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Abstract
In this paper, we show that optimal economic operation can be achieved using feedback
control, by controlling the right variables that translate economic objectives into control
objectives. We formulate a generic framework for selecting the controlled variables based
on the Karsh-Kuhn-Tucker (KKT) conditions, that can be used to select the optimal con-
trolled variables for different operating conditions. The proposed generalized framework
is given as a linear combination of cost gradients. Furthermore, we also show that, the
proposed linear gradient combination framework can be used to select the economically
optimal controlled variables for parallel operating units. The proposed linear gradient
combination framework can be used with any gradient estimation scheme. A benchmark
Williams-Otto reactor example is used to demonstrate the effectiveness of the proposed
CV selection framework.
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1. Introduction

One of the challenges that impede practical implementation of traditional real-time opti-
mization is the need to solve numerical optimization problems online. In order to avoid
the need to solve numerical optimization problems, there is an increasing interest in a
class of methods for real-time optimization, known as “feedback-optimizing control” or
“direct-input adaptation”. Here the objective is to indirectly move the optimization into
the control layer, thereby converting the optimization problem into a feedback control
problem.

The idea of achieving optimal operation using feedback control predates 1980s, where
Morari et al. (1980) proposed a “feedback optimizing control” structure that translates
the economic objectives into process control objectives. This idea was further studied in
detail by Skogestad (2000), where the objective was to find a simple feedback control
strategy,with near optimal cost subject to constraints.

When converting the optimization problem into a feedback control problem, one of the
most important question that arises is “What to control?”. In other words, one has to
find appropriate controlled variables that translates the economic objectives into control
objectives. Addressing this problem, Skogestad (2000) advocates that it is important to
control the constraints tightly that are optimally active. This is known as active con-
straint control and results in zero loss. In fact, the feedback optimizing control structure
presented by Morari et al. (1980) also resulted in active constraint control. If there are
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any unconstrained degrees of freedom, Skogestad (2000) advocates that one should find
self-optimizing variables, which when kept at a constant setpoint, leads to acceptable loss.

The simplest and the earliest methods to find a self-optimizing CV was using a brute-
force method that evaluates the performance loss of different possible candidate CVs
(Skogestad, 2000). Since then there has been several developments in methods to select
the optimal measurements or linear measurement combinations c =Hy as self-optimizing
CVs, where H is known as the optimal selection matrix. Some notable approaches of find-
ing the optimal selection matrix H include the nullspace method (Alstad and Skogestad,
2007) and the exact local method (Alstad et al., 2009), which are based on linearized
models around some nominal operating point.

The main drawback of using a linear measurement combination is that the loss increases
as the optimal point moves away from the point of linearization. Using linear measure-
ment combination also involves selecting a subset of all the available measurements that
one wants to include in the measurement combination c = Hy, which may require addi-
tional offline analysis and/or process insight.

In this paper, we consider the linear combination of cost gradients as self-optimizing vari-
ables instead of linear measurement combination. By using a linear gradient combination,
we show that one can achieve zero loss even when disturbances occur. To this end, we
propose a generalized framework for selecting the self-optimizing variables based on the
Karush-Kuhn-Tucker (KKT) conditions that can be used for different operating scenarios.

2. Selection of controlled variables

Consider the steady-state economic optimization problem

min
u

J(u,d)

s.t. g(u,d)≤ 0 (1)

where u ∈Rnu denotes the vector of manipulated variables (MV) and d ∈Rnd denotes the
vector of disturbances, J : Rnu ×Rnd → R is the scalar cost function and g : Rnu ×Rnd →
Rng denotes the vector of constraints. The Lagrangian of the optimization problem is
given by

L (u,d) = J(u,d)+λ
Tg(u,d) (2)

where λ ∈ Rng is the vector of Lagrangian multipliers for the constraints. The Karush-
Kuhn-Tucker conditions for optimality states that the first order necessary conditions are
satisfied when

∇uL (u,d) =∇uJ(u,d)+λ
T

∇ug(u,d) = 0 (3a)
g(u,d)≤0 (3b)

λ
Tg(u,d) =0 (3c)

λ ≥0 (3d)

Depending on the disturbances realization, different constraints may be active. By ac-
tive constraints, we mean a set of constraints gA ⊆ g that are optimally at its limiting
value. Let na ≤ ng denote the number of active constraints gA(u,d). The complementary
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slackness condition (3c) states that, for the active inequality constraints gA(u,d) = 0, the
corresponding Lagrange multipliers are positive λA > 0 and for the constraint gI(u,d)< 0
that are not active, the corresponding Lagrange multipliers are zero, λI = 0.

The Lagrangian (2) can be re-written as

L (u,d) =J(u,d)+
[
λA λI

]T [gA(u,d)
gI(u,d)

]
⇒ J(u,d)+λ

T
AgA(u,d) (4)

For a system with ng constraints, we can have at most 2ng active constraint regions. To
convert the optimization problem into a feedback control problem, we need to find optimal
controlled variables for each active constraint region.

Active constraint control: As mentioned in Skogestad (2000), if there are any active
constraints, we control the active constraints tightly. For each active constraint, we choose
an associated CV, usually the constraint itself, i.e. CV = gA which is controlled to its
limit. If the number of active constraints is the same as the number of MVs, then active
constraint control is sufficient to achieve optimal operation.

Unconstrained degrees of freedom: After controlling the active constraints, we need
to find CVs for any remaining (nu− na) unconstrained degrees of freedom. In this case,
from (3) and (4), the necessary conditions of optimality is given by

∇uL (u,d) =∇uJ(u,d)+λ
T
A∇ugA(u,d) = 0 (5)

⇒∇uJ(u,d) =−λ
T
A∇ugA(u,d) (6)

Since λA is unknown in (6), we can eliminate it by looking into the nullspace of the
active constraint gradients ∇ugA(u,d). (Jäschke and Skogestad, 2012). N is defined as
the nullspace of ∇ugA(u,d) if NT∇ugA(u,d) = 0.

Theorem 1 (Linear combination of gradients as self-optimizing variables). Given a steady-
state optimization problem (1) with na < nu active constraints gA(u,d). Let N∈Rnu×(nu−na)

be the nullspace of the active constraint gradients ∇ugA(u,d), such that NT∇ugA(u,d) =
0. Then the necessary conditions of optimality can be achieved by controlling the linear
combination of the gradients

c = NT
∇uJ(u,d) (7)

to a constant setpoint of zero.

Proof. Pre-multiplying (6) by NT gives

NT
∇uJ(u,d) =−NT

∇ugA(u,d)TλA (8)

Since NT∇ugA(u,d)T = 0,⇒ NT∇uJ(u,d) = 0

Therefore, controlling c = NT∇uJ(u,d) ∈ R(nu−na) to a constant setpoint of zero satis-
fies the necessary condition of optimality (Krishnamoorthy and Skogestad, 2019). Since
na < nu, Linear independent constraint qualification (LICQ) is satisfied (i.e. ∇ugA(u,d)
has full row rank) and N is well defined. If na = 0 (fully unconstrained case), N =
Inu×nu , which means that the nu self-optimizing CVs are simply the cost gradients c =
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∇uJ(u,d). Therefore, for any active constraint region, (nu− na) CVs can be chosen as
c = NT∇uJ(u,d) which by construction is of size (nu−na).

The proposed framework also enables us to select the CVs without having to develop re-
duced models for each active constraint region. One the CVs are chosen from each active
constraint region, one can switch between the different active constraint regions using
simple logic blocks such as selectors or split-range, as demonstrated by Krishnamoor-
thy and Skogestad (2019) and Reyes-Lúa et al. (2018). Although the gradients are ideal
self-optimizing CVs, they are not readily available measurements. One has to estimate
the gradients using the measurements. There are several model-based and model-free
gradient estimation algorithms, which are briefly summarized by Srinivasan et al. (2011).

3. Illustrative example: Williams-Otto reactor

Consider the benchmark Williams-Otto reactor example, where the raw materials A and
B are converted to useful products P and E through a series of reactions

A+B→C k1 = 1.6599×106e−6666.7/Tr

B+C→ P+E k2 = 7.2177×108e−8333.3/Tr

C+P→ G k3 = 2.6745×1012e−11111/Tr

The feed stream FA with pure A component is a disturbance to the process and the manipu-
lated variables are the feed stream FB with pure B component and the reactor temperature
Tr. The objective is to maximize the production of valuable products P and E, subject to
some purity constraints on G and A in the product stream,

min
Tr,FB

−1043.38xP(FA +FB)−20.92xE(FA +FB)+79.23FA +118.34FB (9)

s.t. xG ≤ 0.08, xA ≤ 0.12

Since we have two constraints, we can have at most 22 = 4 active constraint regions,
namely, 1) xA and xG active, 2) only xG active, 3) only xA active, and 4) unconstrained.
However, the max limit on xG is so low that xG will always be active. Therefore, we can
eliminate regions 3 and 4, and we only need to choose CVs for regions 1 and 2. In region
1, we simply control the concentration of xA to its limit of 0.12kg/kg and xG to its limit
of 0.08kg/kg. In region 2, we control xG to its limit of 0.08kg/kg, and control the linear
gradient combination c := 0.9959∇FB J+0.0906∇Tr J to a constant setpoint of zero.

Region 1 (FA = 1.8275kg/s): - When the disturbance is FA = 1.8275kg/s, we are oper-
ating in region 1, with both the constraints active. This is the simplest case, where optimal
operation is achieved using active constraint control.

Region 2 (FA = 1.3kg/s): - When the disturbance is FA = 1.3kg/s, we are operating in
region 2, with only xG constraint active. We use the reactor temperature Tr to control this
constraint tightly and use FB to control the linear gradient combination c := 0.9959∇FB J+
0.0906∇Tr J. In this case, we use a model-based gradient estimation method proposed by
Krishnamoorthy et al. (2019). The simulation results are shown in Fig. 2, where it can be
seen that the proposed CVs are able to drive the process ot its true optimum.

Switching between xA and c can automatically be achieved using a selector block. Addi-
tional results such as, comparison of the proposed approach with the linear measurement
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(a) (b)

Figure 1: Region 1: Simulation results using the proposed CVs when FA = 1.8275kg/s.

(a) (b)

Figure 2: Region 2: Simulation results using the proposed CVs when FA = 1.3kg/s.

combination and brute force method, including automatic CV-CV switching between xA
and c using a selector block can be found in the first author’s PhD thesis (Krishnamoorthy,
2019, Appendix D).

4. Optimal operation of parallel operating units

In this section, we show how the proposed linear gradient combination framework can be
used to choose the CVs for optimal operation of parallel operating units. Often in practice,
when a plant capacity expands, this is done by simply adding new units in parallel to the
existing units. The parallel units often share common resources such as feed, hot water
etc. The different units may have different capacities, different equipment condition and
different efficiencies.

Consider the optimal operation of p parallel units each with a cost function `i(ui) and a
given total feed Umax. The optimization problem is given as

min
ui

J =
p

∑
i=1

`i(ui) s.t.
p

∑
i=1

ui−Umax = 0 (10)
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In this case, ∇ugA=1p and N∈R(p−1)×p is chosen such that ∑
p
j=1 ηi, j∇u j J and ∑

p
j=1 ηi, j =

0 ∀i = 1, . . . , p−1 where ηi, j is the i and jth element in N. This implies ∇ui`i = ∇u j` j
for all i 6= j. That is the optimal operation of parallel units occur when the marginal cost
is the same for all the units, which was also proved by Downs and Skogestad (2011) and
commonly used in practice.

To illustrate this, consider a process with p = 3 parallel units. Using the nullspace of
∇ugA = [1,1,1]T , we get

c1 :−0.5774∇u1J+0.7887∇u2J−0.2113∇u3 J = 0
c2 :−0.5774∇u1J−0.2113∇u2J+0.7887∇u3 J = 0

Adding c1 + c2 yields −∇u2J +∇u3J = 0. Substituting this in c1 gives −0.5774∇u1J +
0.5774∇u2J = 0, which results in ∇u1J = ∇u2J = ∇u3J. Although this is not a new result
and is a well known concept, this re-iterates the general applicability of the proposed
linear gradient combination framework.

5. Conclusion

In this paper, we proposed a generalized framework for selecting what to control in order
to achieve optimal economic operation. An optimization problem can be converted into a
feedback control problem by controlling:

• Active constraints gA→ 0

• Linear gradient combination c = NT∇uJ→ 0 (with NT∇ugA = 0)
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