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a b s t r a c t 

This paper presents a systematic comparison between three alternatives to design the supervisory control 

layer of a district heating network composed of a waste heat boiler, an electric boiler, a dump, a hot 

water storage tank, and a set of consumers. The three alternatives are split range control, controllers 

with different setpoints, and model predictive control. We evaluate the closed-loop performance in the 

face of time-varying supply and demand, and constant electricity prices. All alternatives were found to 

give similar performance. Controllers with different setpoints is the easiest to implement, while model 

predictive control is the most difficult. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The storage of thermal energy is an effective solution to the 

roblem of integrating intermittent heat sources such as solar ther- 

al and industrial waste heat into district heating systems ( Lund 

t al., 2014; Miró et al., 2016; Guelpa and Verda, 2019 ). The most 

ommon form of storage currently used in district heating is the 

ccumulation of hot water in tanks due to its low installation cost 

nd high reliability ( Hennessy et al., 2019 ). 

The optimal use of energy storage has been studied extensively 

n the operations research literature ( van de Ven et al., 2013; Har- 

ha and Dahleh, 2014; Zhou et al., 2016; 2019 ). Despite a few prob-

ems with special structure, most energy storage problems relevant 

n applications do not have a closed-form solution and a numerical 

olution by dynamic programming is impractical. Therefore, we re- 

ort instead to suboptimal, yet effective, policies. Economic model 

redictive control is an example of such policy ( Ma et al., 2009; 

umar et al., 2020 ). An alternative approach is to design a hier- 

rchy of optimization and control layers that work independently 

n different time scales ( Skogestad and Postlethwaite, 2005 ). This 

s known as hierarchical control and is the approach we adopt in 

his paper. 

Within the hierarchical control paradigm, model predictive con- 

rol (MPC) has become the technique of choice for designing the 

upervisory control layer in most of the thermal energy storage 
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ystems reported in the literature due to its ability to handle con- 

trained multivariable systems by design ( Cole et al., 2012 ). On 

he other hand, classical advanced PID-based control structures 

re widely used in practice ( Powell and Edgar, 2012; De Oliveira 

t al., 2016 ). However, the systematic design and benchmarking of 

hese control structures for thermal energy storage systems have 

eceived little attention in the literature. 

We consider a district heating system with thermal energy stor- 

ge. The system is assumed to be already designed and we only 

onsider its operation. We also assume constant electricity prices. 

his paper extends the work of Zotica et al. (2020) , where a de-

entralized control structure based on split range control (SRC) and 

electors was compared with model predictive control. In this pa- 

er, we propose an alternative decentralized control solution based 

n PI controllers with different setpoints. The advantage of SRC 

nd controllers with different setpoints is that they handle active 

anipulated variable (MV) constraint switching without explicitly 

olving an optimization problem. 

The main contribution of this paper is a systematic comparison 

f two decentralized control solutions (SRC and PI controllers with 

ifferent setpoints) and MPC for designing the supervisory control 

ayer for a district heating system with thermal energy storage. 

. Control layers in a process plant 

Fig. 1 shows the control hierarchy in a process plant. The con- 

rol layer receives its setpoints (CV1 s ) from the upper optimiza- 

ion layer, and is divided into an upper supervisory control and a 

ower regulatory control. The latter handles control on the fastest 

ime scale by controlling variables (CV2) that contribute to stabi- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Control hierarchy in a process plant. 
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Fig. 2. Split range control with three MVs ( u 1 , u 2 , and u 3 ) and one CV ( y ). v is the 

internal signal from the controller (C) to the split range block. 

Fig. 3. Split range block with three MVs (u) with different effect on the CV and 

when using different slopes α. 

Fig. 4. Controllers with different setpoints. The order of activating the MVs (u) is 

given by the setpoint difference ( �y i ). 
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izing the process, e.g. levels and pressures. It may also include 

ight control of economic controlled variables (CV1), usually active 

onstraints. The regulatory control layer typically consists of PID 

ontrollers. These loops are usually not subject to reconfiguration, 

nd therefore, extra consideration should be given to what hap- 

ens when a constraint is reached, in particular, when a manip- 

lated variable (MV) becomes saturated. Hence, the upper super- 

isory control layer should supervise the regulatory control layer. 

he main focus of this paper is the design of the supervisory con- 

rol layer. It acts on a slower time scale, and its roles are ( Reyes-

úa and Skogestad, 2019b ): 

1. Keep the economic controlled variables (CV1) at the setpoints 

by using as degrees of freedom the setpoints (CV2 s ) to the reg- 

ulatory layer or unused MVs. 

2. Prevent saturation of the MVs in the regulatory layer. 

3. Identify and take care of changes in active constraints. 

The supervisory layer can be decentralized or centralized. The 

ormer implies several independent controllers that do not com- 

unicate with each other. Centralized control implies only one 

ultivariable controller (e.g. MPC) that receives all the measure- 

ents from the layer below and simultaneously coordinates all 

he controllers in the regulatory layer ( Skogestad and Postleth- 

aite, 2005 ). 

.1. Classical decentralized control schemes to switch between active 

V constraints 

A decentralized supervisory layer that handles MV-MV switch- 

ng can be designed using split range control, controllers with dif- 

erent setpoints, or valve position control ( Reyes-Lúa and Skoges- 

ad, 2019b ). The first two options are considered in this paper, and 

re described next. 

.1.1. MV-MV switching: split range control 

Split range control is a multi-input single-output (MISO) control 

tructure that extends the steady-state operating range for the CV 

y using a new MV when the initial MV becomes saturated. 
2 
Fig. 2 shows the block diagram for SRC with three MVs ( u 1 , u 2 ,

nd u 3 ) and one CV ( y ). A feedback controller ( C), sends an internal

ignal ( v ) to the split range block (SR). This returns the values for

he physical MVs ( u ). 

Fig. 3 shows a split range block for three MVs (e.g. u 1 , u 2 , and

 3 ) with different gains to the CV, but the same sign, and therefore

hree positive slopes ( α). 

The split range block can be implemented in different ways, e.g. 

ogic (if-else statements), lookup tables, or functions. In this work 

e use the last. SRC is commonly presented in process control 

extbooks ( Bequette, 2002; Seborg et al., 2003 ) and in industrial 

pplications (e.g. Forsman and Adlouni (2018) ). However, despite 

ts widespread use, only recently a systematic tuning procedure 

as been proposed ( Reyes-Lúa et al., 2019 ). This procedure adjusts 

he slopes ( α) in the split range block to get the desired controller 

ain for each MV considering the different dynamic effects of each 

V on the CV. 

.1.2. MV-MV switching: controllers with different setpoints 

Alternatively, controllers with different setpoints can be used 

or MV-MV switching ( Reyes-Lúa and Skogestad, 2019a ). The ad- 

antages are that the controllers can easily be tuned independently 

nd no logic is needed. The disadvantage is that the setpoint is not 

onstant and this will cause some delay during switching. 

Fig. 4 shows the block diagram for three independent con- 

rollers with different setpoints y s 
1 
, y s 

2 
, and y s 

3 
, that manipulate 

 1 , u 2 , and u 3 , respectively, to control y . The order of activat-

ng the MVs is given by their selected setpoint difference (see 

ection 5.3.1 ). 
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Fig. 5. Flowsheet of distribution network studied in this work with one waste heat 

boiler, one electric boiler, one air cooling (dump), and one hot water storage tank 

supplying hot water through a pipeline network to consumers. 
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.2. Centralized control 

Model predictive control is a unified systematic procedure for 

ontrolling constrained multivariable systems commonly used in 

ndustrial applications ( Qin and Badgwell, 2003; Mayne, 2014 ). At 

ach sampling time, it uses the current plant measurement as the 

nitial state to solve a finite-horizon open-loop optimal control 

roblem to determine the optimal control sequence. Then, the first 

ontrol is applied to the plant and the process is repeated at the 

ext time step ( Mayne et al., 20 0 0 ). It handles constraints and in-

eractive processes by design. However, it requires a detailed pro- 

ess model, which may not be available at the plant start-up. 

The closed-loop performance of MPC depends firstly on the ac- 

uracy of the dynamic model and secondly on the choice of tun- 

ng parameters, e.g. weights in the objective function, prediction 

nd control horizon, input rate constraints or constraints back-off

 Lu et al., 2020 ). 

Finding the MPC tuning parameters is done by trial and 

rror, heuristics, or optimization of indicators of the closed- 

oop performance, e.g. overshoot, integral square error, robust- 

ess, etc. The work by Garriga and Soroush (2010) presents an 

verview of theoretical and practical guidelines for tuning the 

ontroller parameters in an MPC. The work by Lozano Santa- 

aría and Gómez (2016) presents a gradient-based tuning al- 

orithm with application to chemical processes. The work by 

u et al. (2020) presents derivative-free tuning algorithms based 

n Bayesian optimization techniques. In this work, we use trial and 

rror. 

. District heating control problem 

Fig. 5 shows the thermal energy storage system analyzed in this 

ork, where the working fluid is hot water. For example, this can 

e a district heating network supplying hot water to residential 

ouseholds. This system has a direct physical connection between 

upply and demand, such that hot water can be directly sent to 

he consumers bypassing the storage tank (flowrate q SP ). There are 

lso other distribution networks, for example, in industrial clus- 

ers, that exchange energy only through the storage tank ( Knudsen 

t al., 2019; Scholten et al., 2017; Thombre and Krishnamoorthy, 

019 ). 
3 
The operational objective of the network in Fig. 5 is to manip- 

late the inputs u to minimize the electric boiler usage ( u 2 = q EP )

 Eq. 1a ), while balancing the supply and demand ( Eq. 1b ). Further-

ore, the storage capacity constraints ( Eq. 1c ) and the model equa- 

ions (see Section 4 for details) must be satisfied. 

in 

u 
J = 

∫ ∞ 

0 

q EP (t) dt (1a) 

.t. supply = demand (1b) 

 

min ≤ V h (t) ≤ V 

max (1c) 

The four inputs (degrees of freedom) in Fig. 5 are u = 

 q D q EP q ST q TP ] . 

In the system, heat is mainly supplied by the waste heat boiler 

 q S ), which extracts heat by burning waste. This may be viewed as 

 disturbance ( d ) to the system along with the consumer demand 

 q ), i.e. d = [ q S q ] . Note that the inputs u correspond to physical

alves in Fig. 5 . Later, we will make use of some transformed in-

uts (MVs) for the purpose of balancing supply and demand. Based 

n process insight, the four degrees of freedom can be used to bal- 

nce supply and demand as follows: 

1. Excess supply: charge hot water to storage ( q ST ). 

2. Excess supply (when storage is full): dump hot water to air 

( q D ). 

3. Excess demand: discharge hot water from storage ( q T P ). 

4. Excess demand (when storage is empty): use electric boiler 

( q EP ). 

The switching between these four operating regions must be 

aken care of by the supervisory control layer. Given that electric- 

ty prices are assumed constant, this corresponds with the optimal 

torage policy. That is, this is the optimal solution to Eq. 1 . If elec-

ricity prices were time-varying, it would be optimal to store en- 

rgy at low prices to be used later when prices are high, but this 

s beyond the scope of this work. 

The main objective of the supervisory control system is to meet 

he energy demand of the consumers by switching between the 

our operating regions. To simplify the design of the supervisory 

ontrol system, we will consider three MVs in this layer, rather 

han the four physical valves (degrees of freedom) shown in Fig. 5 : 

V1: hot water from waste heat boiler ( q SP ). 

V2: hot water from storage tank ( q T P ). 

V3: hot water from electric boiler ( q EP ). 

The motivation of selecting the three MVs is that they are the 

hree suppliers of hot water to the consumers and that these MVs 

ere selected for control design in an actual district heating sys- 

em. Here, MV1 is the flow in the direct physical connection from 

he variable supply to the consumers. Note that MV1 does not cor- 

espond to a physical valve, but it is indirectly given by the mate- 

ial balance in Eq. 2 . 

V1 := q SP = q S − q ST − q D (2) 

Here, the supply q S is a disturbance, whereas the charge q ST 

nd dump q D are physical valves. For cases where we want q SP to 

e smaller than q S (that is, we have excess supply), we first charge 

he tank ( q ST ) and then, when it is full, we start dumping ( q D ).

e will assume that this logic is taken care of by a separate block 

charging policy logic”, which will be part of the regulatory control 

ystem (see Section 5.1 ). As mentioned, the reason for doing this is 

o simplify the design of the supervisory control system. 

In summary, the three MVs are related as follows to the physi- 

al inputs ( u ): 

V1 := d 1 − u 1 − u 4 (3a) 
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Table 1 

MVs, CVs, and DVs for supervisory control. 

Manipulated variables Controlled variables Disturbances 

MV1: Hot water from waste heat boiler ( q SP ) CV1: Network pressure ( p) DV1: Hot water from waste heat boiler ( q S ) 

MV2: Hot water from storage tank ( q TP ) DV2: Hot water demand ( q ) 

MV3: Hot water from electric boiler ( q EP ) 
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Table 2 

Model parameters. 

Definition Variable Value Unit 

Hot water storage tank volume V max 5000 m 

3 

Maximum flowrate q max 1000 m 

3 h −1 

Network reference mass m 0 15000 kg 

Network reference pressure p 0 5 bar 

Compressibility coefficient ε 0.1 - 

Water density ρ 1000 kg m 

−3 

w

w

a

t

4

4

s

e

t

g

�

w  

3  

t

f

=  

i

w  

T

s  

t

F  

i

D

5

s

S

5

t

s

V2 := u 3 (3b) 

V3 := u 2 (3c) 

Note that the maximum values for MV1 = q SP and MV2 = q T P 
re time-varying. That is, q SP is limited by the hot water from the 

aste-heat boiler ( q SP ≤ q S ), and q T P = 0 when the storage tank is

mpty. 

The temperature of the hot water produced in the waste heat 

nd electric boiler is kept constant by water injection, not shown 

n Fig. 5 . This is a common practice in district heating networks. 

here are also other flows not shown in Fig. 5 , for example, the

ater supply to the electric boiler and the water return from the 

ir cooling. Actually, in Fig. 5 , it may be better to view the vary-

ng water flows q [ m 

3 h −1 ] as being energy flows Q [ Jh −1 ]. Because

f the assumption of constant temperature, q and Q are directly 

roportional: Q = kq . 

In Zotica et al. (2020) , the information about the heat demand 

as assumed to be available. In practice, this is not realistic, and 

e instead control the network pressure ( p), which is proportional 

o the mass m (see Fig. 5 ) in the pipeline. This is a dynamic vari-

ble that couples the supply and demand. Therefore, it is an indi- 

ect and reliable measurement of the supply-demand balance in a 

ater distribution network. 

In summary, Table 1 shows the three MVs, one CV and the two 

ain disturbances (DVs) for the supervisory control considered in 

his work. 

. Process model 

The change of mass ( m ) in the pipeline system is given by the

ass balance in the network, Eq. 4 . 

dm 

dt 
= ρ(q SP + q T P + q EP − q ) (4) 

here, ρ [ kg m 

−3 ] is the water density, assumed constant. 

To model the changes in the network (pipeline) pressure ( p), 

e consider that it is proportional to the change of network mass 

 m ), Eq 5 . 

p = p 0 

(
1 + 

m − m 0 

εm 0 

)
(5) 

here, m [kg] is the network water mass, m 0 [kg] is the water 

ass at the reference flow, ε is the constant compressibility co- 

fficient and p 0 [bar] is the pressure at the reference flow. Hence 

 = ρV, the compresibility factor ε takes into account the increase 

n liquid density and more importantly the increase in pipeline 

olume by increasing the pressure. 

Substituting Eq. 5 into Eq. 4 yields the mass balance expressed 

n terms of the network pressure, Eq. 6 . 

dp 

dt 
= 

p 0 ρ

m 0 ε
(q SP + q T P + q EP − q ) (6) 

To model the storage tank inventory, we neglect changes in 

ensity ( ρ) and assume no heat losses. The dynamic mass balance 

or the storage tank is given by Eq. 7 

dV h = q ST − q T P (7) 

dt 

4 
here, V h [ m 

3 ] is the volume of the hot water, which must be 

ithin the limits V min = 0 and V max . 

With constant inlet temperature ( T S ), constant heat capacity ( c P ) 

nd perfect mixing, the tank temperature ( T h ) is constant and equal 

o the inlet temperature ( T S = T h ). 

.1. Model parameters 

Table 2 shows the model parameters. 

.2. Dynamic behaviour 

The dynamic behaviour of the model is analyzed from step re- 

ponses in the disturbances and inputs. MV3 = q EP has the same 

ffect on p as MV1 and MV2 and is not shown. Fig. 6 shows 

he response for a step increase in MV1 = �q SP = 250 m 

3 h −1 

iven by an increase in the available hot water supply (DV1 = 

q S = 250 m 

3 h −1 ). Fig. 6 c shows the network pressure response 

hich is an integrating process as given in Eq. 5 with slope k ′ =
 . 33 bar m 

−3 . The hot water volume ( Fig. 6 b) is constant. Note that

he time scale is in seconds because the pressure dynamics are 

ast. 

Fig. 7 shows the response to an increase in the discharge MV2 

 �q T P = 250 m 

3 h −1 . The hot water volume ( Fig. 9 b) is an integrat-

ng process with initial slope k ′ = −1 . 

Fig. 8 shows the response for a step increase in the available hot 

ater supply (DV1 = �q S = 250 m 

3 h −1 ) with MV1 = q SP constant.

he “charging policy logic” first sends the excess hot water to the 

torage tank, and once the tank is full, it is dumped ( Fig. 8 a). The

ime scale is in hours because the storage tank dynamics are slow. 

ig. 8 b shows the hot water volume. The network pressure ( Fig. 8 c)

s constant because MV1 = q SP is constant. 

Finally, Fig. 9 shows the response to an increase in the demand 

V2 = �q = 250 m 

3 h −1 with the MVs constant. 

. Control system design 

We want to implement a control system that optimally 

witches between the four operating regionsr described in 

ection 3 . 

.1. Regulatory control: charging policy logic 

As mentioned before, to simplify the design of the control sys- 

em we include the charging policy logic in the regulatory control 

ystem. The logic is: 
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Fig. 6. Open-loop step responses for an increase in MV1 = �q SP = 250 m 

3 h −1 . The excess heat is sent to the consumers. 

Fig. 7. Open-loop step responses for an increase in MV 2 = �q TP = 250 m 

3 h −1 . 

Fig. 8. Open-loop step responses for an increase in waste heat supply DV1 = �q S = 250 m 

3 h −1 with MV1 = q SP constant and with charging logic. First the excess hot water 

supply is charged to the tank ( q ST ) and then at t = 12 h it is sent to air dump ( q D ). 

Fig. 9. Open-loop step responses for an increase in DV 2 = �q = 250 m 

3 h −1 . 

5

s

t

i

c

h

t  

F

1. The storage tank is charged with excess hot water ( q ST ) when 

the hot water storage is below maximum capacity, Eq. 8 . 

q ST (%) = 

{
100% − q SP (%) if V h < V 

max 

0 if V h = V 

max (8) 

2. On the other hand, when the storage tank is full, excess heat is 

dumped, Eq. 9 . 

q D (%) = 

{
0 if V h < V 

max 

max (9) 

100% − q SP (%) if V h = V 

5 
.2. Alternative 1 for supervisory control: split range control 

We first consider split range control to keep the network pres- 

ure at the setpoint by using one MV at a time, starting with 

he cheapest, and switching to the more expensive as demand 

ncreases or the availability of the cheap MV decreases. In our 

ase, we first want to use the available hot water from the waste 

eat boiler (MV1 = q SP ), followed by the hot water stored in 

he tank (MV2 = q T P ), and lastly the electric boiler (MV3 = q EP ).

ig. 10 shows the SRC implementation. 
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Fig. 10. Split range control structure for balancing supply and demand by controlling the network pressure. 

Fig. 11. Split range block for Fig. 10 . 
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.2.1. Tuning parameters for SRC 

We follow the procedure of Reyes-Lúa et al. (2019) . We define 

he normal range for the internal signal v to be from 0 % to 100 % ,

nd we scale the MVs from 0% to 100% , see Fig. 11 . The tuning pa-

ameters for SRC are the PI-tunings for the common controller C

nd the slopes αi in the split range block in Fig. 11 . The slopes

i are used to allow for different controller gains for each MV, 

owever, from the network mass balance ( Eq. 4 ), all MVs have the

ame effect on the CV. Therefore, the three slopes in the split range 

lock are equal, and we get αSP = αT P = αEP = 3 . Fig. 11 shows the

plit range block. The controller parameters are obtained by apply- 

ng the SIMC tuning rules ( Skogestad, 2003 ) for an integrating pro- 

ess (i.e. the network pressure balance Eq. 6 ). We select the closed- 

oop time constant τC = 10 s, resulting in the proportional gain for 

ach MV is K C,i = 54 and the integral time τI = 8 s (see Section 7.4 ).

e find the common controller gain K C = K C,i = 54 /αi = 18 . To

andle the time-varying availability of MV1 and MV2 we update 

he PI-controller bias ( u 0 ), such that when one MV is no longer

vailable, the new MV starts from the value of the former. Alterna- 

ively, this could have been handled by using a “discharging policy 

ogic” block and only two MVs for the SRC (see Section 7.2 ). 

Note that we have assumed that we directly manipulate the 

ows q i , that is, we have assumed that all valves have flow con- 

rollers. Without flow controllers, we would have had to use dif- 

erent slopes α in the split range block ( Fig. 11 ). 
i 

6 
.3. Alternative 2 for supervisory control: controllers with different 

etpoints 

Fig. 12 shows the control structure with three different PI- 

ontrollers with different setpoints for controlling the network 

ressure ( p) that uses as degrees of freedom MV1 ( q SP ), MV2 ( q T P )

nd MV3 ( q EP ). Similar to SRC, we order the use of MVs based on

conomics, and we use the cheapest MV first. Therefore, we or- 

er the three setpoints SP 1 > SP 2 > SP 3 ( p s 
SP 

> p s 
TP 

> p s 
EP 

) such that

nly one MV is actively used at any given time. 

.3.1. Setpoints selection 

We select the setpoints order based on physical insight. The 

rocess gain from the MVs to the CV is positive ( Fig. 6 ). There-

ore the controller gain is positive, and a negative controller error 

 p s − p) gives a negative controller output (see Eq. 13 ). Setting the

ontroller bias u 0 = 0 , and considering that the minimum physi- 

al limit for the MV is 0, the MV only starts to open when the

ontroller error becomes positive. Specifically, when p ≥ p s 
T P 

, MV1 

s active, and MV2 and MV3 are fully closed. Once MV1 reaches 

ts maximum limit, supply is smaller than demand, and the net- 

ork pressure drops. Once the pressure reaches a lower thresh- 

ld, p s 
EP 

< p < p s 
T P 

, MV2 becomes the active MV, while MV3 is fully

losed. Finally, when the supply is smaller than demand, MV2 be- 

omes saturated at its maximum and the pressure drops. Once it 

eaches an even lower threshold p < p s 
EP 

, MV3 becomes the active 

V. This control structure handles the intermittent availability of 

V1 and MV2 by design as long as antiwindup with tracking of 

he plant input is implemented. 

.3.2. Tuning parameters for controllers with different setpoints 

As mentioned, all MVs have the same effect on the CV and 

e use equal controller tuning parameters: K C = 54 , τI = 8 s . The

etpoints are: SP 1 = p s 
SP 

= 5 bar, SP 2 = p s 
T P 

= p s 
SP 

− �p s 
T P 

= 4 . 5 bar,

P 3 = p s 
EP 

= p s 
T P 

− �p s 
EP 

= 4 bar. We implement antiwind-up with

he back-calculation method ( ̊Aström and Hägglund, 2006 ) with 

he tracking time constant set to half of the integral time. 
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Fig. 12. Three controllers with different setpoints for balancing supply and demand by controlling the network pressure. The order of the setpoints is: SP1 > SP2 > SP3 

( p s SP > p s TP > p s EP ). 
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Fig. 13. Disturbances in supply and demand profiles. 

t

1

6

(

(

b

h

w

w

e

6

a

S

 

2

i

6

F

.4. Alternative 3 for supervisory control: model predictive control 

We design the MPC to handle also the charging of the storage 

ank. Therefore it has the role of the supervisory and regulatory 

ayer previously described. We include q D as the fourth MV, while 

 ST is calculated from the mass balance ( Eq. 2 ). 

The system we are analyzing is somewhat atypical because it 

as more MVs than CVs. Therefore, tuning the MPC is not straight- 

orward, and we must give careful consideration in setting up 

he objective function to prioritize the use of MVs. We achieve 

his by selecting the weights ( ω) in the objective function ( Reyes- 

úa et al., 2018 ). We formulate the optimal control problem with 

he objective function given in Eq. 10a . We want to maximize dis- 

harging the tank ( q ST ), minimize dumping ( q D ), minimize using 

he electric boiler and keep the network pressure ( p) at its setpoint 

 p s ). As mentioned before, the MPC controls the network pressure 

s an indirect measure of the hot water demand. However, the 

PC uses the full model ( Section 4 ), and it requires information 

bout the demand hot water. We solve the optimization problem 

ubject to model Eqs. 10b, 10d and 10c , and operation constraints 

Eqs. 10e, 10f, 10g and 10h ). 

in 

N ∑ 

k =1 

ω T P q 
2 
T P,k + ω D q 

2 
D,k + ω EP q 

2 
EP,k + ω p (p k − p s ) 2 (10a) 

.t. p k = g(q SP,k , q T P,k , q EP,k , q k ) (10b) 

 h,k = h (q ST,k , q T P,k ) (10c) 

 ST,k = q S,k − q D,k − q SP,k (10d) 

 ≤ V h,k ≤ V 

max (10e) 

p min ≤ p k ≤ p max (10f) 

 SP,k ≤ q S,k (10g) 

 ≤ q i,k ≤ q max 
i ∀ i ∈ { D , TP , EP } (10h) 
7 
Here, k is the current iteration, N is the number of control in- 

ervals, ω i are the weights in the optimization problem, and Eqs. 

0b and 10c are discretized versions of the mass balances Eqs. 

 and 7 , respectively. 

We formulate the MPC problem using CasADi 

 Andersson, 2013 ), and we use IPOPT to solve the NLP 

 Wächter and Biegler, 2006 ). The tuning parameters were found 

y trial and error. We use 10 control intervals, 10 min prediction 

orizon and 1 min sampling time. In practice, the sampling time 

ill need to be smaller because of the fast pressure dynamics. The 

eights in the optimization function were also found by trial and 

rror and are ω T P = 10 −6 , ω D = 10 −5 , ω EP = 10 −3 and ω p = 10 4 . 

. Simulation case study 

We compare the performance of the three control system 

lternatives to switch between the four operating regions (see 

ection 3 ) using the model described in Section 4 . 

At the initial state of the system, the tank is half full ( V h =
500 m 

3 ), and the hot water supply from the waste heat boiler 

s equal to the demand, i.e. q S = q = 500 m 

3 h −1 . 

.1. Simulations step changes 

We perform the following series of step changes (see also 

ig. 13 ): 

Step 1 at time t = 1 h : The hot water supply from the waste 

heat boiler (DV1) increases from q S = 500 m 

3 h −1 to 

q S = 10 0 0 m 

3 h −1 . 

Step 2 at time t = 12 h : The hot water demand (DV2) in- 

creases from q = 500 m 

3 h −1 to q = 10 0 0 m 

3 h −1 . 
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Fig. 14. Cl osed-loop simulation results for SRC (left), three PI-controllers with different setpoints (middle), and MPC (right). 
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Step 3 at time t = 15 h : The hot water supply from the waste 

heat boiler (DV1) decreases from q S = 10 0 0 m 

3 h −1 to 

q S = 500 m 

3 h −1 . 

Step 4 at time t = 30 h : The hot water demand (DV2) decrease 

from q = 10 0 0 m 

3 h −1 to q = 750 m 

3 h −1 . 

Fig. 14 compares the closed-loop responses for split range con- 

rol (SRC-left), three PI-controllers with different setpoints (3C- 

iddle) and model predictive control (MPC-right). Figures 14 a, 

4 b and 14 c show the response for the MVs, Figures 14 d, 14 e

nd 14 f show the response for the tank storage, Figures 14 g, 14 h

nd 14 i show the response for the network pressure. 

.2. Results analysis 

The closed-loop simulation results in Fig. 14 demonstrate that 

ll three alternative control structures can successfully implement 

ptimal operation for this system. Because the simulation time 

cale is in hours, it is not easy to see some of the differences be-

ween the three alternatives for MV3 = q EP and for the network 

ressure ( p). SRC and MPC perform similarly. In the MPC formu- 

ation, the step changes in disturbances happen at the sampling 

ime and there is feedforward action from disturbances q s and q 

t each sampling time. Therefore, there is less variation in the net- 

ork pressure p in Fig. 14 i compared to Fig. 14 g. This is shown

ore clearly at time t = 12 h in Fig. 15 . 
8 
The pressure response for controllers with different setpoints 

 Fig. 14 h) is as expected different from SRC ( Fig. 14 g) and MPC

 Fig. 14 i). However, the response for the tank storage ( Fig. 14 e) and

Vs ( Fig. 14 b) is not significantly different because 1) the pressure 

nly has a dynamic effect on the flows, that is, the flow values are 

ndependent of the pressure setpoint and 2) pressure dynamics are 

ast compared to the storage dynamics. 

In Fig. 14 a, SRC changes q T P instantaneously because we up- 

ate the controller bias. However, for controllers with different set- 

oints (3C), there is a small delay until the new MV takes over, 
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Table 3 

Comparison of input usage: total input variation. 

MV SRC 3C MPC 

q SP 1290 1444 1281 

q D 1000 1539 1000.1 

q TP 1022 1359 1027 

q EP 1000 1897 1000 
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Fig. 16. General solution for balancing a system with variable supply ( d 1 ) and vari- 

able demand ( d 2 ) using an adjustable supply (MV s ) and an adjustable demand 

(MV d ). 

Fig. 17. Split range block for general control structure for balancing supply and 

demand. At v ∗, the variable supply ( d 1 ) balances the variable demand ( d 2 ) and 

MV s = MV d = 0 . 
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ecause the pressure ( p) has to drop below the setpoint ( p s 
i 
) given

o the controller that regulates the respective MV. The MV over- 

hoots, leading to two MVs being active simultaneously for a short 

eriod ( Fig. 14 b and Table 3 ). 

In terms of dynamic input usage, Table 3 compares the total 

nput variation (i.e. T V = 

∑ ∞ 

1 | u | ) for SRC, controllers with differ-

nt setpoints (3C) and MPC. Among the three, the alternative of 

ontrollers with different setpoints shows the highest input usage. 

he total variation for q EP is equal for SRC and MPC, meaning that 

he electricity cost is equal. Compared to SRC, MPC uses slightly 

ess q SP compensated by using slightly more q T P and marginally 

umping more heat q D . This means that in the MPC implementa- 

ion, the tank is simultaneously charged and discharged. However, 

he short-term peaks in q EP for controllers with different setpoint 

3C) which do not matter much for the integrated cost, see Eq. 1 . 

. Discussion 

.1. Ease of implementation 

In terms of ease of implementation, the use of three controllers 

s the simplest. It allows for using three independently tuned con- 

rollers and it avoids the logic needed in SRC. The logic can be 

voided because the switching is done based on the output (CV 

 p) and not the limit on the MV-value. However, it has two disad-

antages: 1) somewhat worse dynamic performance (see Table 3 ) 

nd 2) varying setpoint. Because each controller can be tuned inde- 

endently, we do not need to compromise on the integral time as 

n SRC. This was not relevant for the process studied because the 

Vs have the same effect on the CV (see the model in Section 4 ),

ut it can become important for other systems with different dy- 

amics, for example with different valve sizes. 

The MPC controller is by far the most difficult to implement. 

n addition to requiring a dynamic model, it was also difficult to 

djust the tuning parameters (e.g. weights in the objective func- 

ion, prediction horizon and sampling time) to obtain the desired 

erformance. We selected a short prediction horizon because with 

arger values, hot water was dumped before the tank was at maxi- 

um storage capacity. Formulating the objective function ( Eq. 10a ) 

as also done by trial and error. In the end, the weights on q T P 
nd q D were added to give information to the MPC about which 

owrates to prioritize. Without these, the MPC would use two 

Vs simultaneously. For example, with no excess heat, it would 

ischarge the storage tank instead of using hot water from the 

aste heat boiler, and dump the remaining hot water. This was 

ecause the MPC does not have information about future demand 

n its prediction, and it is not aware that it should charge the stor- 

ge tank. One could also add a penalty for not charging the stor- 

ge tank in the objective function. However, as with any multi- 

bjective problem, there will be a compromise and the tank will 

ot be charged to maximum capacity. 

.2. General control structure for balancing supply and demand 

A general solution for balancing variable supply and variable 

emand is shown in Fig. 16 . This is an inventory ( m ) control prob-

em with two MVs (MV s and MV ) and two DVs ( d and d ), and
d 1 2 

9 
he mass balance in Eq. 11 . 

dm 

dt 
= MV s + d 1 − MV d − d 2 (11) 

he idea is that the adjustable supply MV s should be used when 

he variable demand ( d 2 ) is larger than the base load supply ( d 1 ),

nd the adjustable demand (MV d ) should be used when d 1 > d 2 .

ne should normally not use MV s and MV d simultaneously. The 

alues of MV s and MV d are set by a feedback controller that con- 

rols the inventory m that indirectly measures the imbalance be- 

ween supply and demand (i.e. pressure in our case), and the MV s - 

V d switching is taken care of by, for example, SRC . 

Fig. 17 shows the split range block At the split value ( v ∗), d 1 =
 2 and the variable demand balances the variable supply. 

Alternatively, we may use two controllers for MV s and MV d 

ith two different setpoints for the inventory m . 

Next, we need to decide on how to implement MV s and MV d 

sing the physical inputs ( u 1 , u 2 , u 3 and u 4 , in our case). From

ig. 16 we have 

V s = q from storage + q electric boiler 

= u 2 + u 3 (12a) 

V d = q to storage + q dump 

= u 1 + u 4 

(12b) 

Since our objective is to minimize the use of electric boiler (and 

inimize dump to store when possible), it becomes clear what we 

hould do. If MV s is active, we first use hot water from storage ( u 3 )

ntil the storage tank is empty, and then use the more expensive 
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lectric boiler ( u 2 ). If MV d is active, we first send excess hot water

o storage ( u 4 ) and when the storage tank is full, send it to dump

 u 1 ). This corresponds to the four operation regions in Section 3 . In

ractice, this may be implemented using a “charging policy” logic 

or MV s and a “discharging policy” for MV d 

.3. Setpoint difference for three controllers 

We select the setpoints for the three controllers in 

ection 5.3.2 by trial and error. This choice is a trade-off. A 

maller setpoint difference may result in having more than one 

V active at a given time, while a larger setpoint difference 

esults in a larger delay until the next MV activates. 

.4. PI Controller tuning 

The PI-controller is given in Eq. 13 . 

 = u 0 + K C (y s − y ) + 

K C 

τI 

∫ t 

0 

(y s − y ) dt (13)

here u 0 is the controller bias, and K C is the proportional gain and 

I is the integral time constant, derived from applying the SIMC 

uning rules ( Eq. 14 ) ( Skogestad, 2003 ). 

 C = 

1 

k ′ 
1 

τC + θ
(14a) 

I = min (τ, 4(τC + θ )) (14b) 

here k ′ is the initial slope of the step response, θ is the time de- 

ay, τ is the time constant, and τC is the desired closed-loop time 

onstant. The PI-controllers in this paper are for integrating pro- 

ess, when τ → ∞ . 

. Conclusion 

The use of inventory (pressure) control is an effective way of 

alancing supply and demand for the district heating system. For 

he case of constant electricity prices, optimal operation for the 

ystem studied is easy to identify based on physical insight (see 

ection 3 ). In this work, we compare three alternative control im- 

lementations (split range control, controllers with different set- 

oints, and model predictive control) to handle MV-MV switches. 

he closed-loop simulation results in Fig. 14 show that all control 

tructures successfully switch between the four operating regions 

o balance supply and demand. However, MPC requires careful tun- 

ng to obtain the desired performance, making it more difficult to 

mplement than the decentralized solutions. 
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