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Abstract

High computational load, time-consuming convergence and simulation crashes are common when using 
process simulators for flowsheet optimization. In this paper, by replacing the large-scale physical process 
simulations by surrogate models, the optimization time and computational load are reduced significantly 
along with maintaining the accuracy and reliability. A gas to liquids (GTL) plant was used as a large-scale 
process plant case study. Multi-layer perceptron neural network (MLP-ANN), radial basis function neural 
network (RBF-ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) 
models were selected as alternative surrogate models. These alternatives were investigated in 
implementation of the self-optimizing control procedure on the above case study to find the best individual 
and combined self-optimizing controlled variables (CVs). The MLP-ANN surrogate model showed the best 
performance in predicting the optimum points and for selecting the best self-optimizing CVs. In fact, it 
even performed better than using the full process simulator.

Keywords: Plantwide control, MLP-ANN, Fischer-Tropsch synthesis, Process flowsheet optimization, 
Controlled variable selection

1. Introduction

A chemical process requires the use of a control system for a variety of reasons including safety limitations, 
environmental policies, operational requirements, process economics, and the achievement of desirable 
product characteristics 1. In recent years, with the advent of far more complex processes with heat and mass 
integrations, the need for optimal control systems is felt more than ever.

In a process plant, various equipment are inter-connected. It is essential to address the plantwide control 
issues as a subset of the process control system design. Plantwide control focuses on the structural decision-
making methods for selecting controlled variables (CVs) and the pairing them with manipulated variables 
(MVs) 2.
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The choice of CVs in a chemical plant is important both for economic optimality and for the stability of the 
process.

This paper is in continuation to our previous work 3, which addressed modeling and optimization of a gas-
to-liquids (GTL) process plant by using of Multi-layer perceptron neural network (MLP-ANN). A 
comparison between simulation and MLP-ANN models in predicting the optimum point was carried out. 
In addition, a brief comparison between four surrogate models in terms of prediction was conducted. In the 
present paper, we investigate the application of surrogate models as an accurate and reliable alternative to 
process simulation in self-optimizing control of a GTL process plant. This is performed in two parts. Firstly, 
a detailed comparison is made between surrogate models and detailed simulations in terms of their 
optimization performance, which shows the ability of surrogate models to predict the output value and the 
location of optimum points. In the second part, the best surrogate model, the MLP-ANN model, is used as 
a fast and precise alternative in the self-optimizing procedure. By doing this, the same or even better results 
can be obtained with much less time and computational cost for the multiple process re-optimizations cases 
which are needed to calculate self-optimizing matrices. 

This paper focuses on self-optimizing method as the core part of the plantwide control procedure, defined 
by Skogestad as follows: “Self-optimizing control is when we can achieve an acceptable loss with constant 
setpoint values for the controlled variables (without the need to re-optimize when disturbances occur)”. 
More generally, the objective is that the use of self-optimizing control should keep the process close to 
optimal on the shorter time scale and thus reduce the need for reoptimizing the setpoints by the slower real-
time optimization (RTO) layer.

Self-optimizing methods have been previously applied to several processes in order to find proper CVs. In 
the work of Panahi and Skogestad 4, the best CVs were determined by the application of self-optimizing 
control on a post-combustion CO2 capturing process plant. The selected CVs and their optimum setpoints 
were reported for achieving optimum energy consumption in different operational regions. In another 
work5, the maximization of the variable income of a GTL process plant was investigated in two operating 
modes. Individual and combined optimum CVs were determined using the self-optimizing method. 
Reduction of the worst-case loss to near zero was achieved when measurements were combined.  The HDA 
process was  explored as another large-scale process plant using the self-optimizing method 6. Accordingly, 
the optimum CVs were determined and evaluated using the Aspen Plus and Aspen dynamics simulation 
software. The Tennessee Eastman process was another large-scale process plant, which was used to 
demonstrate the ability of the self-optimizing method for the selection of the best CVs. For this purpose, 
acceptable loss was achieved in the presence of disturbances7.

The optimal selection of linear measurement combinations (H-matrix) for self-optimizing method was 
developed based on a quadratic expansion of the cost function around the optimal nominal point, together 
with a linear measurement model 8. Some parameters based on the process model need to be calculated to 
apply the self-optimizing method to a specific process. One of these parameters is the optimum sensitivity 
matrix (F), which is calculated for the main disturbances in the process plant. To obtain F, it is necessary 
to re-optimize the whole process plant for each of the disturbances. This can be very complicated and time-
consuming for a large-scale process plant when traditional process optimization methods are used4, 5.  These 
optimization results in high computational loads  and a high probability of simulation crashes especially 
when recycles  are present 9. In addition, the problems related to the flowsheet convergence, numerical 
solver settings and disconnecting between process simulators and computing software (e.g. Matlab) should 
be considered. For these reasons, the current paper investigates the use of surrogate models to reduce the 
computational load of optimization and subsequently speed up self-optimizing procedure, while 
maintaining accuracy. 
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Four alternative surrogate models are considered in this study: 

 Multilayer perceptron neural network (MLP-ANN) using Bayesian regularization (BR)
 Radial basis function neural networks (RBF-ANN) using genetic algorithm (GA) 
 Support vector machine (SVM)  using particle-swarm optimization (PSO)
 Adaptive neuro-fuzzy inference system (ANFIS) using particle-swarm optimization (PSO).

There are three main reasons for this selection. Firstly, these surrogate models are among the most common 
data-based models used in regression problems. These models are referred in many articles in the chemical 
engineering field and particularly in data driven models of equipment or process plants and flowsheets. 
Secondly, in most cases, these models show a good performance of interpolation and reach the desired 
goals of prediction accuracy. Thirdly, these models are fairly easy to implement. 

A wastewater treatment plant was modeled by the MLP-ANN in 10. To this end, the neural network was 
trained using a data set from a wastewater treatment plant, and the resulting model was introduced as a tool 
for evaluating the performance. The superiority of RBF-ANN compared to the MLP-ANN was reported by 
11 to predict the temperature rise of a multi-stage flash in a seawater desalination process plant. For this 
purpose, a single-layer ANN with twelve neurons was recommended as the optimum structure. The 
resulting model was also recommended as a proper alternative for the multi-stage flash process model due 
to high accuracy and desirable computational performance. In 12, MLP-ANN and ANFIS were used as 
surrogate models for columbic efficiency (CE) and power density parameters in a microbial fuel cell.  The 
MLP-ANN model was preferred due to a simpler structure and easier training process. In 13, MLP-ANN, 
RBF-ANN, ANFIS, and Least Square SVM (LS-SVM), were compared to predict the amount of CO2 
solubility in ionic liquids. The performance of LS-SVM model was the best and a suitable replacement for 
complex interpolation methods. In addition, an innovative particle swarm optimization (PSO) algorithm 
was employed to optimize the parameters of the LS-SVM and ANFIS. In addition to the surrogate-assisted 
modeling cases above, this effective method was recently used to make self-optimizing implementation 
much easier 14. 

A surrogate-assisted tool for fast implementation of the self-optimizing procedure was presented recently 
by Lima et al. 14. In this application, which was developed in Python, the Kriging method was used as a 
surrogate model. In addition to demonstrating the performance of the proposed software, three industrial-
scale process plants were investigated 14.

The use of surrogate models and meta-heuristic algorithms for optimizing complex processes with a high 
computational load that is predicted by a surrogate model has been employed in numerous papers. In 15, 
Nandi et al. performed a comparative investigation on the performance of two hybrid models of multilayer 
perceptron-genetic algorithm (MLP-GA) and support vector regression-genetic algorithm (SVR-GA) for 
modeling and optimizing benzene isopropylation in the Hbeta catalytic process. The GA meta-heuristic 
algorithm was used to optimize the input variables of each surrogate model. A significant improvement in 
the yield and selectivity of the desired product of process (cumene) was reported. In this study, the results 
from optimizing the MLP-GA hybrid model had high accuracy compared with the validation data. In 16, the 
prediction of the sludge volume index (SVI) was performed using MLP-ANN and RBF-ANN. The 
parameters of the two surrogate models (weights and biases) were optimized by GA using the available 
experimental data, and the results were presented in different states, including different numbers of inputs. 
Eventually, the performance of the MLP-ANN was reported to be better than the RBF-ANN. In 17, Ma et 
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al. conducted the optimization of a high-sulfur natural gas purification plant using ANN-GA hybrid method 
for reducing the time of computation and solving the non-convergence error in simulation software. To this 
end, after training and testing of the MLP-ANN model with simulations, GA was applied to the model to 
optimize the energy consumption of the plant.

In summary, the use of surrogate models in combination with meta-heuristic optimization algorithms is 
suitable for complex processes. The present paper uses this technique to re-optimize the process for each 
disturbance in the self-optimizing control procedure. Initially, datasets of input-output variables are created 
for each of the key disturbances using the existing Aspen-Hysys simulation of the gas-to-liquids (GTL) 
process. The parameters of the surrogate models are optimized using PSO or GA meta-heuristic algorithms. 
For validation, the data is divided into several categories by the k-fold cross-validation method. Next, 
surrogate models are trained on the data and validated at each step. The obtained models are optimized by 
the PSO algorithm, and the optimum value of the objective function is compared with the value obtained 
by the simulation. Finally, the best surrogate model is chosen for replacing the process simulation of the 
GTL flowsheet for applying the self-optimizing method.

The paper is structured as follows: Each surrogate model is first described briefly, and a description of the 
PSO optimization algorithm is presented. The next section briefly discusses the self-optimizing method and 
further explains the GTL process. Then the modeling and optimization in order to select the best self-
optimizing CVs is presented, and finally the results are discussed and concluded.

2. Methods
2.1. Surrogate models

2.1.1. Multi-layer perceptron neural network (MLP-ANN)
The multilayer perceptron neural network is the most common type of neural network in the field of data-
based regression and modeling. In general, MLP–ANN consists of three types of layers: the input layer, the 
output layer, and one or more hidden layers. The neuron is the main computational unit in a neural network. 
Neurons are located in different layers of the network and play a major role in the performance of a network. 
In addition, the weights for each connection, the value of bias, and the type of activity function in each layer 
affect the output value of the network. Typically, considering one hidden layer with an adequate number of 
neurons in the neural network structure lead to an acceptable performance. The adjustable parameter in this 
kind of neural network is the number of neurons in the hidden layer, whose correct determination has a 
significant effect on the network performance.

The behavior of a neuron can be expressed in mathematical form using equations (1) and (2):

𝑢𝑖 =
𝑛

∑
𝑗 = 1

𝑊𝑖𝑗𝑋𝑗 (1)

𝑦𝑖 = Θ(𝑢𝑖 + 𝑏𝑖) (2)

Where 𝑋𝑗 is the input vector, 𝑊𝑖𝑗 is the weight vector of the ith neuron, 𝑢𝑖 is the output of the linear 
combiner, 𝑏𝑖 is the bias, Θ is the activity function, and 𝑦𝑖 is the output of the ith neuron.

In this work, the MLP-ANN was trained by the Bayesian regularization (BR) algorithm using the Matlab 
R2016b software. It has a linear transfer function in the output layer and a tangent sigmoid transfer function 
for Θ in its hidden layer.
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2.1.2. Radial basis function neural network (RBF-ANN)
This kind of neural network has also three layers; input, output, and usually one hidden layer. The activity 
functions  in the hidden layer are of the radial basis type, and the output layer has linear activity functions. Θ
As can be seen in equations (3) and (4), in RBF-ANN, the activation function is applied on the input vector 
firstly and then the summation is done on the product of weight vector and output of the activity function. 
However, it is different in MLP-ANN based on equations (1) and (2). In MLP-ANN the activation function 
is applied on the result of summation, which is done on the product of the weight vector and input vector. 
The RBF-ANN is considered as a good alternative to the MLP-ANN due to the high training speed and 
simpler structure 18. This paper used Matlab R2016b software to create the RBF-ANN.

The equations for the output of the radial basis neural network used in this paper are given in the equations 
(3) and (4):

𝑦𝑖 =
𝑛

∑
𝑗 = 1

𝑊𝑖𝑗𝑢𝑗 + 𝑏𝑖 (3)

𝑢𝑖 = Θ(𝑋𝑗) (4)
Where 𝑋𝑗 is the input vector, 𝑊𝑖𝑗 is the weight vector of the ith neuron, 𝑢𝑖 is the output of the activity 
function, the 𝑏𝑖 stands for bias, Θ is the radial basis activity function, and 𝑦𝑖 is the output of the ith neuron.

2.1.3. Support vector machine (SVM)
Support vector regression (SVR) for fitting data is a subset of  support vector machine (SVM) which was 
proposed by Vapnik in 1995 19. This method has a high potential for nonlinear fitting and has shown to 
have a good performance for small data sets 20. The main rule used in the SVR method is to minimize the 
upper limit of the generalization error 15. In the SVR method, the function (𝑥) will be formed to predict the 
output (𝑦) associated with the inputs (𝑥) with the estimation error (ε) and remove the data with violation (ξ) 
by a parameter called 𝐶. The parameter (ε) is a precision parameter representing the radius of the intended 
area for fitting the training data 21. The parameter 𝐶 also represents a trade-off between the complexity of 
the resulting model and the model estimation error 15.

In this paper, the Gaussian function was used as the kernel function. The code of SVM is developed in the 
Matlab R2016b.

2.1.4. Adaptive neuro fuzzy inference system (ANFIS)
The adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jang in 1993 22. This technique 
was improved later by aggregating the ability of neural networks. The fuzzy inference system (FIS) is a 
basic model based on fuzzy rules in which each fuzzy rule represents the local behavior of the system 12, 23, 

24. The Gaussian membership function in the Matlab R2016b software was used in this paper. 

Regularly, the ANFIS is trained using error propagation algorithms. This training contains the adjustment 
of parameters related to the membership functions. However, the use of these methods for optimizing the 
parameters is slow and easily gets trapped in local optimum 25. On the other hand, the use of evolutionary 
optimization algorithms is more reliable. 13. Therefore, this paper uses the particle swarm optimization 
(PSO) evolutionary algorithm to perform the optimization on the ANFIS parameters.
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2.2. Particle swarm optimization (PSO) algorithm
The PSO optimization algorithm is a population-based and the iterative approach was first proposed by 
Kennedy and Eberhart in 1995 26. Each particle represents a possible response in the optimization space 
and has a velocity parameter that is responsible for updating responses in each generation. The two 
parameters gbest and pbest, affect the orientation of the particle swarm movement. The best personal 
response (pbest) is the best response that each particle has obtained so far in all generations. The best general 
response (gbest) is the best response that has been obtained between all particles in all generations.

The velocity of all particles is initially set at zero. A random population of particles is created in the response 
space, and the values of gbest and pbest are determined after evaluating the value of the objective function 
for each particle. Accordingly, the particle velocity would be calculated for the next generation. Finally, 
the location of all particles is updated using the new values of velocity.

2.3. Gas to liquids process (GTL)
The GTL process combines reforming of natural gas to produce synthesis gas (CO and H2) with  a Fischer-
Tropsch (FT)  process to produce transportable liquid products such as diesel, naphtha, and wax 27.

There are several reasons why there might be an increase in the willingness to implement large-scale GTL 
plants and the growth of research on this issue. These may include 28:

1. The desire to use stranded gas reserves
2. The desire to increase access to new gas resources by big companies in the field of energy
3. Market demand for cleaner fuels and cheaper sources of raw materials
4. The rapid development of technology by design corporations
5. The interest of states with rich gas reserves

The GTL process has three main steps: 1) Reforming of natural gas to generate syngas (a mixture of 
hydrogen and carbon monoxide), 2) Fischer-Tropsch reactions to create hydrocarbon chains, 3) upgrading 
(including cracking and hydro-processing) of the produced hydrocarbons from the FT reactions to achieve 
final products specifications 29.

The basic simulation model used in this paper is presented in 30. A simple flowsheet of the process is 
presented in Figure 1. Further details of this simulation model, as well as the main reactions for the GTL 
process, are described in 5.

Figure 1 Simple flowsheet of the GTL process
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2.4. Self-optimizing control
A proper control structure is essential in a process plant in order to achieve optimum economic performance. 
Therefore, various methods have been proposed for designing a suitable control structure including 
selection of suitable variables for control, measurement, and adjustment. One systematic method for control 
structure design is based on the self-optimizing method of Skogestad.

The key in this method is to select good controlled variables (CVs). In the ideal case, the setpoints of these 
variables can be fixed and maintained at constant values in the presence of disturbances. That is, with the 
CVs fixed at constant setpoints, the process operates with an acceptable loss for objective function 
compared to the re-optimized case. It should be noted that this method does not relate to the characteristics 
of the controllers, but is related to  the steady-state economic performance of a process 31.

The steps to apply the self-optimizing method and selecting the optimum CVs in a process plant are as 
follows:

1. Definition of cost (objective) function and constraints for optimization of the process 
2. Identification of degrees of freedom (DOFs) for optimization (u)
3. Identification of the major disturbances (d)
4. Steady-state optimization of the nominal case and for all disturbances
5. Identification of candidate CVs as individual measurements (y) or combination of measurements (CV = 
Hy) 
6. Evaluation of the objective function and loss compared to the optimum when keeping alternative CVs at 
constant setpoints and selection of the best CV candidate. 

Based on the details given in each of the above steps in 32, it is observed that in the fourth step one needs to 
obtain the optimum sensitivity matrix F. Typically, there are two ways to calculate the F matrix. One of 
them is to use equation (5), which is obtained analytically 5, 8.

𝐹 = 𝐺𝑦𝐽 ―1
𝑢𝑢 𝐽𝑢𝑑 ― 𝐺𝑦

𝑑 (5)

Here  is the gain of the candidate measurements  (y) from the inputs (u),  is the Hessian of the objective 𝐺𝑦 𝐽𝑢𝑢
function for unconstraint DOFs,  is the second derivatives of the objective function for unconstraint 𝐽𝑢𝑑

DOFs and disturbances, and  is also the gain of the disturbances to the candidate measurements.𝐺𝑦
𝑑

In another method, used in this paper, the optimum sensitivity matrix is obtained numerically by re-
optimizing the process for each disturbance. A small change is initially made for each disturbance and the 
new optimal values for the candidate measurements (y) are obtained numerically. The matrix F, which has 
dimensions of  (the number of candidate measurements) multiplied by  (the number of important 𝑛𝑦 𝑛𝑑
disturbances) is obtained according to equation (6).

𝐹 =
Δ𝑦𝑜𝑝𝑡

Δ𝑑
(6)

where  is the optimal change in y relative to the optimum nominal value and  is the small change Δ𝑦𝑜𝑝𝑡 Δ𝑑
applied to each of the disturbances.

The worst-case loss needed for evaluating alternative CV sets in step 6 can be obtained from Equations (7) 
and (8).
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𝐿𝑤𝑐 = 𝑤𝑜𝑟𝑠𝑡 ― 𝑐𝑎𝑠𝑒 𝑙𝑜𝑠𝑠 =
1
2 𝜎(𝑀)2 (7)

𝑀 = 𝐽
1
2
𝑢𝑢(𝐻𝐺

𝑦

) ―1(𝐻[𝐹𝑊𝑑   𝑊𝑛]) (8)

where,  is the maximum singular value of matrix M,  is the diagonal matrix of the maximum 𝜎(𝑀) 𝑊𝑑
expected values of the disturbances,  is the implementation error, Juu is the Hessian of the objective 𝑊𝑛
function for unconstrained DOFs, Gy is the gain of the selected measurements from the inputs and H is 
selection or combination matrix, CV = Hy. 

Because of the sensitivity of the second-order derivatives to error and the existence of several matrices in 
equation (5), the results of the first method for calculating F may not be reliable 4. In addition, the simplicity 
of using the numerical method compared to the analytical method, makes its use more practical 33.

The numerical methods can alternatively use the data from experiments on a real process plant. However, 
the accuracy seems not to be sufficiently good in this case 34. The most common option is to optimize the 
process in conventional softwares, such as Aspen-Hysys or Aspen Plus. In this way, the built-in optimizer 
plugins can be used or the software simulator might be linked to an external optimizing software like Matlab 
optimization toolbox. However, in this paper we instead propose the use of surrogate models for calculating 
F. 

2.4.1 Review the implementation of self-optimizing method for the GTL process
The application of the self-optimizing method on the GTL process plant was investigated in 5. The 
difference between products sale revenue and variable costs was considered as the optimization objective 
function. Also, the equality and inequality constraints of the equipment and process operation were 
discussed. The number of DOFs of the process was 15. The Mixed method was utilized in the optimizer of 
the UniSim process simulator for optimization5. There were nine equality constraints and three active 
constraints in the optimal nominal point. Three unconstrained DOFs were left for self-optimizing procedure. 

In the present paper, the wax production rate (Y) which is the main product of the FT reactor is defined as 
the objective function 5, 30. The optimization problem in terms of the three unconstraint DOFs is as presented 
in equation (9):

Maximize Y= wax production rate (kg/h)

where
𝐝𝐞𝐬𝐢𝐜𝐢𝐨𝐧 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬: 𝐮 = (𝐮𝟏,𝐮𝟐,𝐮𝟑)

,  ,  𝒖𝟏:  
𝑯𝟐𝑶

𝑪  𝐞𝐧𝐭𝐞𝐫𝐢𝐧𝐠 𝐭𝐡𝐞 𝐬𝐲𝐧𝐠𝐚𝐬 𝐬𝐞𝐜𝐭𝐢𝐨𝐧  𝒖𝟐:𝐂𝐎𝟐 𝐫𝐞𝐦𝐨𝐯𝐚𝐥 𝐩𝐞𝐫𝐜𝐞𝐧𝐭𝐚𝐠𝐞 𝒖𝟑:

𝐑𝐞𝐜𝐲𝐜𝐥𝐞𝐝 𝐭𝐚𝐢𝐥 𝐠𝐚𝐬 𝐭𝐨 𝐅𝐓 𝐫𝐚𝐭𝐢𝐨

(9)

The 18 available measurements proposed in 5 are presented in Table 1. These measurements may be viewed 
as candidate CVs if individual measurements are used. 
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Table 1 Candidate CVs 5
No. Measurements No. Measurement 
1 O2/C (y1) 10 CH4 mole fraction in fresh syngas (y10)
2 feed H2O/C (y2=u1) 11 H2 mole fraction in tail gas (y11)
3 CO2 removal % (y3=u2) 12 CO mole fraction in tail gas (y12)
4 recycled tail gas ratio to FT reactor (y4=u3) 13 CH4 mole fraction in tail gas (y13)
5 H2/CO in fresh syngas (y5) 14 H2 mole fraction into FT reactor (y14)
6 H2/CO in tail gas (y6) 15 CO mole fraction into FT reactor (y15)
7 H2/CO into FT reactor (y7) 16 fresh syngas flow rate (y16)
8 H2 mole fraction in fresh syngas (y8) 17 tail gas flow rate to syngas unit (y17)
9 CO mole fraction in fresh syngas (y9) 18 tail gas flow rate to FT reactor (y18)

Seven major disturbances were identified; see Table 2where the maximum expected disturbance is shown. 
In the present research, three major disturbances were selected as following, the feed natural gas flow (D1), 
the outlet temperature of the ATR reactor (D4), and the purge flow ratio (D6).

Table 2 Disturbances of GTL process from an industrial point of view 5
No. Disturbance Maximum expected value
D1 natural gas (NG) flow rate 10 %

D2
NG hydrocarbon composition: is an increase in 
N2 mole fraction and corresponding decrease in 
hydrocarbons

In the analysis: 10 %
In the simulation: 3 %

D3 fired heater outlet temperature 30 °C
D4 ATR outlet temperature 40 °C
D5 FT reaction rate constant 10 %
D6 purge ratio 15 %
D7 NG price 10 %

The number of possible individual measurement sets was equal to 816 according to equation (10).

(18
3 ) =

18!
3!15! = 816 (10)

In the sixth step of the self-optimizing procedure, the "exact local method" was used to determine the best 
set of measurements combinations as CVs (CV = Hy). In this method, the worst-case loss is computed for 
each candidate CV set using equations (7) and (8). The set with the smallest worst-case loss will be selected 
as the best set for pairing with unconstrained DOFs. 

2.5. Data processing
2.5.1. Data sets generating

To develop surrogate models, it is first necessary to create a data set for use in the training and test steps. 
Each set contains data connecting the input and output variables of the process. A uniform distribution of 
points in the response space was used. The high computational cost and time-consuming evaluation of each 
point using the GTL process simulation makes it desirable to use few data points. To capture the 
nonlinearity of the process needed for describing the behavior around the optimal operation point, each 
input variable was examined at three levels as given in Table 3.  With uniform gridding, the total number 
of points in the input space is 27 (3 × 3 × 3 = 27). 
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Table 3 Levels and ranges of input variables for optimization

Variable Level 1 Level 2 Level 3
u1 0.400 0.600 0.800
u2 0.320 0.560 0.800
u3 0.550 0.675 0.800

In addition, three major disturbances (D1, D4 and D6) were selected, but these were only examined at two 
levels (nominal and individually perturbed by 10%). With uniform gridding this gives 27 additional data 
points for each disturbance. Therefore, a total of 4×27=108 data points were generated using the detailed 
GTL simulation model.

2.5.2. Pre-processing
The data was refined to improve the performance of surrogate models for the later estimation. First, all data 
(inputs, disturbances) are normalized in the range of 0 to 1 by equation (11).

𝑋 =
𝑥 ― 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 ― 𝑥𝑚𝑖𝑛
(11)

Here  is the normalized value of , and  and  are the maximum and minimum values of , 𝑋 𝑥 𝑥𝑚𝑎𝑥 𝑥𝑚𝑖𝑛 𝑥
respectively.

Furthermore, the data is shuffled randomly to eliminate the effect of the data order on model performance. 

2.5.3. Performance indicators
The current paper uses the root mean square error (RMSE) for selecting the optimum structure of the 
surrogate models. The mathematical form of this parameter is given in equation (12):

𝑅𝑀𝑆𝐸 =
1
𝑁

𝑁

∑
𝑖 = 1

(𝑌𝑆𝑖𝑚,𝑖 ― 𝑌𝑃𝑟𝑒𝑑,𝑖)2 (12)

Here i represents a data point,  is the number of input-output data of the training or test set,  is the 𝑁 𝑌𝑆𝑖𝑚
value of the objective function (cost) for the simulation and  is the value of the estimated value of the 𝑌𝑃𝑟𝑒𝑑
objective function by surrogate models.

2.5.4. Overfitting check

Overfitting is when a surrogate model shows excellent performance in prediction of the training data, but 
performs weakly in predicting the test data or any new point in the response space. In this paper, k-fold 
cross validation was used to see if over-fitting has occurred. The data set for each disturbance consisting of 
27 data points, was split into 24 data points for training and 3 points for testing, and then these sets were 
rotated, corresponding to using k=9 distinct test data sets. The results of this check showed that there is no 
evidence of overfitting in the training procedure. More details and box plots are available in the final part 
of the support information file.
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2.6. Surrogate model development
2.6.1 Hyper-parameter optimization of surrogate models

In this paper, four surrogate models were investigated, including MLP-ANN, RBF-ANN, SVM, and 
ANFIS. To perform a fair comparison of the four surrogate models, the parameters affecting the 
performance of each model were optimized to maximize their capability. 

The MLP-ANN used in this paper is a three-layer type, including an input layer, an output layer, and one 
hidden layer. The adjustable parameters in this surrogate model will be the number of neurons in the hidden 
layer. The number of neurons in the input and output layers is equal to the number of input and output 
variables, respectively.

For the RBF-ANN, the number of neurons in the single hidden layer is considered as the adjustment 
parameter. In addition, the value of the spread parameter relative to the radial basis function is also specified 
as another adjustment parameter. 

The structural parameters for the SVM method include the penalty parameter C, the insensitive parameter 
ε, and the parameter corresponding to the kernel function . 𝜎2

The structural parameter in the ANFIS method is the number of membership functions.

The intervals for optimizing the above parameters are given in Table 1 of the support information file.

The value of the RMSE parameter was calculated for each integer value of the optimization variables in 
both the MLP-ANN and ANFIS models. The number of neurons/membership functions which gave the 
smallest RMSE was selected as the best parameter. In the RBF-ANN model, the optimization of the 
resulting MINLP problem was performed using the genetics algorithm from the optimization toolbox of the 
Matlab R2016b software. Finally, the parameters optimization of the SVM method was performed by the 
PSO algorithm. The objective function for all optimization problems was the value of RMSE in estimating 
the test data. The parameters used for the two PSO and GA algorithms are presented in Table 2 of the 
support information file.

2.6.2 Surrogate model generation
The data used to train and evaluate the models includes three inputs (u1, u2, u3) and one output value to be 
maximized (the wax production rate Y on kilogram per hour). 

In order to train and optimize the weights of the MLP-ANN and RBF-ANN, the Matlab R2016b software 
was used. The code corresponding to the SVM method was also implemented in this software. The PSO 
optimization algorithm was used to train the FIS used in the ANFIS method. The Matlab codes, models and 
simulations are available for interested researchers.

3. Results and discussion
3.1. Optimum structure of surrogate models

3.1.1. MLP-ANN
The number of neurons in the hidden layer was varied from 10 to 20, and the MLP-ANN was trained on 
the data. The data used was normalized and randomized to avoid the effect of their order. The estimation 
error of the test data set was calculated as RMSE. Hence, for the best performance, the optimum parameter 
was regarded as the number of neurons that showed the least amount of error. In this study, the optimal 
number of neurons for the MLP-ANN was found to be 17, with an RMSE value of 0.0222 in investigating 
disturbance D1. The comparison diagram of the RMSE value for any integer value of neurons in the hidden 
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layer associated with disturbance D1 is shown in Figure 2. In the case of disturbances D4 and D6, 10 
neurons were obtained as the optimum parameter.

Figure 2 Optimization of MLP-ANN structure (D1)

3.1.2. RBF-ANN
The optimization of the RBF-ANN structure was performed using the GA in the optimization toolbox of 
the Matlab R2016b software. In this optimization, the number of neurons in the hidden layer and the spread 
parameter related to radial basis functions were optimized in the specified intervals. The value of the 
objective function was equal to the RMSE value in estimating the test data set. The optimization process 
and the RMSE value for each iteration associated with disturbance D1 are shown in Figure 3.

Figure 3 Optimization of RBF-ANN structure (D1)

For D1, the optimum amount of neurons in the hidden layer was 20, and the optimum spread parameter for 
radial basis functions was 1.87. For disturbances D4 and D6, the number of neurons in the hidden layer was 
19 and 11 and the spread parameter was 1.61 and 1.31, respectively.

3.1.3. SVM
Three parameters related to the performance of the SVM were optimized in the continuous space by the 
PSO algorithm. For this purpose, the PSO optimization algorithm was coded in Matlab R2016b. The 
objective function for this optimization was also determined as the RMSE in estimating the test data set. 
The diagram for the optimization of the SVM model and the value of RMSE for each iteration associated 
with disturbance D6 is shown in Figure 4.
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Figure 4 Optimization of SVM parameters (D6)

For disturbance D6, the optimum value of the insensitive parameter was 0.0078, the penalty parameter was 
83.18e6, and the spread parameter value for the kernel function was 1.5346. For disturbance D1, the values 
of insensitive parameter, penalty, and spread parameter were 0.0004, 46.05e6, and 1.8254, respectively. 
These parameters for disturbance D4 were 0.02, 15.17e6, and 0.7748, respectively.

3.1.4. ANFIS
To determine the number of membership functions in the structure of the ANFIS model, the integer values 
were selected in the range of 10 to 20, and the RMSE was determined for each one. Therefore, the number 
of membership functions with the lowest RMSE would be the optimum value. The RMSE for each integer 
value of the number of membership functions for disturbance D4 are shown in Figure 5.

Figure 5 Optimization of ANFIS structure (D4)

As shown in Figure 5, the lowest RMSE was in the case of 11 membership functions. Therefore, in 
examining disturbance D4, the number of 11 membership functions was considered for the use of the 
optimum structure. The number of membership functions for disturbances D1 and D6 were also 13 and 10, 
respectively.
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3.2. Surrogate models comparison
As mentioned, for each disturbance, 24 data points were used for training and 3 data points were used for 
testing, and these were rotated to give k=9 data sets. During the training, the surrogate model predicts the 
objective Ypred for each data set. A model can predict the optimal point with low error when its 
generalization is acceptable. Therefore it is important for a model to predict any point in response space 
precisely. The generalization plots of surrogates are presented in the final section of SI. In order to compare 
the surrogate models, the optimum point was calculated for each surrogate model.

With the k-fold cross validation methods, this gives k=9 distinct optimum results for each surrogate model 
for each disturbance. The surrogate models were optimized by PSO and the characteristics of the PSO 
algorithm are presented in Table 4. 

Table 4 Characteristics of PSO optimization algorithm

Population size: 80
Max iteration: 1000
Personal inertia: 2

PSO
Optimization

Algorithm
Social inertia: 2

To compare the accuracy of four surrogate models, the optimal inputs (values of u1, u2 and u3) found from 
optimizing the surrogate models were entered as input to the detailed Aspen Hysys simulation model and 
used to compute the corresponding simulated cost Ysim. The relative error in the cost prediction is defined 
as

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
𝑌 ∗ 𝑃𝑟𝑒𝑑 ― 𝑌𝑆𝑖𝑚

𝑌𝑆𝑖𝑚
 × 100 (13)

Here, Y*
pred is the optimal cost predicted by the surrogate model and Ysim is the corresponding simulated 

cost obtained with the Hysys process simulator using  the same input values. Because of the cross validation, 
for each surrogate model, there are 9 values of Y*

pred (and 9 corresponding values of Ysim) for each 
disturbance. The resulting 9 relative errors are displayed in the box plot in Figure 6 for disturbance D1 for 
each of the four surrogate models.  Figure 6 shows the high ability of the MLP-ANN surrogate model to 
estimate the optimum points. The very small relative error and very low variance indicate the robustness 
and reliability of this model. The SVM model shows similar results to the MLP-ANN model with a little 
more variance. The RBF-ANN model has a mean relative error close to the SVM and MLP-ANN models, 
but it has an outlier with about 10% relative error. The ANFIS model shows the poorest performance with 
a high variance and a mean relative error of about 15%. An outlier with over 100% relative error percentage 
further contributes to this problem.
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Figure 6 Relative error between optimum wax production rate predicted by surrogate models (Y*pred) and corresponding 
simulated output values (Ysim) for D1

A similar behavior of the surrogate models can be seen for disturbances D4 and D6 in figure 1 of support 
information file. For disturbance D4 and especially D6, the MLP-ANN model has a better performance 
than the other surrogate models. 

Table 5 Optimum points, obtained from simulation-optimization for each disturbance

disturbance u1 u2 u3 Y*sim = wax production rate (kg/h)
D1 0.400 0.320 0.749 77777.55
D4 0.400 0.320 0.757 77769.83
D6 0.400 0.320 0.705 77890.35

It is also interesting to compare with the optimal cost Y*
sim obtained for each disturbance from the GTL 

process simulation using the internal optimizer of Aspen Hysys v9. These results are shown in Table 5. For 
disturbance D1, the relative error between Y*

pred and Y*
sim are shown in the box plots in Figure 7. The plot 

is very similar to Figure 6, and again the MLP-ANN surrogate model is the best, and ANFIS is the worst. 

Figure 7 Relative error between optimum wax production rate predicted by surrogate models (Y*
pred) and optimum point 

obtained from simulation-optimization (Y*
sim) for D1

Similar comparisons is shown for disturbances D4 and D6 in Figure 2 of support information file.

Note that Y*
sim is the optimal cost obtained from the detailed process simulator. There is only one value of 

Y*
sim for each disturbance. Ysim is the simulated cost obtained by using the input values predicted by 
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optimizing the surrogate models. Since Y is the wax production rate which should be maximized, it should 
always hold that Y*sim > Ysim. However, because of errors in the surrogate models, it may happen that Y*

pred 
> Y*

sim.

The location of the input values for the predicted optimum points by the surrogate models for disturbance 
D1 is shown in figure 8. Note that there are 9 points for each surrogate model because of the cross validation.  
In addition to these predicted optimum  points, the optimum point obtained from optimization of the GTL 
process simulation with output value Y*

sim=77777.55 kg/h and input values u1=0.4, u2=0.32, u3=0.749 
(Table 5) is shown  with a green filled circle in Figure . 

Figure 8 Position of predicted optimum input value for D1

To compare, the best (maximum) predicted output value of the wax production rate is Y*
pred=77614.28 kg/h. 

This is for the MLP-ANN model with input values of u1=0.4, u2=0.32, and u3=0.752. The corresponding 
cost validated by the simulation was Ysim= 77649.65 kg/h, which gives a loss compared to the optimal value 
Y*

sim=77777.55 kg/h of 0.16%. 

This comparison was also made for disturbances D4 and D6. The results of these two disturbances are 
shown in Figure 3 of support information file.

To conclude, MLP-ANN shows the best performance. It gives a more accurate prediction with a very low 
error in the estimation of the output value of optimum points.

3.3. Selection of self-optimizing CVs
Based on the previous section, the MLP-ANN surrogate model is selected as the best alternative to detailed 
simulation of the GTL process, when performing the self-optimizing procedure. To perform a comparison, 
all steps were conducted in parallel using both the detailed process simulator and the MLP_ANN surrogate 
model.
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In the self-optimizing control procedure, one needs to compute three matrices. These are the optimal 
sensitivity matrix (F), the Hessian of the objective function for unconstrained DOFs (Juu), and gain matrix 
[Gy Gyd]. To calculate F, the optimal values of the candidate outputs y at nominal point and in presence of 
the disturbances are required. For simulation, the nominal optimum point reported in 30 was used. For the 
surrogate model case, the optimal nominal point found by MLP-ANN was used. These nominal optimum 
points and their validated output values by simulation are presented in Table 6.

Table 6 Optimal nominal points used in self-optimizing procedure calculations

u3=Recycle ratio 
to FT (-) u1= H2O/C (-) u2= CO2 Removal (-)  wax production

 rate (kg/h)
Simulation case 

reported in ref. 28 0.61 0.4 0.32 Y*sim=77753

Optimized MLP-ANN 
surrogate case 0.71 0.4 0.32 Y*pred=77878

As it was mentioned, the exact local method was used for selection of the best self-optimizing CV 
combination, CV = Hy. The CVs were found for both cases of individual measurements and the 
combination of measurements. To select three individual CVs, a branch and bound  algorithm 35 was used. 
Among all possible CVs sets, the set with the smallest worst-case loss was selected as the best set. The best 
two sets of individual measurements for the two cases of conventional simulation-optimization and MLP-
ANN surrogate model are presented in Table 7.

Table 7 Best two sets of self-optimizing CVs found from conventional simulation-optimization and MLP-ANN surrogate model

best sets of CVs
 worst-case loss 
(obtained from 

equation 7), kg/h

1

y2 = feed H2O/C
y3 = CO2 removal % 

y14 = H2 mole fraction into FT reactor
1470.8conventional 

simulation-
optimization 2

y2 = feed H2O/C
y3 = CO2 removal % 

y13 = CH4 mole fraction in tail gas
4619.9

1

y2 = feed H2O/C
y3 = CO2 removal %

y10 = CH4 mole fraction in fresh 
syngas

565.5
MLP-ANN 
surrogate 

model
2

y2 = feed H2O/C
y3 = CO2 removal % 

y14 = H2 mole fraction into FT reactor

2105.3

As it is observed in Table 7, the first and second measurements (y2 and y3) are similar among all the best 
CV sets, but the third measurement is different. There are actually only three different sets in Table 7, as 
the best set from the simulation optimization (with y14) is the second-best set from the surrogate model 
optimization. From the worst-case loss σ(M)=565,5 kg/h, it seems that the best CV set (with y10) is obtained 
with the surrogate model. Indeed this is correct, but the values of the worst-case losses from the simulation 
and surrogate model in Table 7 cannot be compared directly, because of the differences in the obtained F, 
Juu and Gy used to compute σ(M). This is clearly seen by difference in the loss-values 1470.8 and 2105.3 
for the same CV set in Table 7. 
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To make sure that the set with y10 is indeed the best, detailed simulated Aspen-Hysys cost calculations 
were carried out, keeping constant self-optimizing CVs in presence of disturbances. The calculated loss in 
cost function (comparised to the re-optimized cases in Table 5) for the two best CVs sets (with y10 and 
y14, respectively) are presented in Tables 8 and 9 respectively. The results indeed confirm that the CV set 
with y10 is significantly better than the CV set with y14. The CV set with y10 has an average loss of 432 kg/h 
for the three disturbances (Table 8), whereas the average loss for y14 is 3364 kg/h (Table 9). This is 
interesting because it shows that the surrogate model is better than the detailed simulation model in selecting 
the best CVs. The reason is most likely inaccuracies in computing the optimal points when using the Aspen-
Hysys internal optimizer.

Table 8 Exact Aspen-Hysys loss calculations for CV-set with y10.

Ysim=Cost function value with implementation 
CV set (y2, y3 and y10) in presence of different disturbances

D1 D4 D6
77707.4 77247.2 77493.6

loss
70.1 613.6 613.0

Table 9 Exact Aspen Hysys loss calculations for CV set with y14. 

Ysim=Cost function value with implementation 
 CV set  (y2, y3 and y14) in presence of different disturbances

D1 D4 D6
77316.8 73150.5 73184.3

loss
460.7 4710.3 4922.3

The above is with single measurements. In order to select the best combination of measurements as 
candidate CVs, a partial branch and bound algorithm was used to select the set with the least amount of 
worst-case loss among possible combinations. Optimal losses for different numbers of CVs combinations 
are presented in Figure  for both the surrogate model and simulation-optimization cases.
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Figure 9 Minimum worst-case loss σ(M) with different number of measurements to be combined as CVs
 for both simulation-optimization and MLP-ANN cases 

Figure 9 illustrates that with combination of five or more measurements, the worst-case loss will be zero 
from an engineering point of view.

In summary, it was shown in this work that with application of MLP-ANN surrogate models in self-
optimizing procedure, the required time for implementation of this procedure reduces significantly specially 
when this method is applied on large scale processes where several adjustments, recycles and so forth 
should be iterated and solved to get the whole flowsheet converged. As optimization of surrogate models 
is quite simple, efficient and very fast, replacement of process flowsheets with well-trained surrogate 
models could improve the accuracy of required matrices in self-optimizing procedure and this consequently 
result in getting more reliable self-optimizing CVs.

4. Conclusion
In this study, the application of surrogate models was investigated to avoid the need to use time-consuming 
and non-robust detailed simulation for process optimization in the self-optimizing control procedure. The 
four surrogate models include multi-layer perceptron (MLP-ANN), radial basis function (RBF-ANN), 
support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS). A natural gas to 
liquids (GTL) process was selected as a large-scale process plant with several recycles. The surrogate 
models were compared in terms of predicting the output value as well as the optimal operating points. The 
MLP-ANN surrogate model showed the best performance in almost all cases and was found to be a good 
replacement for a detailed GTL process flowsheet simulator in the self-optimizing procedure. The results 
revealed that the best self-optimizing CV set obtained from the MLP-ANN surrogate model was more 
reliable than the best set obtained from the detailed simulation-optimization method.  Therefore, surrogate 
models, which are simpler and very much faster, could be good alternatives to process flowsheet simulation 
when the self-optimizing procedure is applied. The use of these models can significantly reduce 
computational load and time for selecting the best CVs.
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