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Abstract: The objective of this work is to find new transformed manipulated variables (MVs)
for nonlinear systems which linearize and decouple the system, and give perfect disturbance
rejection (at least at steady-state). The proposed new input transformation is more general
than feedback linearization in that it also allows for multiple-inputs multiple-outputs (MIMO)
systems, disturbances, a more general class of models, and introduces a tuning parameter τ0.
The key idea is to use decentralized SISO controllers for the output y using the new transformed
inputs v as MVs. The SISO controllers give v, and a nonlinear calculation block solves algebraic
equations which explicitly gives the original input u as a function of the controller output v,
output y and disturbances d. The calculation block also handles decoupling, and feedforward
action from the disturbance d. This new procedure can be applied both for static and dynamic
processes, which is typical in process control.
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disturbance rejection

1. INTRODUCTION

Different techniques for controlling nonlinear systems have
been presented in the literature, including: linear con-
trollers designed using a linearized model around an oper-
ating point (e.g. PID controllers, linear model predictive
control etc.); adaptive control (Åström and Wittenmark,
2008); nonlinear model predictive control (Rawlings et al.,
2017) or nonlinear control (e.g. feedback linearization
(Isidori, 1989; Khalil, 2015; Nijmeijer and van der Schaft,
1990a), input-output linearization (Henson and Seborg,
1997), disturbance decoupling (Huijberts et al., 1991),
input decoupling (Isidori et al., 1981; Balchen et al., 1988;
Nijmeijer and van der Schaft, 1990b) elementary nonlinear
decoupling (Balchen, 1998) etc.).

The objective of this work is to find new manipulated vari-
ables that transform a nonlinear process into a linear one
(preferably first order), give decoupling and perfect distur-
bance rejection. The literature presents a few approaches
with similar objectives (often with different names) though
with different methodologies, and we discuss a few of them.
Feedback linearization received a large interest in the
control literature starting with the differential geometry
approach introduced by the work of Isidori et al. (1981)
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and peaking in the work of Isidori (1989), Nijmeijer and
van der Schaft (1990a) and Khalil (2015). A comprehensive
overview and analysis for nonlinear process control is pre-
sented in the work of Henson and Seborg (1991). However,
to the best of the authors’ knowledge this methods have
not been practically implemented for chemical processes.
We will explain briefly why they are not used for chemical
processes.
Feedback linearization works by transforming a nonlinear
n′th order system into a new system described by a chain
of r (i.e. relative degree with r ≤ n) integrators, therefore
linear and controllable.
Input-output linearization is another nonlinear technique
similar to feedback linearization, but applied to systems
for which the state-inputs equations cannot be linearized
(usually with r < n and RHP-zero). It partly linearizes
the system, that is, it linearizes the output-input be-
haviour, while keeping some nonlinear state-input equa-
tions (Isidori, 1989; Henson and Seborg, 1997). Feedback
linearization is more suitable for stabilization purposes,
whereas input-output linearization can be applied for sys-
tems for which the output is specified a priori which
makes it more appropriate for process control applications
(Henson and Seborg, 1997).

The main limitations of these linearization methods are:

• lack of robustness to model uncertainty as it requires
an accurate process inverse;

• difficult to extend to multivariate systems as it needs
a type of non-robust decoupling control;



• cannot explicitly handle process constraints;
• all the states must be available for measurement, or

can be estimated;
• inability to deal with uncertainty in RHP-zeros and

time delays.

These limitations may be acceptable for mechanical sys-
tems which inherently have few states that can be easily
measured or estimated. Moreover, mechanical system are
often integrating processes, and thus transforming them
into a chain of integrators does not necessarily bring addi-
tional control limitations. However, this is rarely the case
for most process control applications, and this is arguably
the reason feedback linearization is yet to be implemented
in chemical processes.

Elementary nonlinear decoupling on the other hand, gen-
erates a directly invertible system based on designing of
a property transformation of the state x and generating
an input u such that the property transformation has the
desired rate of change. For systems with relative degree
one, it turns a n′th order system into one linear integrator
(Balchen, 1998).

2. METHODOLOGY

The principle of our proposed method is shown in the block
diagram in Fig. 1, where, y is the outputs vector, u is
the original inputs vector (manipulated variables MVs),
v is the new inputs (transformed MVs) vector, d is the
disturbance vector, e is error vector, ys is the setpoint
vector.
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Fig. 1. Proposed method for linearization, decoupling and
perfect disturbance rejection.

In Fig. 1, a decentralized PI-controller computes the trans-
formed input v, and the original input u is back-calculated
by numerically solving a set of algebraic equations with
given outputs y and disturbances d. We discuss the struc-
ture of each block in Fig.1 in the following.

2.1 Assumptions

• as many outputs (i.e. differential equations) as inputs
(i.e. ny = nu);
• all disturbances can be measured.

Thus, we can handle low-order systems, but this is often
the case in process control applications. We present two
cases:

(1) Simple input transformation (that gives an integrat-
ing process, similar to feedback linearization)

(2) Refined input transformation (that introduces a new
tuning parameter τ0 to give a first-order process).

2.2 Simple input transformation

Assume that we can write the nonlinear dynamic model as
shown in Eq. 1 (for simplicity, we consider two controlled

variables (CVs), y1 and y2, two MVs, u1 and u2, and a
disturbance vector d without compromising the generality
of the method).

dy1
dt

= f ′1(u1, u2, d, y1, y2) (1a)

dy2
dt

= f ′2(u1, u2, d, y1, y2) (1b)

We follow the idea of the classical nonlinear control
method of feedback linearization, and introduce two new
transformed input variables (v′1 and v′2) in Eq. 2 (input
functions) which simply are the right hand side of the
differential Eq. 1.

v′1 = f ′1(u1, u2, d, y1, y2) (2a)

v′2 = f ′2(u1, u2, d, y1, y2) (2b)

We then have two decoupled linear integrating systems,
Eq. 3, which also are independent of disturbances.

dy1
dt

= v′1 (3a)

dy2
dt

= v′2 (3b)

With v′ as the controller outputs (or transformed inputs
to the process), this is a linear decoupled system for
which controller design in principle is straightforward. We
assume that d is measured, so that the physical input u
can be back-calculated from v′ using a calculation block.
However, Eq. 3 is a set of integrating systems, and
integrating systems are not easy to control.

Limitations. The above approach cannot handle static
systems. More generally, it will not work well for cases
where the original dynamics are very fast, because we
are replacing any dynamics by an integrating system
by introducing an implicit feedback through the variable
transformation in Eq. 2. In general, integrating systems are
difficult to control, so the transformation used in feedback
linearization may introduce unnecessary limitations. As
mentioned below, we will use it for integrating processes
only.

2.3 Refined input transformation

Because of the mentioned limitations of the simple input
transformation, we rewrite the model Eq. 1 slightly and
introduce the new tuning parameter τ0. The reason is to
transform the process into a first-order system instead
of an integrating one. To do this, we assume that we
can write the nonlinear model with the outputs (CVs)
separated from the other variables as follows (for simplicity
we consider two CVs, y1 and y2, two MVs, u1 and u2, and
a disturbance vector d, without reducing the generality of
the method):

τ01
dy1
dt

+ y1 = f1(u1, u2, d, y1, y2) (4a)

τ02
dy2
dt

+ y2 = f2(u1, u2, d, y1, y2) (4b)

Comparing Eq. 4 with Eq. 1, we see that f1 = τ01f
′
1 + y1

and f2 = τ02f
′
2 + y2 . We introduce two new transformed

input variables (input functions) as the right hand side of
Eq. 4, yielding Eq. 5.

v1 = f1(u1, u2, d, y1, y2) (5a)

v2 = f2(u1, u2, d, y1, y2) (5b)



where we assume that d is measured.

We then have two decoupled linear systems, both first-
order and independent of disturbances, as shown in Eq. 6.

τ01
dy1
dt

+ y1 = v1 (6a)

τ02
dy2
dt

+ y2 = v2 (6b)

2.4 Controller design

The key idea is now to use decentralized SISO controllers
(Eq. 7) for controlling y = [y1 y2]T using v = [v1 v2]T as
MVs.

u(t) = Kc

(
e(t) +

1

τI

∫ t

0

e(t)dt

)
(7)

where KC is the proportional gain and τI is the integral
time. To tune the PI-controller we may use a systematic
tuning method such as the SIMC tuning rules (Skogestad,
2003). For a transformed system in the form of Eq. 6, we
calculate the tuning parameters for a PI-controller with
Eq. 8.

KC =
1

k

τ

τC + θ
=

τ0
τC + θ

(8a)

τI = min(τ0, 4(τC + θ)) (8b)

where, for the transformed system, k = 1 (process gain),
τ = τ0 (time constant) and θ is the time delay.

For static systems (i.e. τ0 = 0 in Eq. 6) we use a pure
I-controller given by Eq. 9.

KI = lim
τ→0

KC

τI
=

1

k

1

τC + θ
=

1

τC + θ
(9)

where KI is the integral gain.

2.5 Calculation block

For finding the actual u from v, we use a static calculation
block that inverts Eq. 5, resulting in Eq. 10, where we
assume f−1 exists. When we write the equations in the
form Eq. 4 rather than Eq. 1, we will quite often find
that v in Eq. 5 is independent of the outputs y, at least
nominally. Thus, solving Eq. 5 with respect to u, frequently
avoids the implicit nonlinear static feedback resulting from
solving Eq. 2 with respect to u.

u = f−1(v, y, d) (10)

Eq. 10 can be solved algebraically (i.e. explicitly) or
numerically (i.e. by using a numeric solver or by using
a fast inner loop PI-controller).

2.6 New tuning parameter τ0

The time constants τ0 are tuning parameters. The question
now is how should we choose them? One way of selecting
them is to keep them close to the original systems dynam-
ics to minimize the implicit feedback from the output y
to the new input v. For a static model equation we have
that the time constant is zero, e.g. τ01 = 0, and y1 = v1.
Note that this means that the output from the controller
(v1) is equal to the CV (y1). On the other hand, a pure
integrating system, such as a liquid level, would correspond
to an infinite time constant and we write the model on the
original form in Eq. 3, that is, dy1/dt = v′1 with v′1 = f ′1.

2.7 Comparison with feedback linearization

As indicated, the approach in Eq. 1 and Eq. 2, where we
introduce new inputs v′ and end up with an integrating
system (Eq. 3), is closely related to the classical nonlinear
control method of feedback linearization which considers
SISO systems of the form (here written for the case with
one differential equation, that is, n = 1):

dy

dt
= f(y) + g(y)u (11)

With n = 1 the new input is v = f(y) + g(y)u and we
end up with an integrating system dy/dt = v. This is
identical to Eq. 1,2 and 3, except that we in Eq. 1 allow
for a more general right hand side than in Eq. 11. The
proposed new input transformation is more general than
feedback linearization in that it also allows for MIMO
systems, disturbances, a more general class of models and
introduces a tuning parameter τ0. The limitation with the
new approach compared to feedback linearization is that
we must have a low-order system (with as many number
of inputs u as number of outputs y).

2.8 Output transformation

The principle of both input and output transformation
is illustrated in Fig. 2. For some chemical processes, the
nonlinearities arise from state-measurement relationship,
e.g. pH, or density measurement. Therefore, we may want
to introduce an output transformation, which is also a
static calculation block. In addition, the structure (i.e.
algebraic equations) of the input calculation block is fixed
from the start and an output transformation block may
make the system more robust. For such systems, we
may want to introduce new outputs transformation that
linearizes the input (v)- state (x) behaviour, where the
choice of x is a degree of freedom.

Reference
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Fig. 2. Input and output transformation for linearization,
decoupling and perfect disturbance rejection.

3. SIMULATION CASE STUDIES

We apply the proposed method from Section 2 to two
simulation examples:

(1) Control of flow and temperature in a mixing process
with both slow temperature and fast mass dynamics;

(2) Control of the hot stream temperature of a heat
exchanger using a static model to derive the input
transformation and construct the calculation block,
and a different dynamic lumped model for the real
process (plant model mismatch).

3.1 Case 1. Control of flow and temperature in a mixing
process

Fig. 3 shows the mixing process with two inflows and one
outflow that we are analyzing.
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Fig. 3. Mixing process with two original MVs (u1 = F1

and u2 = F2) and two CVs ( y1 = F and y2 = T ).

The original inputs of the process are the two inlet flows:
u1 = F1 (kg/s); u2 = F2 (kg/s). The outputs are the outlet
flow F and temperature T : y1 = F (kg/s) y2 = T (◦C). The
main disturbances that we consider are the temperature of
the two inlet flows: d1 = T1 (◦C); d2 = T2 (◦C).

Following the procedure from Section 2, we find the trans-
formed inputs v1 and v2 with the objective of decoupling
and perfect disturbance rejection.

Assuming constant m holdup, and fast mixing, the mass
balance (static) is given by Eq. 12.

F = F1 + F2 (12)

Assuming constant and equal heat capacity cP , and after
substituting the mass balance (Eq. 12), the dynamic
energy balance can be rearranged as given by Eq. 13.

m
dT

dt
= F1(T1 − T ) + F2(T2 − T ) (13)

Introducing the new tuning parameter τ0 gives Eq. 14
(similar with Eq. 4).

τ0
dT

dt
+ T =

τ0
m

(F1T1 + F2T2) +
(
1− τ0

τr

)
T (14)

where τr = m
F1+F2

is the residence time (s).

We define the transformed inputs v1 and v2 as the right
hand side of Eq. 12 and Eq.14 as shown in Eq. 15.

v1 = F1 + F2 (15a)

v2 =
τ0
m

(F1T1 + F2T2) +

(
1− τ0

τr

)
T (15b)

Note that if τ0 = τ∗r , then v2 is independent of y2 = T , at
least nominally.

With the new transformed input, v1 and v2, the new
system is given by Eq. 16, which represents two decoupled
processes with no effect from disturbances.

y1 = v1 (16a)

τ0
dy2
dt

+ y2 = v2 (16b)

In transfer function matrix form, from input v = [v1 v2]T

and disturbances d = [d1 d2]T to outputs y = [F T ]T ,
the system can be rewritten as given in Eq. 17.

y(s) = G(s)v(s) +Gd(s)d(s) (17)

with

G(s) =

(
1 0
0 1
τ0s+1

)
, Gd(s) = 0

Calculation block. Algebraic solver The calculation block
solves Eq. 15 for u1 and u2 given inputs v1 and v2, outputs
y1 = F and y2 = T and disturbances d. In this case, this a
linear system, Eq. 18. We select the new tuning parameter
equal to the nominal residence time, i.e. τ0 = τ∗r = 10 s.[

u1
u2

]
=

[
1 1

τ0
m (T1 − T ) τ0

m (T2 − T )

]−1 [
v1

v2 − T
]

(18)

Note that the matrix inverted in Eq. 18 loses rank when
T1 = T2. However, physically, the temperature control of
the mixing is clearly not possible when both inlet stream
have equal temperature.

Simulation results Table 1 shows the nominal operating
conditions (marked with ∗) for the mixing process. Note
that at nominal conditions the two inputs are equal (F ∗1 =
F ∗2 ), which makes the process highly coupled and difficult
to control using conventional PID-controllers.

Table 1. Case 1 nominal operating conditions

Variable F ∗
1 F ∗

2 F ∗ T ∗
1 T ∗

2 T ∗ m

Value 5 5 10 20 50 35 100
Unit kg/s kg/s kg/s ◦C ◦C ◦C kg

We use an I-controller for controlling y1 = F using v1 with
KI = 0.2, and a PI-controller for controlling y2 = T using
v2 with KC = 4 and KI = 0.2. We use τC = 5 s for both
controllers.

Fig. 4 shows the closed-loop response for y1 = F , u1 = F1

and u2 = F2 (left) and y2 = T (right) to a step increase
in disturbance d1 = T1 of 3 ◦C at time 50 s, and a step
increase in disturbance d2 = T2 of 5 ◦C at time 100 s,
followed by a setpoint change in ys2 = T s of 1 ◦C at time
150 s and a setpoint change in ys1 = F s of 1 kg/s at time
200 s.
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Fig. 4. Closed-loop response for y1 = F (dark red), y2 = T
(dark blue) and u1 = F1 (purple) and u2 = F2 (light
blue) to disturbance step changes of ∆d1 = 3◦C at
time 50 s and ∆d2 = 5◦C at time 100 s followed by
setpoint changes of ∆ys2 = 1 ◦C at time 150 s and
∆ys1 = 1 kg/s at time 200 s.

The simulation results in Fig. 4 show a decoupled process
with perfect disturbance rejection (dynamically and at
steady-state).

3.2 Case 2. Control of hot outlet temperature of a heat
exchanger

Simple and accurate steady-state models of chemical pro-
cesses are often available, whereas simple dynamic models
are either not available, or are not good enough. For
this reason, we analyze within our proposed method a
countercurrent heat exchanger example for which a simple
and good model is only available at steady-state (ε-NTU
method).

Fig. 5 shows the countercurrent heat exchanger that we are
analyzing, with one original input (cold side flow, u = Fc)
and one output (hot side outlet temperature, y = Th).
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Fig. 5. Heat exchanger with one original MV (u = Fc) and
one CV (y = Th).

The original input of the process is the cold side flow:u =
Fc (kg/s).The process output is the hot side outlet tem-
perature Th: y = Th (◦C). The main disturbances are the
hot side flow and the inlet temperatures of the two flows:
d1 = T inc (◦C); d2 = T inh (◦C); d3 = Fh (kg/s).

Fig. 6 shows the block diagram of the proposed method
applied to the heat exchanger. The static model (ε-NTU
method) is used to derive the new input transformation,
which is then applied to a dynamic lumped cells model.
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Fig. 6. Block diagram of the proposed method for the heat
exchanger using a static model for the input calcula-
tion block, and a dynamic model for the process.

Following the procedure from Section 2, we find the
transform inputs v with the objective of linearization and
perfect disturbance rejection. We use a static model ε-NTU
(number of transfer units) (Welty, 2008), Eq. 19.

Th = (1− εh)T inh + εhT
in
c (19a)

Tc = ecT
in
h + (1− ec)T inc (19b)

εc =
1− exp(−NTU(C − 1))

C − exp(−NTU(C − 1))
(19c)

εh = εcC (19d)

C =
Fccpc
Fhcph

(19e)

NTU =
UA

Fccpc
(19f)

We define the transformed inputs v as the right hand side
of Eq. 19a resulting in Eq. 20.

v = (1− εh)T inh + εhT
in
c (20)

That is, at steady-state we have y = v, but this does not
hold dynamically because the system is not static.

Calculation block. Algebraic solver The calculation block
numerically solves Eq. 20 for u given inputs v and dis-
turbances d. Note that we are using v = y = Th in the
calculation block, and select the new tuning parameter to
τ0 = 0 because we use a static heat exchanger map to
derive the transformed input.

Dynamic cells heat exchanger model The process is given
by the dynamic lumped model given in Eq. (21), where the
heat exchanger is discretized in space inN = 100 cells. The
boundary conditions for cell i = 1 is T 0

h = T inh , and for
cell i = N is TN+1

c = T inc . With infinite cells, the dynamic
model has the same steady-state as the static model. Wall
capacities are neglected.

dT ic
dt

=
Fc
ρcV ic

(T i+1
c − T ic) +

UA(T ih − T ic)
NρcV ic cpc

(21a)

dT ih
dt

=
Fh
ρhV ih

(T i−1h − T ih) +
UA(T ih − T ic)
NρhV ihcph

(21b)

∀i ∈ 1 . . . N

where c is the cold side, h is the hot side, V is the volume,
U is the heat transfer coefficient, A is the heat transfer
area, ρ is density and cp is specific heat.

The nominal operating conditions (marked with ∗) are
shown in Table 2.

Table 2. Case 2 nominal operating conditions

Variable F ∗
c F ∗

h T s
h T in∗

c T in∗
h U A V

Value 5 5 24.2 20 70 150 90 0.45

Unit kg/s kg/s ◦C ◦C ◦C W
m2◦C m2 m3

Open loop responses The open loop responses for the
original and transformed systems are shown in Figs. 7 and
8 respectively, together with fitted first-order plus time
delay transfer functions.
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Fig. 7. Open loop response for y = Th to a step change
in the physical input of ∆u = 0.5 kg/s (left) and
∆u = −0.5 kg/s (right) at time 100 s.
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Fig. 8. Open loop response for y = Th to a step change
in the transformed input of ∆v = −0.4 ◦C (left) and
∆v = 0.5 ◦C(right) at time 100 s.

For the transformed system the steady-state gains in both
directions are equal, whereas for the original system they
are not. If the models used for the transformation and
dynamic simulation were identical, we would have (1) a
process gain of 1 (rather than 1.04) and (2) y = v at
steady state (so the read and blue lines should start and
end at the same value in Fig. 8).



Closed loop responses We compare three controllers:
(1) feedback only with a PI-controller tuned based on the
open loop response from Fig. 7 (right), with a closed loop
time constant τC = θ = 40 s, KC = −1.32 and τI = 109;
(2) transformed and feedback with a PI-controller tuned
based on the open loop response from Fig. 8, with a
closed loop time constant τC = θ = 40 s, KC = 1.31 and
τI = 109; (3) transformed only (feedforward only). Fig. 9
and Fig. 10 show the disturbance rejection response for
y = Th and u = Fc to a step change ∆d3 = 0.6 kg/s at
time 100 s and ∆d1 = 2 ◦C respectively. Fig. 11 shows the
response for y = Th and u = Fc to a step change in the
setpoint of ∆T sh = 5 ◦C at time 100 s.

(a) Output response (y = Th)
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Fig. 9. Disturbance rejection: ∆d3 = 0.6 kg/s at time 100 s.

(a) Output response (y = Th)
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(b) Input response (u = Fc)

Fig. 10. Disturbance rejection: ∆d1 = 2 ◦C at time 100 s.
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(a) Output response (y = Th)
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Fig. 11. Setpoint change of ∆T sh = 5 ◦C at time 100 s.

The response for disturbance rejection (Figs. 9 and 10) for
transformed + feedback (green) is not perfect dynamically
because we apply a static transformation to a dynamic
process and perfect disturbance rejection can only happen
at steady-state, yet it is better than feedback only (red)
and transformed only (black). The steady-state offset for
transformed only is due to the process gain mismatch
(Fig. 8). The overshoot from Figs. 9(a) and 10(a) is caused
by the feedforward and feedback parts independently cor-
recting at the same time. The nonlinearity in the input
transformation makes the response for setpoint change
(Fig. 11) appear less aggressive for the transformed sys-
tem. It may seem that the feedback controller is not very
helpful when we use transformed variables, but it is needed
to handle measurement errors for the disturbances, and to

handle differences between the model and the real system,
both nominally (which we had in this case, although it was
quite small) and due to changes over time, for example,
due to heat exchanger fouling which changes the value of
the parameter U.

4. CONCLUSION

The main contribution is the introduction of the new
tuning parameter τ0 that transforms a general nonlinear
process into a first order system (Eq. 4) instead of an
integrating system as in feedback linearization (Eq. 1).
The method also gives decoupling, perfect disturbance
rejection (at least at steady-state), and can be applied for
pure static processes. It can be applied when the original
system is dynamic, yet only a static model is available,
in which case the transformed system (given by y = v at
steady state, but not dynamically) is linear, decoupled and
independent of disturbances only at steady state.
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