Transformed Manipulated Variables for Perfect Decoupling and Disturbance Rejection

<u>Cristina Zotică</u>^a, Nicholas Alsop^b, Sigurd Skogestad^{a,*}

^aDepartment of Chemical Engineering Norwegian University of Science and Technology (NTNU)

^bSenior Process Control Engineer, Borealis AB

NTNU

Norwegian University of Science and Technology * sigurd.skogestad@ntnu.no

June 2020

IFAC World Congress 2020, Berlin, Germany

C. Zotică, N.Alsop, S. Skogestad

IFAC World Congress

June 2020 1 / 22

New proposed method

3 Examples

- Control of flow and temperature in a mixing process
- Control of hot outlet temperature of a heat exchanger

4 Conclusions and future work

Objective

Find new manipulated variables

Objective

Find new manipulated variables

• transform a nonlinear process into a first order system

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling
- give perfect disturbance rejection.

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling
- give perfect disturbance rejection.

Related alternatives

feedback linearization

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling
- give perfect disturbance rejection.

- feedback linearization
- input-output linearization

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling
- give perfect disturbance rejection.

- feedback linearization
- input-output linearization
- disturbance decoupling

Find new manipulated variables

- transform a nonlinear process into a first order system
- give perfect decoupling
- give perfect disturbance rejection.

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

Drawbacks of previous methods

• accurate process inverse \Rightarrow lack of robustness to model uncertainty

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO
- cannot explicitly handle process constraints

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO
- cannot explicitly handle process constraints
- state measurement

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO
- cannot explicitly handle process constraints
- state measurement
- only for minimum phase systems \Rightarrow no RHP-zeros and time delay

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO
- cannot explicitly handle process constraints
- state measurement
- ullet only for minimum phase systems \Rightarrow no RHP-zeros and time delay
- give a chain of integrators

Related alternatives

- feedback linearization
- input-output linearization
- disturbance decoupling
- elementary nonlinear decoupling

- accurate process inverse \Rightarrow lack of robustness to model uncertainty
- non-robust decoupling control \Rightarrow difficult to extend to MIMO
- cannot explicitly handle process constraints
- state measurement
- $\bullet\,$ only for minimum phase systems $\Rightarrow\,$ no RHP-zeros and time delay
- give a chain of integrators
- not for static systems

2. New proposed method

Input transformation

- $y \in \mathbb{R}^{n_y}$ outputs
- $\boldsymbol{u} \in \mathbb{R}^{n_u}$ original inputs
- $\mathbf{v}_{-}\in\mathbb{R}^{n_{u}}$ new transformed inputs

Assumptions

 $d \in \mathbb{R}^{n_d}$ disturbances

 $e \in \mathbb{R}^{n_y}$ error

 $y^{s} \in \mathbb{R}^{n_{y}}$ setpoint

2. New proposed method

Input transformation

- $y \in \mathbb{R}^{n_y}$ outputs
- $\boldsymbol{u} \in \mathbb{R}^{n_u}$ original inputs
- $\mathbf{v} \in \mathbb{R}^{n_u}$ new transformed inputs
- $d \in \mathbb{R}^{n_d}$ disturbances
- $e \in \mathbb{R}^{n_y}$ error
- $y^{s} \in \mathbb{R}^{n_{y}}$ setpoint

Assumptions

• as many outputs (i.e. differential equations) as inputs $(n_y = n_u)$

2. New proposed method

Input transformation

- $y \in \mathbb{R}^{n_y}$ outputs
- $u \in \mathbb{R}^{n_u}$ original inputs
- $\mathbf{v}_{-} \in \mathbb{R}^{n_u}$ new transformed inputs

$d \in \mathbb{R}^{n_d}$ disturbances

- $e \in \mathbb{R}^{n_y}$ error
- $y^{s} \in \mathbb{R}^{n_{y}}$ setpoint

Assumptions

- as many outputs (i.e. differential equations) as inputs $(n_y = n_u)$
- all disturbances can be measured

 $y \in \mathbb{R}^{n_y}$ (outputs) $u \in \mathbb{R}^{n_u}$ (original inputs) $d \in \mathbb{R}^{n_d}$ (disturbances)

 $y \in \mathbb{R}^{n_y}$ (outputs) $u \in \mathbb{R}^{n_u}$ (original inputs) $d \in \mathbb{R}^{n_d}$ (disturbances)

Model:
$$\frac{dy}{dt} = f(y, u, d)$$

Input Transformations

 \bullet simple input transformation (feedback linearization) \Rightarrow integrating system

Input Transformations

- \bullet simple input transformation (feedback linearization) \Rightarrow integrating system
- \bullet refined input transformation \Rightarrow first-order system

Input Transformations

- simple input transformation (feedback linearization) \Rightarrow integrating system
- refined input transformation \Rightarrow first-order system

System: two $MV = [u_1 \ u_2]$, two $CV = [y_1 \ y_2]$ and a disturbance vector d

Model

$$\frac{dy_1}{dt} = f_1'(u_1, u_2, d, y_1, y_2) \quad \frac{dy_2}{dt} = f_2'(u_1, u_2, d, y_1, y_2)$$

Model

$$\frac{dy_1}{dt} = f_1'(u_1, u_2, d, y_1, y_2) \quad \frac{dy_2}{dt} = f_2'(u_1, u_2, d, y_1, y_2) \tag{1}$$

Define the new transformed inputs (ν') as the RHS

$$v'_1 = f'_1(u_1, u_2, d, y_1, y_2)$$

$$v'_2 = f'_2(u_1, u_2, d, y_1, y_2)$$

Model

$$\frac{dy_1}{dt} = f_1'(u_1, u_2, d, y_1, y_2) \quad \frac{dy_2}{dt} = f_2'(u_1, u_2, d, y_1, y_2) \tag{1}$$

Define the new transformed inputs (ν') as the RHS

$$\begin{array}{l} v_1' = f_1'(u_1, u_2, d, y_1, y_2) \\ v_2' = f_2'(u_1, u_2, d, y_1, y_2) \end{array} \xrightarrow[\text{Substituting}]{} \underbrace{ \begin{array}{l} \frac{dy_1}{dt} = v_1' \\ \frac{dy_2}{dt} = v_2' \end{array} } \\ \end{array}$$

Model

$$\frac{dy_1}{dt} = f_1'(u_1, u_2, d, y_1, y_2) \quad \frac{dy_2}{dt} = f_2'(u_1, u_2, d, y_1, y_2) \tag{1}$$

Define the new transformed inputs (v') as the RHS

$$\begin{array}{l}
\nu_1' = f_1'(u_1, u_2, d, y_1, y_2) \\
\nu_2' = f_2'(u_1, u_2, d, y_1, y_2) \\
\end{array} \xrightarrow{\text{Substituting}}_{\text{in Eq. 1}} & \frac{dy_1}{dt} = v_1' \\
\frac{dy_2}{dt} = v_2'
\end{array}$$

Two decoupled linear integrating systems independent of disturbances.

Model

$$\frac{dy_1}{dt} = f_1'(u_1, u_2, d, y_1, y_2) \quad \frac{dy_2}{dt} = f_2'(u_1, u_2, d, y_1, y_2) \tag{1}$$

Define the new transformed inputs (v') as the RHS

$$v'_{1} = f'_{1}(u_{1}, u_{2}, d, y_{1}, y_{2}) \xrightarrow{\text{Substituting}}_{\text{in Eq. 1}} \frac{dy_{1}}{dt} = v'_{1}$$
$$\frac{dy_{2}}{dt} = v'_{2}$$

Two decoupled linear integrating systems independent of disturbances.

- cannot handle static systems (e.g. perfect mixing without accumulation)
- only for integrating systems (e.g. level control)

New tuning parameter τ_0 and reformulated model

$$\tau_{01} \frac{dy_1}{dt} + y_1 = f_1(u_1, u_2, d, y_1, y_2)$$

$$\tau_{02} \frac{dy_2}{dt} + y_2 = f_2(u_1, u_2, d, y_1, y_2)$$

New tuning parameter τ_0 and reformulated model

$$\tau_{01} \frac{dy_1}{dt} + y_1 = f_1(u_1, u_2, d, y_1, y_2)$$
(2a)
$$\tau_{02} \frac{dy_2}{dt} + y_2 = f_2(u_1, u_2, d, y_1, y_2)$$
(2b)

Define the new transformed inputs (v) as the RHS

$$v_1 = f_1(u_1, u_2, d, y_1, y_2)$$

$$v_2 = f_2(u_1, u_2, d, y_1, y_2)$$

New tuning parameter τ_0 and reformulated model

$$\tau_{01} \frac{dy_1}{dt} + y_1 = f_1(u_1, u_2, d, y_1, y_2)$$
(2a)
$$\tau_{02} \frac{dy_2}{dt} + y_2 = f_2(u_1, u_2, d, y_1, y_2)$$
(2b)

-I. .

Define the new transformed inputs (v) as the RHS

$$v_{1} = f_{1}(u_{1}, u_{2}, d, y_{1}, y_{2})$$

$$v_{2} = f_{2}(u_{1}, u_{2}, d, y_{1}, y_{2})$$

$$\underbrace{\text{Substituting}}_{\text{in Eq.2}}$$

$$\tau_{01} \frac{dy_{1}}{dt} + y_{1} = v_{1}$$

$$\tau_{02} \frac{dy_{2}}{dt} + y_{2} = v_{2}$$

New tuning parameter τ_0 and reformulated model

$$\tau_{01} \frac{dy_1}{dt} + y_1 = f_1(u_1, u_2, d, y_1, y_2)$$
(2a)
$$\tau_{02} \frac{dy_2}{dt} + y_2 = f_2(u_1, u_2, d, y_1, y_2)$$
(2b)

Define the new transformed inputs (v) as the RHS

$$v_{1} = f_{1}(u_{1}, u_{2}, d, y_{1}, y_{2})$$

$$v_{2} = f_{2}(u_{1}, u_{2}, d, y_{1}, y_{2})$$

$$\underbrace{\text{Substituting}}_{\text{in Eq.2}}$$

$$\tau_{01} \frac{dy_{1}}{dt} + y_{1} = v_{1}$$

$$\tau_{02} \frac{dy_{2}}{dt} + y_{2} = v_{2}$$

Two decoupled first-order systems independent of disturbances. τ_0 - free to choose. *intuitively* keep it close to the original system dynamics

C. Zotică, N.Alsop, S. Skogestad

IFAC World Congress

Key idea: use decentralized SISO controllers for controlling $y = [y_1 y_2]$ using $v = [v_1 v_2]$ as inputs.

Calculation block

Simple transformation

Refined transformation

$$\begin{aligned} \tau_0 \frac{dy}{dt} + y &= v \\ u &= f^{-1}(v, d, y) \\ \Rightarrow \text{ avoid implicit nonlinear state} \\ \text{feedback if } v \text{ is independent of } y \end{aligned}$$

Calculation block

Simple transformation

Refined transformation

 $\begin{aligned} \tau_0 \frac{dy}{dt} + y &= v \\ u &= f^{-1}(v, d, y) \\ \Rightarrow \text{ avoid implicit nonlinear state} \\ \text{feedback if } v \text{ is independent of } y \end{aligned}$

- algebraic solver
- numerical solver
- Pl-controller (inner slave loop)

- $y \in \mathbb{R}^{n_y}$ (outputs) $u \in \mathbb{R}^{n_u}$ (original inputs) $x \in \mathbb{R}^{n_x}$ (states) $d \in \mathbb{R}^{n_d}$ (disturbances)
- measurement nonlinearity (e.g. pH, density)
- static calculation block: $x = h^{-1}(y)$

Control of flow and temperature in a mixing process

MVs (original inputs): $u_{1} = F_{1} [kg/s]$ $u_{2} = F_{2} [kg/s]$ CVs (outputs): $y_{1} = F [kg/s]$ $y_{2} = T [^{\circ}C]$ DVs (disturbances): $d_{1} = T_{1} [^{\circ}C]$ $d_{2} = T_{2} [^{\circ}C]$

Control of flow and temperature in a mixing process

Mass balance (static) $F = \underbrace{F_1 + F_2}_{m}$

Mass balance (static) $F = \underbrace{F_1 + F_2}_{v_1}$ Energy balance (dynamic)

Mass balance (static) $F = \underbrace{F_1 + F_2}_{v_1}$ Energy balance (dynamic)

$$m\frac{dT}{dt}=F_1(T_1-T)+F_2(T2-T)$$

Mass balance (static) $F = \underbrace{F_1 + F_2}_{v_1}$ Energy balance (dynamic)

$$m\frac{dT}{dt} = F_1(T_1 - T) + F_2(T2 - T)$$

$$\tau_0 \frac{dT}{dt} + T = \underbrace{\frac{\tau_0}{m}(F_1T_1 + F_2T2) + (1 - \frac{\tau_0}{\tau_r})T}_{v_2}$$

$$\tau_r = \frac{m}{F_1 + F_2}$$

Mass balance (static) $F = \underbrace{F_1 + F_2}_{v_1}$ Energy balance (dynamic)

$$m\frac{dT}{dt} = F_1(T_1 - T) + F_2(T2 - T)$$

$$\tau_0 \frac{dT}{dt} + T = \underbrace{\frac{\tau_0}{m}(F_1T_1 + F_2T2) + (1 - \frac{\tau_0}{\tau_r})T}_{v_2}$$

$$\tau_r = \frac{m}{F_1 + F_2}$$

Tuning parameter τ_0 if $\tau_0 = \tau_r \Rightarrow v_2$ is independent of y.

Mass balance (static) $F = \underbrace{F_1 + F_2}_{v_1}$ Energy balance (dynamic)

$$m\frac{dT}{dt} = F_1(T_1 - T) + F_2(T2 - T)$$

$$\tau_0 \frac{dT}{dt} + T = \underbrace{\frac{\tau_0}{m}(F_1T_1 + F_2T2) + (1 - \frac{\tau_0}{\tau_r})T}_{v_2}$$

$$\tau_r = \frac{m}{F_1 + F_2}$$

New system:

Tuning parameter τ_0 if $\tau_0 = \tau_r \Rightarrow v_2$ is independent of y.

$$\tau_0 \frac{dy_2}{dt} + y_2 = v_2$$

 $v_1 = v_1$

Algebraic solver

Solve for u_1 and u_2 :

$$v_1 = F_1 + F_2$$

$$v_2 = \frac{\tau_0}{m} (F_1 T_1 + F_2 T_2) + (1 - \frac{\tau_0}{\tau_r}) T$$

Given inputs v_1 and v_2 , outputs $y_1 = F$ and $y_2 = T$, and disturbances $d_1 = T_1$ and $d_2 = T_2$.

Mixing process. Closed loop responses

Mixing process. Closed loop responses

MVs (original inputs): $u = F_c [kg/s]$ CVs (outputs): $y = T_h [^{\circ}C]$ DVs (disturbances): $d_1 = T_c^{in} [^{\circ}C]$ $d_2 = T_h^{in} [^{\circ}C]$ $d_3 = F_h [kg/s]$ Objective: find transformed input (new MV), $v \Rightarrow$ perfect disturbance rejection at steady-state.

Heat exchanger. Input transformation

Objective: find transformed input (new MV), $v \Rightarrow$ perfect disturbance rejection at steady-state.

Heat exchanger. Input transformation

Objective: find transformed input (new MV), $v \Rightarrow$ perfect disturbance rejection at steady-state.

Energy balance (static $\epsilon - NTU$)

$$T_h = \underbrace{(1 - \epsilon_h) T_h^{in} + \epsilon_h T_c^{in}}_{v}$$

with $\epsilon_h = \epsilon_h(u, d_1, d_2, d_3)$

Heat exchanger. Input transformation

Objective: find transformed input (new MV), $v \Rightarrow$ perfect disturbance rejection at steady-state.

Energy balance (static $\epsilon - NTU$)

$$T_h = \underbrace{(1 - \epsilon_h) T_h^{in} + \epsilon_h T_c^{in}}_{v}$$

with $\epsilon_h = \epsilon_h(u, d_1, d_2, d_3)$ New system: y = v

Tuning parameter: $\tau_0 = 0$

Consider actual dynamics with a static transformation and dynamic process

Original system

Original system

Transformed system

Original system

Transformed system

Heat exchanger. Controller. Calculation block

3 different controllers implemented

• feedback only with a PI-controller ($K_C = -1.32$, $\tau_I = 109$);

3 different controllers implemented

- feedback only with a PI-controller ($K_C = -1.32$, $\tau_I = 109$);
- ② transformed and feedback with a PI-controller ($K_C = 1.31$, $\tau_I = 109$);

3 different controllers implemented

- feedback only with a PI-controller ($K_C = -1.32$, $\tau_I = 109$);
- ② transformed and feedback with a PI-controller ($K_C = 1.31$, $au_I = 109$);
- transformed only (feedforward only).

Calculation block. Numerical solver

Solve for u

$$v = (1 - \epsilon_h) T_h^{in} + \epsilon_h T_c^{in}$$

with

$$\epsilon_h = \epsilon_h(u, d_1, d_2, d_3)$$

Given input v, and disturbance $d_1 = T_c^{in}, d_2 = T_h^{in}, d_3 = F_h$.

Disturbance rejection

Disturbance rejection

Setpoint change

4. Conclusions

Transformed inputs

- perfect decoupling
- feedforward disturbance rejection
- new tuning parameter $\tau_0 \Rightarrow$ nonlinear system \Rightarrow first-order system

- perfect decoupling
- feedforward disturbance rejection
- new tuning parameter $\tau_0 \Rightarrow$ nonlinear system \Rightarrow first-order system
- equal number of inputs and outputs
- can handle static systems

Future work

generalized theory for input and output transformations

- perfect decoupling
- feedforward disturbance rejection
- new tuning parameter $\tau_0 \Rightarrow$ nonlinear system \Rightarrow first-order system
- equal number of inputs and outputs
- can handle static systems

Future work

generalized theory for input and output transformations

This work is partly funded by HighEFF - Centre for an Energy Efficient and Competitive Industry for the Future. The authors gratefully acknowledge the financial support from the Research Council of Norway and user partners of HighEFF, an 8 year Research Centre under the FME-scheme (Centre for Environment-friendly Energy Research, 257632).

