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Abstract
Pressure-flow networks are inherently multivariable, coupled and nonlinear systems that
are not straightforward handled by conventional PID controllers. In this work we analyze
the control problem for a steam distribution network in the framework of a recent pro-
posed method, that gives linearization and decoupling, together with a systematic design
for nonlinear feedforward control for perfect disturbance rejection.
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1. Introduction

Steam networks are are used to produce and transfer steam as utility for downstream pro-
cesses such as distillation column, paper machines, reactors etc. Pressure-flow networks
are inherently highly coupled system where a large and fast disturbance such as a shut-
down or start-ups of a consumers becomes a large disturbance both on the generation and
demand side for the other consumers. In addition, the dynamics of steam generators are
much slower compared to the dynamics of the steam network. Therefore, to be able to
respond fast to load changes, control of the network pressure is commonly implemented
in industry (Majanne, 2005).

Both decentralized and centralized control methods for steam networks are presented in
the literature. The work by (Bertrand and Mcavoy, 1986) presents a solution based on
PI-controllers that has good performance for disturbance rejection. The work by (Kristof-
fersen et al., 2014) implements model predictive control (MPC) combined with real time
optimization approach to increase the energy efficiency. The work by (Majanne, 2005)
compares the performance of PI-controllers and MPC, and the MPC outperforms due to
its ability of handling coupled systems.

In this work, we apply the method by (Zotică et al., 2020), which transforms a nonlinear
system into a first-order linear decoupled system with no effect from disturbances. In
addition, we extend the method by explaining how to select the new introduced tuning
parameter. Similar methods have been proposed. Feedback linearization linearizes the
input-state map of a nonlinear affine in the inputs system (Isidori et al., 1981; Khalil,
1992). Input-output linearization linearizes only a part of the system (Henson and Se-
borg, 1997). Active disturbance rejection control introduces an observer to estimate un-
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measured states and disturbances (Huang and Xue, 2014). The work by Lee et al. (2016)
combines an extended high-gain observer for unmeasured states and uncertainty together
with dynamic inversion that inverts the model using a fast inner loop I-controller. All of
these methods give a chains of integrators, which brings additional limitations for control,
and it is not very robust as in some cases, the input might move in the opposite direction
initially.

2. New method for input transformation
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Figure 1: Block diagram for transformed inputs for
linearization, decoupling and perfect disturbance re-
jection

Figure 1 shows the block di-
agram for the new proposed
method. The key assumptions
are that we have the same num-
ber of inputs (u) and outputs (y)
and that we can measure the dis-
turbances (d). In the example,
we will also allow for some mea-
sured states (TL, TT ) to be treated
as measured disturbances. We
define a new input (v) from the
model equations as a function of
the physical input (u), disturbances (d) and output (y) with the objective of transform-
ing the original nonlinear system into a linear first-order system. The resulted system is
also decoupled and therefore, we use SISO-controllers to control y by using v. We find
the physical input u by solving as set of nonlinear algebraic equations that give u as a
function of v,y,d. Consider a general nonlinear system given by Eq. 1.

dy
dt

= f (y,u,d) (1)

We define the transformed input v as given in Eq. 2.

v = f (y,u,d)−Ay (2)

where, A is a new tuning parameter,which we discuss in Section 2.1.

By introducing the input v, the new system becomes first-order, linear, decoupled and
with no effect from disturbances, as shown in Eq.3.

dy
dt

= v−Ay (3)

2.1. New tuning parameter A

One way to select A is such that nominally the positive feedback from y to v is small.
Therefore, for each output yi, we may select Ai as the diagonal elements of the Jacobian
of fi(y,u,d) with respect to the output yi evaluated at the nominal operating conditions,

A = diag
(

∂ f (y,u,d)
∂y

∣∣∣∗). We may also select a larger A to speed-up the response, or smaller
to slow it down. Note that selecting A = 0 gives an integrating process similarly to feed-
back linearization for a model as given in Eq. 1.
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2.2. Input calculation

The input calculation solves Eq. 2 with respect to the inputs u given controller outputs v,
outputs y and disturbances d. For some processes, we may also require to measure some
of the states x, see the example in Section 3. If there is no explicit solution of inverting Eq.
2, we may use a numerical algebraic solver, or simply an I-controller in a fast inner loop.
The second method can be applied to systems with singularities in the transformation.

2.3. Controller tuning

We tune the SISO-controllers based on the SIMC tuning rules in Eq. 4 (Skogestad, 2003).

Kc =
1
k

τ

τC +θ
=

1
τC +θ

(4a)

τI = min(τ,4(τC +θ)) (4b)

where, KC is the proportional gain, τI is the integral time, k is the process gain, τ is the
open-loop time constant, θ is the delay and τC is the desired closed-loop time constant.
Note that from Eq. 3, k = τ = 1

A .

3. Case study: steam network
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Figure 2: Process flowsheet of the steam
network with two pressure headers (high
and low) considered in this work.

Figure 2 shows the system we analyze within
the new proposed method. It is composed of a
high-pressure header (i.e. pipelines that phys-
ically connect the steam generators and con-
sumers), a turbine and a low-pressure header.
High-pressure steam is produced at a pres-
sure p0 by burning fuel in a boiler. Note that
we do not include the boiler in our analysis.
The high-pressure steam is supplied as util-
ity to one high pressure consumer with receiv-
ing pressure pHC. The remaining steam is ex-
panded to lower pressure steam, either through
a fixed-speed back pressure turbine connected
to the electric grid to produce electricity or
through a valve that bypass the turbine (zT B).
Note that in this case the fixed-speed turbine
is not a degree of freedom available for oper-
ation. The low-pressure steam is supplied as
utility to two consumers, with receiving pres-
sures pLC1 and pLC2 respectively.

The manipulated variables are u = [zH zT B] (i.e. the supply of high pressure steam and the
turbine bypass). The controlled variables are y= [pH pL] (i.e. pressure in the high and low
pressure headers). The main disturbances are the high pressure steam supply (p0) and the
consumers demand of high and low pressure steam, given by changes at the receivers pres-
sure or of the valve positions (zHC, zLC1 and zLC2), i.e. d = [p0 zHC zLC1 zLC2 pHC pLC1 pLC2].
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3.1. Nominal operating conditions for the steam network

Table 1 shows the nominal operating conditions, which are representative of a typical
steam network found in a chemical plant. Here, V is the volume of the two headers.

Table 1: Nominal operating conditions

Variable p0 pH pHC pL pLC1 pLC2 z TH TL VH VL

Value 42 40 38 7 6 5 0.5 380 200 1 5
Unit bar bar bar bar bar bar − °C °C m3 m3

3.2. Model

We assume ideal gas, constant specific heat capacity, no pressure losses and perfect mix-
ing in both pressure headers. Assuming isothermal conditions in the high pressure header
(TH constant), the dynamic mass balance in pressure form becomes Eq. 5.

d pH

dt
=

RTH

VH
(qH −qHC−qT B−qT )

def
= fH (5)

where q j is the molar flow though a valve.

The low pressure header is not isothermal because work is extracted in the turbine, and
therefore the mass and energy balance become coupled. The energy balance in tempera-
ture form is given in Eq.6.

dTL

dt
=

RTL

VL pL
(qT B(TH −TL)+qT (TT −TL)) (6)

The mass balance in pressure form is given in Eq. 7.

d pL

dt
=

R
VL

(qT BTH +qT TT −qLC1TL−qLC2TL)
def
= fL (7)

We assume isentropic expansion in the turbine and that there are no constraints for the
power supplied to the electric grid. Therefore the temperature at the turbine outlet (TT ) is
computed from Eq.8.

TT = TH

(
pL

pH

) γ−1
γ

(8)

where γ is the heat ratio capacity for steam.

To model the molar flows through valves, we use a valve equation with a linear valve
characteristic (Eq.9).

qi =Cv,izi

√
|p2

in− p2
out |,∀i ∈ (H,HC,T B,LC) (9)

where Cv,i is the valve coefficient, zi is the valve opening, pin and pout are the pressures
before and after the valve respectively.
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To model the molar flow through the turbine, we assume a constant mass flow coefficient
(φ ), equivalent to a chocked turbine (Eq. 10).

qT = φ
pH√
TH

(10)

3.3. Input transformation

The new input v = [vH vL] is defined by applying Eq. 2 resulting in Eq. 11. We assume
that the measurements for TH , TL and TT are available.

vi = fi−Ai pi ∀i = (H,L) (11)

where Ai =
∂ f j
∂ pi

,∀i = (H,L), evaluated at the nominal conditions from Table 1.

The new system in Eq.12 is linear, decoupled and has perfect disturbance rejection.

d pi

dt
= vi−Aiyi ∀i = (H,L) (12)

3.4. Input calculation

We find the unknown variable u = [zH zT B] by solving the system of linear equations
(Eq. 13) resulted from rewriting Eq. 11.[

zH
zT B

]
=

[
α −β

0 β

]−1
[

VH
RTH

(vH +AH pH)+qHC +qT
VL
R (vL +AL pL)−qT TT +(qLC1 +qLC2)TL

]
(13)

with α =CvH

√
|p2

0− p2
H |, β =CvT BTH

√
|p2

H − p2
L|, the flows q calculated from Eq. 9.

Note that from Eq. 6, TL depends on u, therefore it is not a true disturbance. However, the
use of a measured TL in the input transformation is not a problem in this case because the
dynamics from the inputs u to the outputs y have a stable inverse (have no RHP-zeros),
hence the inverse generated by the input transformation will be stable.

3.5. Simulation results

Figure 3 shows the responses for disturbance rejection and setpoint changes for y =
[pH pL] (Figure 3a), u = [zh zT B] (Figure 3b) and v = [vH vL] (Figure 3c) to p0 = 42 bar at
time t = 10s, pHC = 39 bar at time t = 20s, pLC1 = 5.5 bar at time t = 30s, pLC2 = 1 bar
at time t = 40s, ps

H = 39 bar at time t = 50s and ps
L = 6 bar at time t = 60s. We tune the

PI-controllers with τC = − 1
2A , which are only used for setpoint changes. The results in

Figure 3 show a decoupled process with perfect disturbance rejection.

4. Discussion

The calculation block is inherently a nonlinear feedforward controller, and therefore we
do not need the feedback control in Figure 1 (typically a PI-controlled) as long as we have
a perfect model and measurements. Setpoint changes can be handled by directly changing
the setpoint for v. However, in a real plant we will always have unmeasured disturbances
and unmodelled dynamics, and we need the outer PI-controller loop.
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(a) Controlled variables
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(b) Physical inputs
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(c) Transformed inputs

Figure 3: Simulation results for disturbance rejection and setpoint changes

5. Conclusion

Steam networks are interactive systems, where the main task of the control system is
to reject disturbances either on the steam generation or demand side. We design the
control structure by using a new method for input transformation that gives decoupling
and perfect disturbance rejection both dynamically and at steady-state (Eq. 12), which
makes it a good fit for the control structure of a steam network, as seen in Figure 3. The
method also transforms a nonlinear system into a first-order linear by introducing a new
tuning parameter A.
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