensitivity analysis.

emark 6. The system has a differential–algebraic model, where 𝐱 ∈
R𝑛𝐱 is a vector of differential states, 𝐳 ∈ R𝑛𝐳 is a vector of algebraic
tates, and 𝐲 ∈ R𝑛𝐲 is a vector of output (measured states). This model is
ecessary for state and parameter estimation, and not explicitly shown
n problem (1).

.1. Extended Kalman filter

In order to use the Kalman filter equations, we first linearize
he available model. Note that the model is a differential–algebraic
9

Fig. B.11. The comparison of 𝛥𝑄𝑠𝑝
𝑔𝑙,𝑖 = 𝑄𝑠𝑝,𝑘

𝑔𝑙,𝑖 − 𝑄𝑠𝑝,𝑘−1
𝑔𝑙,𝑖 of each well due to reservoir

parameter changing (disturbance) from the experimental lab rig.

Fig. B.12. The comparison of average inputs setpoint trajectories from the
experimental lab rig.

equation (DAE) system; however, since it is an index-1 model, it can
be easily re-arranged into an ordinary differential equation (ODE). Ad-
ditionally, we assume that the unknown parameters are time-varying.
Their dynamics are determined by a random walk model:

𝐩𝑘+1 = 𝐩𝑘 + 𝐯𝑘 (A.1)

where 𝐯𝑘 follows a normal distribution with mean zero and covariance
𝑉𝜃 . Additionally, we assume that the increments 𝐯𝑘 are independent of
𝐯≠𝑘.

Then, we combine the system dynamics and parameter dynamics
to obtain an extended model that is used for parameter estimation.
Since the model was linearized, we can apply extended Kalman filter
equations for estimating 𝐱𝑘, 𝐳𝑘, and 𝐩𝑘 simultaneously. For a complete
derivation of the EKF equations, please refer to Walter and Pronzato
(1997).
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Table C.2
Controller and Tuning parameters.

Description Variable Value

Experimental rig sensors sampling time 𝑇𝑠 1 s

HRTO

Execution periods 𝛥𝑡𝐻𝑅𝑇𝑂 10 s
HRTO Input filter gain 𝐾𝑢 0.4
EKF parameters See codes in Github

DFRTO

Execution periods 𝛥𝑡𝑃𝐷 2 s
Central constraint controller step response 𝐾𝜆 1.2060
Central constraint controller time delay 𝜃𝜆 0
Central constraint controller time scale 𝜏𝜆,𝑐 71
Central constraint controller step length 𝛼 0.0117
Gradient controller Input 1 step response 𝐾𝑢1 1.2
Gradient controller Input 1 time delay 𝜃𝑢1 0
Gradient controller Input 1 time scale 𝜏𝑢1 ,𝑐 15
Gradient controller Input 1 gain 𝐾𝐼,1 0.0769
Gradient controller Input 2 step response 𝐾𝑢2 1.5
Gradient controller Input 2 time delay 𝜃𝑢2 0
Gradient controller Input 2 time scale 𝜏𝑢2 ,𝑐 15
Gradient controller Input 2 gain 𝐾𝐼,2 0.0444
Gradient controller Input 3 step response 𝐾𝑢3 3.4
Gradient controller Input 3 time delay 𝜃𝑢3 0
Gradient controller Input 3 time scale 𝜏𝑢3 ,𝑐 15
Gradient controller Input 3 gain 𝐾𝐼,3 0.0893
FIC 104 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,1 8560
FIC 105 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,2 8560
FIC 106 Proportional gain 𝐾𝑃 ,𝐹𝐼𝐶,3 8560
FIC 104 Integral gain 𝐾𝐼,𝐹𝐼𝐶,1 100
FIC 105 Integral gain 𝐾𝐼,𝐹𝐼𝐶,2 100
FIC 106 Integral gain 𝐾𝐼,𝐹𝐼𝐶,3 50

A.2. Forward sensitivity analysis

The original nonlinear DAE model is in the form:

𝐱𝑘+1 = 𝐹 (𝐱𝑘, 𝐳𝑘,𝐮𝑘;𝐩𝑘)
0 = �̆�(𝐱𝑘, 𝐳𝑘,𝐮𝑘;𝐩𝑘)

(A.2)

The steady-state gradients are estimated using the stationary value
f forward sensitivity equations:

= 𝜕𝐹⊤

𝜕𝐱
𝑆𝑆𝑆 + 𝜕𝐹⊤

𝜕𝐳
𝑅𝑆𝑆 + 𝜕𝐹⊤

𝜕𝐮

= 𝜕�̆�⊤

𝜕𝐱
𝑆𝑆𝑆 + 𝜕�̆�⊤

𝜕𝐳
𝑅𝑆𝑆 + 𝜕�̆�⊤

𝜕𝐮

(A.3)

where 𝑆𝑆𝑆 and 𝑅𝑆𝑆 are the sensitivities of the differential states 𝐱 and
lgebraic states 𝐳 w.r.t. the inputs 𝐮.

Since, in our specific case, the objective 𝐽 and constraint function 𝐠
re linear functions of the algebraic states (𝐽 = �̆�𝐽 𝑧, 𝐠 = �̆�𝐠𝑧), we use
he chain rule to obtain ∇𝐮𝐽 and ∇𝐮𝐠:

= �̆�𝐽 𝑧 ⟹ ∇𝐮𝐽 = �̆�𝐽𝑅𝑠𝑠

𝐠 = �̆�𝐠𝑧 ⟹ ∇𝐮𝐠 = �̆�𝐠𝑅𝑠𝑠
(A.4)

ppendix B. DFRTO vs. HRTO: Average values

Fig. B.11 compares the input setpoint rate 𝛥𝑄𝑠𝑝
𝑔𝑙,𝑖 = 𝑄𝑠𝑝,𝑘

𝑔𝑙,𝑖 −𝑄𝑠𝑝,𝑘−1
𝑔𝑙,𝑖 of

the implemented approaches from two independent experiments.
Fig. B.11 also shows that the input rate setpoints of DFRTO are, in

general, comparable to HRTO. However, we can still note that for well 1
and 3, HRTO has significant outliers (−0.1 for well 1 and around 0.15
for well 3). These outliers might occur due to a numerical optimizer
with an imperfect numerical condition or a bad parameter estimation.
In an extreme case, the HRTO may suffer from numerical robustness
issues.

Fig. B.12 shows that the average inputs setpoint trajectory resulting
from both approaches are similar over time. Based on these results,

we can conclude that DFRTO has a similar performance to HRTO

10
Fig. D.13. The equipment inside the red box are Reservoir valves, and inside the blue
box are the Injection valves. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. D.14. The equipment inside the red box are the risers. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

in general, which also supports the same observation stated in the
previous discussion in Section 4.

Fig. B.12 also shows that in the time window 𝑡 = 8 to 𝑡 = 14
min, the trajectories of average input solutions of DFRTO seem mild.
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Both approaches have quite similar cumulative profits. However, after
𝑡 = 14 min, the input trajectories need to be more aggressive to achieve
optimal performance. This condition seems to create challenges for
DFRTO as it may take more time to obtain the optimal performance.

Appendix C. Controller and tuning parameters

Table C.2 shows the controller and tuning parameters we used in
this work.

Appendix D. The experimental lab rig

The experimental lab rig we use in this work are shown in Figs. D.13
and D.14.
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