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Abstract:
This paper considers the problem of steady-state optimal resource allocation in an industrial
symbiosis, where different companies share common resources. Such optimal resource allocation
problems are commonly studied in the context of distributed optimization to limit information
sharing. One such framework is the Lagrangian decomposition approach, where the different
subproblems are locally optimized for a given shadow price of the shared resource, which
is updated by a master coordinator. In the traditional distributed RTO approach, this
involves solving a numerical optimization problem online for each subproblem, which can
be computationally intensive. In order to avoid the need for solving numerical optimization
problems, this paper proposes a distributed feedback-based real-time optimization framework,
where each subproblem is locally optimized for a given shadow price using simple feedback
controllers. The proposed feedback-based distributed RTO scheme is applied to an industrial
symbiotic subsea oil production system, where the different wells are operated by different
companies. The simulation results show that the proposed feedback-based distributed RTO
scheme can optimally allocate the shared resources.
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1. INTRODUCTION

With increasing energy demand and tightening environ-
mental regulations, the necessity for sustainable produc-
tion increases, and there is an explicit need to focus on
resource efficiency. In the process and manufacturing in-
dustries, there is an increasing trend of industrial sym-
biosis, where different organizations share resources and
equipment in a mutually beneficial manner, and is seen as
a key driver for sustainable production.

Optimal process operation involves taking decisions in
real-time to meet production goals and emission targets.
This is typically done in the context of real-time opti-
mization (RTO) using process models and real-time mea-
surements. As the process industry is embracing indus-
trial symbiosis with common resources, this creates new
challenges, as the companies may not wish to share such
information across the different companies due to various
reasons such as market competitiveness and intellectual
property. Thus, there is a clear need to optimally allo-
cate the shared resources with limited information sharing
across the different organizations.

? The authors gratefully acknowledge the financial support from
SUBPRO, which is financed by the Research Council of Norway,
major industry partners and NTNU. D.K also acknowledges financial
support from the Research Council of Norway, under the IKTPLUSS
program (Project number 299585)
∗Corresponding author: dinesh.krishnamoorthy@ntnu.no

Distributed real-time optimization using the dual (La-
grangian) decomposition approach is a potential solution
that facilitates industrial symbiosis (Wenzel et al., 2016).
In this framework, the different subsystems, that represent
different companies, are locally optimized, and a master
coordinator updates the shadow price for the shared re-
source in order to match the supply and demand of the
shared resource in this micro market setting. This only
requires sharing limited information, such as the shadow
prices and the total resource consumption. The differ-
ent subsystems only report the total resource consump-
tion/production to the master coordinator. If the supply
of a shared resource exceeds the demand, the coordinator
will decrease the shadow price to encourage consumption
of the shared resource by the subsystems. Similarly, if the
supply is lower than the demand, the coordinator will
increase the price to reduce consumption. This price-based
coordination scheme imitates the the tâtonnement process,
where the coordinator has the responsibility to find the
equilibrium price iteratively by dynamic pricing based on
responses of the subsystems (Walker, 1987; Wenzel et al.,
2016). To this end, the different subproblems and the
master coordinator are solved iteratively until the problem
converges to a feasible and optimal solution.

However, repeatedly solving numerical optimization prob-
lems can be computationally intensive. Although different
approaches have been recently proposed to speed up the
convergence of the distributed optimization problem (see



for example Wenzel et al. (2020) for a recent overview),
solving the numerical optimization problem online in itself
may be a fundamental limiting factor in many applica-
tions. Furthermore, many traditional process industries
may also prefer to use simple feedback controllers as op-
posed to model-based RTO tools due to lack of technical
expertise or corporate culture.

Recently, there is an increasing interest in a class of
methods for RTO, known as “feedback-optimizing con-
trol”(Morari et al., 1980), which eliminates the need to
solve numerical optimization problems by indirectly mov-
ing the optimization problem into the control layer. Feed-
back optimizing control has predominantly been studied
in the context of a single optimization problems and in
particular, the focus has been on what to control for the
unconstrained degrees of freedom. See for example Sko-
gestad (2000), Engell (2007), Chachuat et al. (2009), and
Srinivasan and Bonvin (2019) and the references therein.
However, the problem of distributed RTO with a master
coodinator in the context of feedback optimizing control
has received very little attention.

This paper aims to address this gap, where we propose
an “optimizing” controlled variable for each subproblem,
which is given as a function of the shadow price. By con-
trolling the proposed controlled variable in each subprob-
lem independently, the different subproblems can locally
optimize their processes for a given shadow price. As the
master coordinator updates the shadow prices, this would
lead to optimal operation of the overall system. The main
contribution of this paper is a distributed feedback-based
real time optimization (DFRTO) framework based on
Lagrangian decomposition, that achieves optimal steady-
state operation in a distributed manner, without the need
to solve numerical optimization problems online.

The reminder of the paper is organized as follows. Section
2 describes the problem formulation. Section 3 presents the
proposed method where the Lagrangian dual decomposi-
tion framework is translated into a distributed feedback
control method. Section 4 compares the performance of
the proposed DFRTO approach with the centralized opti-
mization approach for a large-scale subsea oil production
system before concluding the paper in Section 5.

2. PROBLEM FORMULATION

Consider a generic optimal resource sharing problem in N
different subsystems with additively separable cost

min
x1, . . . , xN

N∑
i=1

fi(xi) (1a)

s.t.

N∑
i=1

Aixi − x̄ ≤ 0 (1b)

where xi ∈ Rnxi denotes the decision variables for sub-
system i and nxi is the number of decision variables in
subsystem i, Ai ∈ Rmx×nxi is a matrix that couples differ-
ent subsystems, x̄ ∈ Rmx is the shared resource constraints
and mx is the number of shared resource constraints, and
fi : Rnxi → R is a function that denotes the local objective
of subsystem i. Note that xi > 0 implies that the shared
resources is consumed by subsystem i. Each subsystem i

may also have local constraints that are assumed to be
locally managed by each company, and are not explicitly
shown in the problem formulation (1).

The objective of the aforementioned problem is to de-
termine optimal shared resource allocation in order to
achieve system-wide steady-state optimal operation in a
distributed fashion with limited information sharing.

The Lagrangian of problem (1a) reads as

L(x1, . . . , xN ,λ) =

N∑
i=1

fi(xi) + λ>

(
N∑
i=1

Aixi − x̄

)
(2)

where λ ∈ Rmx is the Lagrange multiplier of the shared
resource constraints (1b). Defining some hi ∈ Rmx with

0 ≤ hi ≤ x̄ and
∑N

i=1 hi = x̄ (e.g. hi = x̄
N , for i =

1, . . . , N), we can see that problem (2) becomes additively
separable, where each subproblem is given as a function of
the shadow price λ

Pi(λ) : min
xi

Li(xi,λ) (3)

where
Li(xi,λ) = fi(xi) + λ> (Aixi − hi)

This is known as dual or Lagrangian decomposition (Las-
don, 2002; Boyd et al., 2007).

Starting from an initial guess λ0, the master coordinator
then updates the Lagrange multipliers using the subgradi-
ent method

λk+1 = max

[
0,λk + α

(
N∑
i=1

Aix
k
i − x̄

)]
(4)

where α is step length, and xki is optimal resources
allocation at iteration k. The Lagrange multipliers λ
denotes the shadow price of the shared resource, which
has an economic interpretation of matching the supply and
demand of the shared resource as mentioned earlier. Note
that, according to the KKT conditions, λ ≥ 0 must hold
for the inequality (coupling) constraints in problem (1b).
This requirement is ensured by using a max operator in
Eq. (4).

3. PROPOSED METHOD

In this paper, we aim to solve the steady-state optimiza-
tion problem (1) using feedback control in a distributed
manner. To this end, we want to find an “optimizing”
controlled variable for each subproblem (3) as a function
of the shadow prices such that the master problem (4)
can be used to coordinate the local feedback controllers,
thus achieving system-wide optimal operation. This frame-
work was recently introduced as Distributed Feedback-
based RTO (DFRTO) by Krishnamoorthy (2020).

From the Lagrangian decomposition framework, it can be
seen that for the stationary condition of subproblem (3),
we need∇Li(xi,λ) = 0. Based on this idea, the optimizing
controlled variable of subsystem i can be expressed as a
function of the Lagrange multiplier λ

ci(λ) = ∇Li(xi,λ) = ∇xi
fi(xi) +A>i λ (5)

which must be controlled to a constant set-point of cspi = 0
in order to satisfy the necessary condition of optimality.
Assuming that the stationary point of (3) is also a local
minimum, then this leads to optimal operation of the local



subsystem for a given shadow price λ. As λ is updated in
(4) to reach market equilibrium, then this leads to optimal
operation of the overall optimization problem (1).

In order to evaluate (5), each, subsystem i is required
to estimate its local steady-state cost gradient ∇xi

fi(xi)
which can be achieved locally using any model-based of
model-free gradient estimation. See for example Srinivasan
et al. (2011), and François et al. (2012) for a list of gradient
estimation techniques for RTO that can be used here. This
is also shown in Fig. (1).

Eq. (5) shows that by driving ∇xiLi(xi,λ) to 0 in each
subsystem i, and updating the Lagrangian multipliers iter-
atively using Eq. (4), we can avoid solving the optimization
problem online. Moreover, the master coordinator has only
limited knowledge about the different subsystems, and
can only influence the Lagrangian multipliers (i.e. shadow
prices). Thus, the different subsystems avoids the need to
share local information such as the detailed models, mea-
surements, local constraints, and the objective function.
The only information that needs to be shared is the total

resource consumption,
∑N

i=1Aixi(t).

Since the proposed DFRTO framework does not need to
solve numerical optimization problems online, the sam-
pling rate is not limited by the computation time. More-
over, the proposed framework also enables the master coor-
dinator and the different subproblems to be implemented
at different sampling rates. Depending on the choice of the
gradient estimation scheme used, the proposed DFRTO
scheme may avoid the steady-state wait-time issue, or may
avoid the need for detailed process models (François et al.,
2012).

In traditional distributed optimization framework, the
master coordinator problem and the subproblems require
several iterations to converge to the optimal solution at
each time step (Lasdon, 2002; Boyd et al., 2007). In the
proposed DFRTO scheme, we use real-time measurements
xi(t) to update the Lagrange multiplier

λ(t+ 1) = max

[
0,λ(t) + α

(
N∑
i=1

Aixi(t)− x̄

)]
This can be seen as iterating between the master coor-
dinator and the subproblems in real-time. A distributed
feedback RTO scheme using augmented Lagrangian was
recently proposed by Krishnamoorthy (2020), where it
was shown that, under certain conditions as t → ∞, the
different subproblems converge to a stationary point of
problem (1).

4. ILLUSTRATIVE EXAMPLE

In this section, we apply the proposed DFRTO approach
on a large-scale subsea gas-lifted oil production well net-
work (see Fig. 2) with N = 4 subsea manifolds (clusters),
each operated by different companies (cf. Table 1).

The objective is to maximize the total revenue from each
subsystem: maximize oil production and minimize the
costs associated with the gas lift compression. The four
companies share a common topside process facility that
has the gas compression station as shown in Fig. 2. The
lift gas wgl is a shared resource that must be optimally

allocated amongst the four companies. In addition, the
topside processing facility also has gas processing capacity
limitations. This limits the total gas flow rate that can
be produced by the different wells. To this end, the total
lift gas and the total gas processing constraint couples the
different subsystems. Thus, the optimization problem is
given as

min
wgl,1, . . . , wgl,N

− $o

N∑
i=1

wpo,i + $gl

N∑
i=1

wgl,i (6a)

s.t.

N∑
i=1

wgl,i − w̄gl ≤ 0, (6b)

N∑
i=1

wpg,i − w̄pg ≤ 0 (6c)

where $o is the oil price, and $gl is the cost of gas
compression. In this case, gas-lift injection rate, wgl,i, are
the decision variables, wpo,i and wpg,i are the oil and
gas production rates, respectively, which depend on the
gas lift injection. The local objective function is given by
fi(xi) = −$owpo,i + $glwgl,i.

The gas-to-oil ratio (GOR), which is a reservoir property,
is a time varying disturbance for the different wells (feed
disturbance). In this simulation study, the GOR for the
different wells are assumed to vary as shown in Fig. 3. High
GOR indicates that the well has a lighter fluid requires less
amount of gas-lift injection rate compared to the wells with
lower GOR to produce the same amount of oil.

In order to achieve optimal operation in a distributed
manner, we control the proposed self-optimizing variable
(5). In this example, (5) can be represented as,

∇wgl,i
Li(wgl,i,λ) = Ĵwgl,i

+ λgl +
(
∇wgl

wpg,i

)>
λpg (7)

where Ĵwgl,i
:= −$o∇wgl,i

wpo,i + $gl. To estimate the
steady-state gradients in (7), in this paper we use the
model-based gradient estimation framework proposed by
Krishnamoorthy et al. (2019). Note that the proposed
DFRTO framework is not just restricted to this gradient
estimation approach, and one may instead use any other
model-based or model-free gradient estimation scheme
(Srinivasan et al., 2011).

Once the gradients are estimated using local measure-
ments, each subsystem uses feedback controllers or a com-
bination of them to drive the proposed self-optimizing
controlled variable (7) to a constant setpoint of zero. In
this paper, we use PI controllers for each well, which are
tuned using the SIMC tuning rules (Skogestad, 2003). The
controller is designed with a sampling time of 1 second.

The overall plant is modelled as an Index-1 DAE with
a total of 30 differential states, 120 algebraic states,
and 10 inputs. The model equations can be found in

Table 1. Companies and Oil Production Wells

Subsystem Company Oil Production Well ID

1 1 1,2,3
2 2 4,5,6
3 3 7,8
4 4 9,10
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Fig. 1. The proposed DFRTO structure for optimal resource allocation using simple PID controllers. The grey
box represents the physical system and the white box represents the computation block. vi denotes real time
measurements at subsystem i.

1 2 3 4 5 6 7 8 9 10

wpo,1 + wpg,1 wpo,2 + wpg,2 wpo,3 + wpg,3 wpo,4 + wpg,4

Separator

Produced Oil

Produced Gas
w̄pg

Gas Lift Compressor

w̄gl

wgl,1 wgl,2 wgl,3 wgl,4

Fig. 2. A simplified process diagram of a large-scale off-
shore field with shared gas-lift injection resource,
equipped with constraints in both gas-lift and pro-
duced gas compressor.
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Fig. 3. GOR variations in the ten wells in the associated
clusters

(Krishnamoorthy et al., 2018, Appendix B). The model
parameters used in this paper are shown in Table A.1-A.3.

The plant simulator is developed using CasADi v3.5.1
(Andersson et al., 2019) with MATLAB R2019b and is sim-
ulated using the IDAS integrator (Hindmarsh et al., 2005).
The simulations are performed on a 2.11 GHz processor
with 16 GB memory. The simulations are performed for a

total simulation time of 10 hours. The GOR for all wells
varies as shown in Fig. 3, where it can be seen that the
system is frequently subject to disturbances. The total
available gas-lift (w̄gl) and gas processing capacity (w̄pg)
also varies, which affects the optimal allocation of the
gas-lift. The disturbances in GOR may also lead to an
unconstrained case, where both the coupling constraints
(6b) and (6c) are inactive.

First, we solve the centralized production optimization
problem (7) to obtain the ideal optimal setpoint as the
baseline. Then, we implement the proposed strategy de-
scribed in Section 3. Fig. 4 shows the simulation results
comparing the ideal optimum, and the DFRTO with lim-
ited information sharing. The absolute error between the
ideal optimum and DFRTO is also shown in the same
figure for the total oil, total produced gas, and total gas-lift
injection rate, which indicates that the proposed method
is able to converge to the ideal optimum at steady-state.

Fig. 4 - 5 show that during times t = 2−4 h, no constraint
is active (i.e., λ = 0), where the optimal allocation utilizes
less than the total available gas lift, and the total gas
processing capacity. The total available gas-lift constraint
is active during times t = 4 − 8 h. Subsequently, the
gas processing capacity constraint is active during times
t = 9− 10 h.

It is important to note that during the transition, due
to changes in GOR and/or constraints, the associated
Lagrange multipliers converge in real-time (see Fig. 5(d)).
Consequently, the total gas-lift injection rate and/or the
total produced gas rate may violate the constraints dy-
namically for some time (dynamic violation) but the con-
straints are satisfied at steady-state (no steady-state vi-
olation). As can be seen right after t = 8 h, due to
the sudden increase of total gas lift constraint at time
t = 8 h, the gas processing capacity constraint should
be ideally active immediately. In fact, the total available
gas-lift constraint is still active for some time since λgl
is still positive even though decreasing. Meanwhile, λpg is
still increasing gradually, that violates the gas processing
capacity constraint dynamically. It can be clearly seen



Fig. 4. Simulation results showing the performance of the DFRTO framework compared to the ideal optimum provided
by centralized approach, along with the absolute error between them (in the right-hand plots)
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Fig. 5. (a) The allocation of the shared gas-lift resources among the clusters. (b) The exported produced gas among
the clusters. (c) The controlled estimates gradients of the Lagrangian function among the clusters. (d) The shadow
prices of the coupling constraints

that, as the Langrange multipliers converge, the steady-
state operation corresponds to the ideal optimum.

5. CONCLUSION

In this paper, we presented a distributed feedback-based
RTO framework, where we showed that the Dual decompo-
sition framework can be converted into a feedback control
problem by controlling (5) to a constant setpoint of zero.
Since (5) is a function of the Langrange multipliers, we
showed that by using a standard master coordinator (4)
that updates the Langrange multipliers using the subgra-
dient method, the proposed approach leads to system-
wide optimal operation. This avoids the need for solv-
ing numerical optimization problems online and enables
system-wide optimal operation with limited information
sharing. Any model-based or model-free gradient estima-

tion scheme may be used with the proposed framework,
making it broadly applicable.
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Appendix A. GAS LIFT NETWORK PARAMETERS

Table A.1. List of well parameters and their
corresponding values of Subsystem 1 used in

the simulation results.

Parameter [units] Well 1 Well 2 Well 3

Lw [m] 1500 1500 1500
Hw [m] 1000 1000 1000
Dw [m] 0.121 0.121 0.121
Lbh [m] 500 500 500
Hbh [m] 500 500 500
Dbh [m] 0.121 0.121 0.121
La [m] 1500 1500 1500
Ha [m] 1000 1000 1000
Da [m] 0.189 0.189 0.189
ρo [kg m−3] 8 8 7.9
Civ [m2] 1E-4 1E-4 1E-4
Cpc [m2] 2E-3 2E-3 2E-3
pr [bar] 150 155 155
PI [kg s−1 bar−1] 7 7 7
Ta [oC] 28 28 28
Tw [oC] 32 32 32

Table A.2. List of well parameters and their
corresponding values of Subsystem 2 used in

the simulation results.

Parameter [units] Well 4 Well 5 Well 6

Lw [m] 1500 1500 1500
Hw [m] 1000 1000 1000
Dw [m] 0.121 0.121 0.121
Lbh [m] 500 500 500
Hbh [m] 500 500 500
Dbh [m] 0.121 0.121 0.121
La [m] 1500 1500 1500
Ha [m] 1000 1000 1000
Da [m] 0.189 0.189 0.189
ρo [kg m−3] 8 8.2 8.05
Civ [m2] 1E-4 1E-4 1E-4
Cpc [m2] 2E-3 2E-3 2E-3
pr [bar] 160 155 155
PI [kg s−1 bar−1] 7 7 7
Ta [oC] 28 28 28
Tw [oC] 32 32 32

Table A.3. List of well parameters and their
corresponding values of Subsystem 3 and 4

used in the simulation results.

Parameter [units] Well 7 Well 8 Well 9 Well 10

Lw [m] 1500 1500 1500 1500
Hw [m] 1000 1000 1000 1000
Dw [m] 0.121 0.121 0.121 0.121
Lbh [m] 500 500 500 500
Hbh [m] 500 500 500 500
Dbh [m] 0.121 0.121 0.121 0.121
La [m] 1500 1500 1500 1500
Ha [m] 1000 1000 1000 1000
Da [m] 0.189 0.189 0.189 0.189
ρo [kg m−3] 7.9 8.2 8 8.05
Civ [m2] 1E-4 1E-4 1E-4 1E-4
Cpc [m2] 2E-3 2E-3 2E-3 2E-3
pr [bar] 155 165 150 155
PI [kg s−1 bar−1] 7 7 7 7
Ta [oC] 28 28 28 28
Tw [oC] 32 32 32 32


