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Abstract

This paper proposes a new incremental sampling method for the generation of surrogate models based on the application
of partial least squares regression (PLSR) as a termination criterion. Compared to existing incremental and adaptive
methods, the proposed method allows the sampling algorithm to stop without needing to fit a surrogate model at each
iteration step. The proposed procedure was applied to a motivating pipe model and two case studies; the reaction and
the separation section of an ammonia synthesis loop. In all cases, the new sampling method allows a small number
of sampling points, corresponding to a regular grid with less than two points in each independent variable. The two
surrogate models of the ammonia loop are combined for overall optimization. The optimum for the combined surrogate
models is close to the optimum obtained with the original model.

Keywords: Partial Least Squares Regression, Iterative Sampling for Surrogate Model, Optimization of Integrated
Processes

1. Introduction

Surrogate models, frequently called response surfaces
or reduced-order models, are emerging as an engineer-
ing tool with many applications (Forrester et al., 2008).
They are simplified mathematical representations of com-5

plex models. Their application reduces the computational
cost. Queipo et al. (2005) provide an extensive review
of surrogate-based analysis and optimization, with a fo-
cus on aerospace systems. The even more complex models
used in process systems engineering has sparked the in-10

terest for the application of surrogate models also in this
field. Bhosekar and Ierapetritou (2018) give a detailed
overview of the application of surrogate models in pro-
cess systems engineering. One application is multi-scale
modeling (Biegler et al., 2014; Karolius et al., 2016). Sur-15

rogate models are in this approach, for example, used to
include computational fluid dynamics. A second emerging
field for surrogate models is process optimization using
black-box models (Caballero and Grossmann, 2008; Eason
and Biegler, 2016; Forrester and Keane, 2009; Grimstad20

et al., 2016; Quirante and Caballero, 2016). Commercial
process simulators generally do not provide derivative in-
formation. This reduces their applicability in optimiza-
tion. However, the fitting of surrogate models allows for
the use in derivative-based optimization algorithms. Bouk-25

ouvala et al. (2016) extensively discuss the application of
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surrogate models in constrained derivative-free optimiza-
tion (CDFO) and draw a connection between CDFO and
mixed integer nonlinear programming (MINLP).

In the field of optimization, surrogate models can be30

directly integrated into the optimization routine. The SO-
MI framework developed by Müller et al. (2013) is used for
solving expensive MINLP problems. Similarly, the ARG-
ONAUT algorithm developed by Boukouvala and Floudas
(2017) incorporates grey-box surrogate modelling and cou-35

ples it with global optimization for nonlinear problems. It
was further improved through introduction of parallel com-
puting for sampling and applied to both optimization of
energy systems (Beykal et al., 2018a) and oil-field opera-
tion (Beykal et al., 2018b). Kieslich et al. (2018) utilized40

Smolyak (sparse) grids and combined them with Cheby-
shev polynomials for the optimization of black-box func-
tions. Their approach combines surrogate model genera-
tion and optimization and utilizes bound refinement for
improved accuracy.45

The performance of surrogate models is influenced by
two factors. First, the chosen basis functions for the surro-
gate model affect the achievable accuracy of the surrogate
model to represent the nonlinear response surface. Com-
mon basis functions include B-splines (Grimstad et al.,50

2015), Kriging models (Krige, 1951; Caballero and Gross-
mann, 2008; Quirante and Caballero, 2016; Eason and
Biegler, 2016), individual chosen basis function in the ALAMO
approach (Cozad et al., 2014, 2015; Wilson and Sahini-
dis, 2017), and artificial neural networks (Eason and Cre-55

maschi, 2014). Davis et al. (2017) provide an overview of
the different methods and compare their performance on
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Abbreviations
PLSR Partial least squares regression
RMSE Root-mean-squared error

Variables
∆W Difference of the significant weights
nadd Number of additional sampling points
nini Number of initial sampling points
nf Number of sampling steps for averaging
np Number of sampling points
ns Number of significant latent variables
nu Number of independent variables
ny Number of dependent variables
U Sample set
U′ Sample set in latent variables
s Sample standard deviation
W Weights from PLSR
WS Significant weights from PLSR
wi Weight of latent variable i from PLSR
Y Response set

Greek variables
β Threshold for significant latent variables, see (8)
γ Threshold for termination of sampling, see (10)
ε Model fit error with surrogate model, see (15)

Superscripts
k Iteration in the sampling algorithm

Subscripts
i Index of latent variable i
j Index of dependent variable j
m Index of the validation space

47 challenge functions.
The sampling method is the second major influence on

the performance of the surrogate model. In addition to the60

fitting of the surrogate model, the sampling of points from
the detailed model is the main computational cost. Hence,
the aim of sampling is to sample as few points as possi-
ble while achieving satisfactory accuracy of the surrogate
model. The overall concept is called design of computer65

experiments. Garud et al. (2017b) provide an extensive
review of the different sampling approaches. They can
be differentiated between 1. predefined (static) 2. incre-
mental, and 3. adaptive sampling. In the first sampling
method, the sampling points are generated and sampled70

in one iteration. In the second sampling method, points
are added incrementally and surrogate models are usually
fitted in each iteration step until satisfactory performance
is achieved. The third sampling methods use the surrogate
model fit to also decide on placement of the new sampling75

points.
Predefined (static) sampling is the simplest approach.

Monte Carlo sampling (Metropolis and Ulam, 1949) is an
early method based on pseudo-random numbers. The key

idea of Monte Carlo sampling is that the randomness in80

sampling will result in space filling. This is however not
guaranteed and may require a large number of sampling
points np.

Hence, space-filling methods are frequently considered
instead. The simplest space-filling method is regular grid
sampling. It is applied for surrogate modeling (Grimstad
et al., 2016), but it has an exponential increase in sampling
points,

np = nnu
g (1)

where ng is the number of points per dimension in the
regular grid. Therefore it is only useful for a small number85

of independent variables nu.
Several other methods have been developed to over-

come this curse of dimensionality. Latin hypercube sam-
pling (LHS) (McKay et al., 1979) is probably the most pop-
ular method today. It is applied by e.g. Ochoa-Estopier90

et al. (2014) for a heat-integrated crude oil distillation sys-
tem for nu = 10 and np = 3000 which corresponds to
ng = 2.3 in a regular grid. LHS may, however, not explore
the whole space as shown for a simple 2-dimensional case
study by Garud et al. (2017b).95

Independent of the chosen sampling method, static ap-
proaches have in addition the inherent problem of select-
ing how many points to sample. Another approach for
overcoming the curse of dimensionality are sparse grids.
Sparse grids, as applied by Kieslich et al. (2018) for surrogate-100

based optimization, reduce the the number of sampling
points to ng log (ng)

nu−1. Bungartz and Griebel (2004)
give an extensive review of sparse grids whereas Pflüger
et al. (2010) extend the concepts to high dimensional data.
As it is not known a-priori how many sample points are105

needed for a desired surrogate model accuracy, both under-
and oversampling can occur. Especially oversampling can
result in increased computational cost due to the sampling
of unnecessary points.

The problem with oversampling can be alleviated by110

incremental sampling. Nuchitprasittichai and Cremaschi
(2013) use such an incremental approach based on LHS.
Surrogate models are fitted after each additional sampling
step and the procedure is stopped upon reaching a termi-
nation criterion based on boots trapping. Quirante and115

Caballero (2016) use the maxmin approach in which the
points are placed so that the minimum distance between
sampling points is maximized. Depending on the perfor-
mance of the surrogate model, more points are sampled,
again using the maxmin approach.120

Adaptive sampling methods were developed as an im-
provement to incremental approaches. They are generally
based on two concepts, exploration and exploitation (Garud
et al., 2017b). The former tries to achieve point place-
ment in regions which are poorly represented in the sam-125

pling space. This is similar to the incremental approaches.
However, adaptive approaches utilize the surrogate fit for
identifying highly nonlinear regions. Correspondingly, new
points are placed in these nonlinear regions. The smart
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sampling algorithm developed by Garud and co-workers130

is one of the adaptive sampling methods (Garud et al.,
2017a, 2018). Through the application of two metrics, one
for exploitation and one for exploration, they identify new
optimal points. Cozad et al. (2014) developed a combined
surrogate model fitting and sampling algorithm which aims135

at sampling points which have a maximum error with the
surrogate model. The resulting surrogate models have a
simple structure allowing an easy calculation of deriva-
tives. Eason and Cremaschi (2014) combined space filling
through incremental LHS with exploitation through jack-140

knifing.
The need for repeated fitting of a surrogate model in

both incremental and adaptive approaches can be compu-
tationally expensive. The development of a termination
criterion for incremental sampling without the need of fit-145

ting a surrogate model is attractive, and is the focus of
this paper. One possible approach is to apply partial least
squares regression (PLSR), which has a very low compu-
tational cost, and use this as a termination criterion.

PLSR is a method from chemometrics, developed for150

the analysis of high-dimensional data. It was previously
applied in the calculation of surrogate models (Straus and
Skogestad, 2017a,b) to reduce the number of independent
variables nu in the fitting through the introduction of la-
tent variables. The new latent variables u′ were calculated155

using the weights W given by PLSR. In this paper, we
use this information instead as a termination criterion for
sampling, without the need to fit a surrogate model.

This paper is structured as follows; Section 2 first ex-
plains the main properties of partial least squares regres-160

sion (PLSR). Section 3 describes the procedure for sam-
pling for surrogate model generation without the neces-
sity of fitting a surrogate model in each iteration. Sec-
tion 4 illustrates the steps in the procedure using a simple
pipe model as motivating example. Section 5 applies this165

method to two case studies, the reaction and the separa-
tion sections of a simplified ammonia synthesis loop. These
two submodels are then combined with the original syn-
thesis gas makeup section for the respective submodels and
evaluated in comparison to the original model. Section 6170

then discusses the properties of the proposed method.

2. Background - partial least squares regression

Partial least squares regression (PLSR) is a linear re-
gression tool widely used in chemometrics (e.g. Wold et al.
(2001)). It also has many other application, for example in175

the analysis of high-dimensional genomic data (Boulesteix
and Strimmer, 2007). In many applications, the number
of independent variables nu, e.g. spectroscopy frequen-
cies and genes, exceed the number of samples np, which
results in problems with classical multivariate regression180

models. Furthermore, problems may arise in the multivari-
ate regression if independent variables are noisy or strongly
correlated. A detailed review of PLSR can be found in
(Boulesteix and Strimmer, 2007) and (Wold et al., 2001).

The former explains various algorithms for the calculation185

of the latent variables.
The aim of PLSR is a variable reduction in the inde-

pendent variables resulting in new latent variables. PLS
may also mean projection to latent structures (Wold et al.,
2001). PLSR is similar to principal component regression
(PCR) (e.g. Martens (2001)). However, in contrast to
PCR, it considers in the calculation of the latent variables
their impact on the dependent variables. The variable re-
duction is given through the transformation of the original
independent variable space U ∈ Rnp×nu into a space of nc
latent variables U′ ∈ Rnp×nc .

U′ = UW (2)

where W ∈ Rnu×nc . In PLSR, W is calculated to max-
imize the covariance between U′ and the dependent vari-
able space Y′ ∈ Rnp×nc .

Several algorithms exist for computing W. An overview
is given by Boulesteix and Strimmer (2007). In this pa-
per, we use the Statistically Inspired Modification of PLS
algorithm (SIMPLS) (de Jong, 1993), which obtains the
weights for each component i = 1, . . . , nc sequentially ac-
cording to

wi = arg max
w

wTUTYYTUw (3)

with the following constraints

wT
i wi = 1

wT
i U

TUwj = 0 ∀j = 1, . . . , i− 1
(4)

wi denotes the columns of the weight matrix W. It gives190

the coefficients of the original variables in the calculation
of the new latent variables. The first constraint normal-
izes the weights, whereas the second constraint results in
orthogonality of the latent variables.

Depending on the implemented algorithm (e.g. plsregress
in MATLAB and simpls in R (Boulesteix and Strimmer,
2007)), u′i corresponding to a column of U′ may have a
length of 1, i.e.

u′i
T
u′i = 1 (5)

This is contrary to the constraints (4). The proposed195

method however utilizes weights wi with unit length. Hence,
it requires the transformation of the weights wi to have
unit length.

PLSR is sensitive to scaling (Wold et al., 1983). The
standard score gives equal variance for each independent
variable and is given by

Uscaled = (U− µU) ◦ σ−1U (6)

The operator ◦ corresponds to the Schur product which
is element-wise multiplication. µU is the mean value and200

σU the standard deviation in the matrix U with respect
to each of the independent variables u. This scaling was
found to improve the performance when PLSR is used
for independent variable reduction (Straus and Skogestad,
2017b) and will be applied in the sampling procedure as205

well.
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3. Proposed sampling procedure utilizing PLSR

The idea is to compute the weight matrix W after each
sampling, or after a block of nadd samplings, and consider
the convergence of Wk. This may be done by monitoring
the difference

∆Wk = Wk −Wk−1 (7)

at iteration k. The norm,
∥∥∆Wk

∥∥, can then be utilized
as termination criterion for the sampling procedure. How-
ever, Wk should only include the weights corresponding
to the significant latent variables

Wk
s =

[
wk

1 · · · wk
ns

]
(8)

where ns is the number of significant weights as defined
by the threshold β. The first omitted weight vector wk

ns+1

explains less than β % of the variance of the dependent210

variable y.
The initialization of the procedure consists of sam-

pling nini points. The sampling of the initial points can
be performed using any method, e.g. Latin hypercube
sampling (McKay et al., 1979) or Sobol sampling (Sobol,
1967). PLSR is then applied to calculate the initial weights
W1

s . In the subsequent iterative procedure, nadd points are
sampled at each iteration step k. This corresponds to a
so-called arithmetic sampling, as defined by Provost et al.
(1999), and can be written as

np(k) = nini + k · nadd (9)

Similar to the initially sampled points, any sampling method
can be used for the additional sampling points for the in-
cremental sampling. The additional points nadd should
however be sampled using the same sampling method as215

the initial sampling points nini. When using Latin hyper-
cube sampling, it is possible to either augment the existing
Latin hypercube, that is considering the previous points so
that the new sampling set is in itself a Latin hypercube,
or sample nadd new additional sampling points which form220

a Latin hypercube. If the original Latin hypercube is not
augmented, then the resulting set is not necessarily a Latin
hypercube.

We use the Frobenius norm, and monitor
∥∥∆Wk

s

∥∥
F

as
the incremental sampling progresses. The reason behind
choosing the Frobenius norm is discussed in the discussion
in Section 6. Although we found that the norm eventually
converges to a fixed value, it can temporarily increase and
decrease. This noise may terminate the procedure before
reaching a satisfactory accuracy. To avoid a preemptive
termination, we propose to average the norm of the last
nf steps resulting in the calculation of the averaged norm

∥∥∆Wk
s

∥∥av
F

=

k∑
l=k−nf+1

∥∥∆Wl
s

∥∥
F

nf
(10)

Algorithm 1 Sampling procedure.

1: For a given subprocess g with independent variables
u ∈ Rnu and dependent variables y ∈ Rny , define
upper and lower bounds for the independent variables.

2: Sample nini initial points.
3: Select the threshold β and calculate W1

s according to
Eq. (8).

4: Initialize with k = 1.
5: while

∥∥∆Wk
s

∥∥av
F
> γ do

6: Sample nadd additional points.
7: Scale the sampled space using the standard

score (6).
8: Perform PLS regression.
9: Obtain the number of significant weights ns us-

ing the selected β and calculate ∆Wk
s according

to Eqs. (7) and (8).

10: Calculate the averaged norm
∥∥∆Wk

s

∥∥av
F

in Eq. (10).
11: Set the iteration number k = k + 1.
12: end while
13: Fit the surrogate models.

The averaged norm is compared to a threshold γ and, if
it is below γ, the iterative procedure is stopped and a225

surrogate model is fitted to the sampling space U.
It is important to mention that the surrogate models

are not fitted to the set of latent variables U′ obtained
via PLSR but to the set of original independent variables
U. Hence, the variable transformation is only used in the230

sampling itself for the calculation of the termination cri-
terion and not in the surrogate model fitting or the appli-
cation of the surrogate models. The advantage of using
the independent variable transformation is then given by
the calculation of a termination criteria without the neces-235

sity of fitting a nonlinear surrogate model. Furthermore,
the number of significant weights does not influence the
used sampling points for fitting of the surrogate model.
All sampled points are used for the fitting of the surrogate
model.240

Algorithm 1 summarizes the procedure. In the case
of multiple dependent variables y, it is either possible to
perform PLS regression for all dependent variables inde-
pendently or simultaneously. The former is computation-
ally more expensive, albeit only marginally. If the latent245

variables are used to fit the surrogate model, we found
earlier that it is best to perform PLS regression indepen-
dently (Straus and Skogestad, 2017b). However, here we
are looking at the differences and do not use the latent
variables for the fit of the surrogate model. We therefore250

use the simultaneous approach. This will be further dis-
cussed in the case studies in Section 5.

4. Description of the sampling procedure

4.1. Motivating example - pipe model

The sampling procedure is now explained in detail us-
ing the pressure drop over a an isothermal pipe as a moti-
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vating example. The independent variables u are the inlet
pressure pin, the temperature T , and the molar flows ṅi.
The dependent variable y is the pressure drop. The model
is

0 =
(
p2in − p2out

)
− 4f

L

D

RTM

A2
ṅ2 (11)

This model allows for changing the number of independent
variables nu through changing the number of gas compo-
nents ngas in the stream. These influence the average mo-
lar mass

M =

∑ngas

i=1 Miṅi
ṅ

(12)

and the total flow

ṅ =

ngas∑
i=1

ṅi (13)

The investigated case has 5 gas components (i = H2, N2,255

NH3, Ar, and CH4) resulting in nu = 7. One surro-
gate model has to be fitted for the pressure difference
y = pin − pout (ny = 1). The points were sampled us-

ing u =
[
pin T ṅT

]T
. We found previously (Straus

and Skogestad, 2017a) that it is beneficial to use intensive260

variables for PLS regression. Hence, molar fractions xi
are used as independent variables in the fitting of the sur-
rogate model and calculation of the PLSR weights. The
data of the pipe are given in Table 1. The nominal value
and the bounds (lower and upper bound) of the sampling265

domain can be found in Table 2. Table 3 gives the param-
eters for the sampling procedure (Algorithm 1), including
the parameters for choosing significant weights (β = 2 %)
and for terminating the sampling (γ = 0.05).

4.2. Evaluation of the norm of the weights270

We only include the significant weights wi in Ws, see
Eq. (8). To understand this better, Figure 1 shows the
convergence of all the seven weights wi for an increasing
sampling space np(k). Note the log scale for the norm.
For illustration purposes, we oversample using 5000 points275

sampled as a Latin hypercube. The 5000 sample points
were obtained by sampling nini = 25 sample points and
subsequently augmenting the Latin hypercube by nadd = 5
sampling points, that is, we obtain a new Latin hypercube
in each iteration. PLSR was performed every 5 sampling280

points (nadd = 5) after initialization with 25 sampling
points. The last 5 calculated norms were used for aver-
aging in (10) (nf = 5). The colour code shows the three
significant weights, w1, w2, and w3, (black) and the four
insignificant weights with an explained variance less than285

β = 2 % (red). As we can see, all weights are converging.
However, it is possible to see a clear difference between

Table 1: Parameters for the pipe example.

Parameter L/D A f
[-] [m2] [-]

Value 8.8× 104 0.2 0.003

the significant and insignificant weights. w1 and w2 are
similar in convergence and hard to distinguish. The third
significant weight w3 converges at a slightly slower rate290

and has a value in-between the significant and insignifi-
cant weights. The insignificant weights converge at a much
slower rate. Especially w5, w6, and w7 experience fre-
quent changes in the norm resulting in noisy bumps, even
with the applied filtering. This is especially pronounced295

in the close-up of the first 1000 point in Figure 1 b).
It has to be noted that the number of significant weights

ns (with β ≥ 2 %) decreases with increasing np in this
case study. Initially, w4,k explains between 2 % and 4 % of
the variance in y, so ns = 4. However, it settles to around300

0.5 % after around 300 sampled points, giving ns = 3. As
a result, the number of significant weights ns can change
in the course of the sampling.

Figure 2 shows how the important combined averaged
norm of the change of significant weights

∥∥∆Wk
∥∥av
F

de-305

velops for the first 1000 sampling points, but here using
a linear scale for the norm. As we can see, the reduction
in the norm is especially pronounced in the first 100 to
150 sampling points and is less pronounced with increas-
ing sampling points. This threshold γ = 0.05 is reached310

after 230 sampling points. The norm of the change of the
combined significant weights,

∥∥∆Wk
s

∥∥av
F

, is less susceptible
to the noise in the calculation compared to the individual
weights shown in Figure 1. Hence, it is not necessary to
use a large nf for averaging.315

4.3. Error of the surrogate model

We found in Figure 2 that the significant weights Wk
s

converge after about 200-300 sampling points. How does
this reduction correspond to the accuracy of a fitted sur-
rogate model?320

To this end, we investigate the correlation between the
norm of the difference,

∥∥∆Wk
s

∥∥av
F

, and the accuracy of
the surrogate model. The surrogate model structure is
a 2-layer cascade forward neural network with 5 hidden
neurons in each layer. The surrogate models were fitted325

after each 5 additional points starting at initially 25 points.
After 100 sampled points, the interval is increased to ev-
ery 25 points and to every 100 points after 1000 sampled
points. Each time, 10 neural networks were fitted to aver-

Table 2: Upper and lower bounds and the nominal value of the
independent variables (u) (pipe example).

Variable Unit Nominal Lower Upper
Value Bound Bound

pin [bar] 23 27 31
T [◦C] 0 10 20
ṅH2,in [mol/s] 700 1400 2100
ṅN2,in [mol/s] 230 460 690
ṅNH3,in [mol/s] 50 100 150
ṅAr,in [mol/s] 10 20 30
ṅCH4,in [mol/s] 10 20 30
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Figure 1: Development of the norm of the change of a) all individual weights,
∣∣∣∣∆wk

i

∣∣∣∣av
F

for i = 1 . . . nu (significant weights w1, w2, and w3

in black, insignificant weights in red), and b) a close-up of the insignificant weights,
∣∣∣∣∆wk

i

∣∣∣∣av
F

for i = ns + 1 . . . nu for the first 1000 sampling
points (pipe example).

Figure 2: Development of the averaged norm of the change in the
combined significant weights,

∣∣∣∣∆Wk
s

∣∣∣∣av
F

(pipe example).

age the randomness in the initial seed to the neural net-330

works. The dependent variable of the surrogate model fit
(y = pin−pout) is then calculated as the average of the re-
sulting 10 neural networks. The validation space is given
by 104 randomly sampled points. Note that the neural
networks were not fitted to the latent variables u′, but335

to the initial independent variables u. This is different
to the results reported in (Straus and Skogestad, 2017a)
and (Straus and Skogestad, 2017b).

Figure 3 shows the mean absolute error |ε| of the pres-
sure difference y = pin − pout as a function of

∥∥∆Wk
s

∥∥av
F

.
Here, ε is the difference between the exact value for y and

Table 3: Tuning parameters of the proposed sampling procedure (all
examples and case studies).

Parameter nini nadd nf β γ
Value 25 5 5 2 % nadd × 10−2

Figure 3: Mean absolute error of the surrogate model |ε| as a func-
tion of the averaged Frobenius norm of the change in the combined
significant weights (pipe example).

the one obtained from the surrogate model (i.e. the neu-
ral network). The threshold γ = 0.05 used in the pre-
vious section is also indicated. From this figure, where
we used log-scale for |ε|, we see that sampling more than
1000 points does not reduce the error further. Increasing
the sampling space above np ≈ 300− 500 only marginally
reduces the error in the fitted neural network. This cor-
responds to the concept of learning curves as described
by Provost et al. (1999), which says that an increase in
sampling points does not improve the accuracy of the sur-
rogate model. The threshold γ corresponds to the point
in which the decrease in the averaged norm

∥∥∆Wk
s

∥∥av
F

in
Figure 2 flattens and is at∥∥∆Wk

s

∥∥av
F
≈ 0.02-0.05 (14)

Since we want to avoid the fitting of the surrogate model
(neural networks) during the sampling, this can be used340

as the termination criterion in the sampling for surrogate

6



model generation, that is, γ should be between 0.02 and
0.05.

4.4. Results of the applied sampling procedure

The above results were based on an augmented, over-345

sampled Latin hypercube with 5000 points. The appli-
cation of the method with the tuning parameters given
in Table 3 (γ = 0.05) and the proposed incremental Latin
hypercube sampling results in a termination after 210 sam-
pled points. This is similar to the previous oversampling350

shown in Figure 2, where the threshold γ is crossed after
230 sampling points. The resulting surrogate model shows
a maximum absolute error |ε|max = 0.045 bar and an av-
erage absolute error ε̄ = 5 × 10−4 bar. The 3 significant
weights explain 94.60 % of the variance in the dependent355

variable y = pin − pout. All 7 weights explain in total
only 94.92 % of the variance in the dependent variable
due to the nonlinearity of the pipe model. Consequently,
the 4 insignificant weights explain combined only 0.32 %
of the variance in y. The relatively high maximum abso-360

lute error is caused by neglecting the corner points of the
independent variables, i.e. the points given by construct-
ing a 2-point regular grid using the bounds in Table 2.
Hence, the surrogate model is extrapolating close to the
corners. With nu = 7, it would be possible to incorpo-365

rate the corner points as they only correspond to 27 = 128
points. However, if nu > 10, the incorporation of the cor-
ner points would require a large number of sampled points.
In this situation, it is best to apply the surrogate model
first. If necessary, it is then possible to add only the corner370

points in which the subsequent application of the surrogate
model is moving. This reduces the points which one has
to sample.

5. Ammonia synthesis loop case studies

So far, the method was applied to an example with375

ny = 1. Now, two additional case studies are used for
testing the sampling procedure with ny > 1 and to eval-
uate whether similar conclusion can be drawn. Both case
studies are part of the ammonia synthesis loop shown in
Figure 4. The first case study is the reaction section380

(marked red), as previously described in Straus and Sko-
gestad (2017a,b). The second case study is the separation
section (marked green) of the same synthesis loop.

The error of the dependent variable j is given by

εj = ysurr,j − yval,j (15)

in which yval,j corresponds to the exact values from the
detailed model and ysurr,j to the value given by the surro-
gate model. The maximum absolute error |ε|max and the
root-mean-squared error (RMSE)

RMSEj =

∑nval

m=1 (ysurr,j,m − yval,j,m)
2

nval
(16)
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Figure 4: Ammonia synthesis loop with the submodels Reaction Sec-
tion and Separation Section.

are used to assess the performance of the surrogate models.
In addition, the relative error is calculated using the range
of the dependent variables of the validation space, yval,
i.e.

εj,rel =
εj

maxyval,j −minyval,j
(17)

5.1. Case study 1: Reaction section of an ammonia syn-
thesis loop385

The reaction section of the ammonia synthesis loop was
previously applied in the introduction of new latent vari-
ables u′ (Straus and Skogestad, 2017a,b). It is intercon-
nected to the compressor train and the separation section
through the overall mass recycle. It consists of two consec-390

utive reactor beds with interstage heat integration (HEx3).
Furthermore, the reaction heat is used for the generation
of high pressure stream (HEx5) and heating the inlet flow
to the first bed (HEx2 and HEx4). It is shown in Figure 4.

5.1.1. Model description395

The model has 10 independent variables (u): the in-
let pressure pin, the inlet temperature Tin, 5 inlet molar
flows ṅi,in (H2, N2, NH3, Ar, and CH4), 2 split ratios,
and the outlet temperature of the steam generation heat
exchanger 5, THEx5,out. There are 4 dependent variables
(y): the pressure drop ∆p [mbar], the temperature change
∆T [mK], the extent of reaction ξ̇ [mol/s], and the duty
of heat exchanger 5, QHEx5 [kW]. We use a “grey-box”
model by introducing exact mass balances using ξ̇ and the
stoichometric coefficients νi

ṅi,out = ṅi,in + νiξ̇ (18)

In our previous work, a two-point regular grid and 5000
points defining a Latin hypercube were used (Straus and
Skogestad, 2017a,b). This resulted in reasonable errors
for the dependent variables ∆p, ∆T , and ξ̇ through the
introduction of latent variables u′. We want to see if we400
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can use fewer points, even with the heat duty of the heat
exchanger (QHEx5) as a new dependent variable. A two-
point regular grid corresponds to 210 = 1024 sampling
points, but we want to see if we can terminate the sampling
with even fewer points.405

The upper and lower bounds of the parameters in the
sampling domain can be found in Table 4. The feed mole
fractions xi and the total molar flow ṅin are used as in-
dependent variables in the surrogate model generation and
application of PLSR instead of the molar flows ṅi,in (Straus410

and Skogestad, 2017a). This requires omitting the mole
fraction of hydrogen. Furthermore, the molar ratio H2/N2

is used instead of the mole fraction of nitrogen as indepen-
dent variable in surrogate model fitting.

The surrogate model structure is a two-layer cascade415

forward neural network with 5 hidden neurons in each
layer. The validation space consists of nval = 104 ran-
domly sampled points.

5.1.2. Results

The data for the proposed sampling procedure are the420

same as in the pipe case study, see Table 3. PLSR was
applied to all dependent variables simultaneously. With
augmented Latin hypercube sampling and γ = 0.05, the
proposed sampling procedure terminated after 370 sam-
pled points. Figure 5 shows the evaluation of the norm425

of the significant weights. Similar to the pipe section, we
can observe a steep decrease in

∥∥∆Wk
s

∥∥av
F

for the first 100
sample points. This decrease is reduced with an increasing
sampling space. We have ns = 5 weights in W which ex-
plain more than 99.06 % of the variance in the dependent430

variables y after 370 sampling points. The first insignifi-
cant weight w6 explains only 0.19 % of the variance in y.
During the sampling procedure, ns changed twice in the
first 100 points but remained constant at ns = 5 from 300
points onwards.435

Repeating the sampling procedure 20 times, results in
a mean number of sampling points np = 393 with a stan-
dard deviation of s = 49.0. This shows that the proposed
sampling procedure is consistent in its termination. The

Table 4: Upper and lower bounds of the independent variables (u)
(case study 1).

Variable Unit Lower Upper
Bound Bound

pin [bar] −10 +10
T [K] −20 +20
ṅH2,in [%] −20 +20
ṅH2,in

ṅN2,in
[%] −10 +10

ṅNH3,in [%] −20 +20
ṅAr,in [%] −20 +20
ṅCH4,in [%] −20 +20
THEx5,out [K] −20 +20
Split Ratio 1 [pp] −5 +5
Split Ratio 2 [pp] −20 +20

Figure 5: Development of the Frobenius norm
∣∣∣∣∆Wk

s

∣∣∣∣ as a function
of the number of sampling points with γ = 0.05 (case study 1).

variation in the number of sampling points is caused by440

the randomness in the new sampling points. The perfor-
mance measures |εj |max and RMSEj for the four depen-
dent variables (y) can be found in Table 5. Again, the
corner points were not sampled. This results in extrapola-
tion for certain values of the independent variables y. The445

maximum absolute normalized error |εj,rel|max is 0.08 %,

0.22 %, 0.28 %, and 0.28 % for ∆p, ∆T , ξ̇, and QHEx5

respectively using augmented Latin hypercube sampling.
In addition to Latin hypercube sampling, Monte Carlo

and Sobol sampling were used. Monte Carlo sampling450

(MC) terminated after np = 390, whereas Sobol sampling
terminated after np = 335 which is similar to Latin hyper-
cube sampling (np = 370). We also compared the resulting
fit in the dependent variables (Table 5). As we can see, the
errors have the same order of magnitude. Differences in455

the surrogate model fit can be caused by the randomness
in neural network generation as the initial seed for neu-
ral network generation was not common for all sampling
schemes.

Table 5: Comparison of model fit errors with Latin hypercube (LHS),
Monte Carlo (MC), and Sobol sampling (case study 1).

y Unit ε Design |εj |max RMSEj

∆p [mbar]
LHS 7.3 0.5
MC 2.8 0.3

Sobol 6.4 0.9

∆T [mK]
LHS 12.5 0.9
MC 16.4 1.5

Sobol 11.8 1.1

ξ̇ [mol/s]
LHS 0.78 0.09
MC 0.38 0.03

Sobol 0.84 0.07

QHEx5 [kW]
LHS 87.8 6.5
MC 72.8 7.8

Sobol 182.6 14.3

8



Figure 6: Mean absolute error for y3 and y4 of the surrogate model |ε|
as function of the averaged Frobenius norm of the significant weights
Wk

s (case study 1).

The chosen threshold

γ = nadd × 10−2 = 0.05 (19)

was based on the threshold in the pipe case study. Hence,460

we want to analyze the the correlation of
∥∥∆Wk

s

∥∥av
F

with
the surrogate model fit. 2000 points were sampled using
augmented Latin hypercube sampling and were used in
the following analysis. 10 neural networks were fitted ev-
ery 5 points from 25 to 100 points, every 25 points to 1000465

points and subsequently every 100 points. The used value
of the dependent variable in the calculation of the error
is the average value of these 10 values. PLSR was ap-
plied to all dependent variables simultaneously. Figure 6
shows the mean absolute error for the dependent variables470

ξ̇ and QHEx5 as a function of
∥∥∆Wk

s

∥∥av
F

. The two depen-
dent variables correspond to the variables with the highest
maximum absolute relative error according to Eq. (17). If
we compare Figure 6 (this case study) to Figure 3 (pipe
model), we can directly see that the correlation between475

|ε| and
∥∥∆Wk

s

∥∥av
F

is similar. In both cases, increasing the
number of sampling points does not improve the fit from
a certain point onward and gives a similar threshold γ.

5.2. Case study 2: Separation section of an ammonia syn-
thesis loop480

The task of the separation section of the ammonia syn-
thesis loop is to separate ammonia from the synthesis gas.
This is achieved by several sequential and parallel heat
exchangers followed by a separator. A heat exchanger us-
ing water as coolant (HEx6) cools the gas stream leav-485

ing the reaction section before it is split into two parallel
heat exchanger trains. The first cooling train uses the gas
stream leaving the separator for heat integration (HEx7)
whereas the second cooling train uses liquid ammonia as
refrigerator in two separate heat exchangers (HEx8 and490

HEx9). The two streams are subsequently mixed and
cooled (HEx10) with liquid ammonia. Ammonia is then
separated in a separator in which the liquid stream is
considered as product stream and the gas stream is heat-
integrated with the first parallel heat exchanger (HEx7).495

5.2.1. Model description

HEx6 and HEx7 are modelled using the Number of
Transfer Units Method. HEx8, HEx9, and HEx10 are
heat exchangers with fixed outlet temperatures THEx8,out,
THEx9,out, and THEx10,out. The duties of the heat ex-500

changers are calculated using the mass enthalpy of the gas
streams as a function of the temperature, pressure, and
composition. The mass enthalpy was calculated using a
surrogate model based on cubic B-splines (Grimstad et al.,
2015). This surrogate model was fitted to points sampled505

in the commercial flowsheet simulator Aspen HYSYS. This
is a simplified approach, but rather accurate. The sep-
arator is calculating the vapour-liquid equilibrium using
Raoult’s law for NH3 and Henry’s law for the other gas
components (Alesandrini et al., 1972). It has to be noted510

that heat exchangers 8 and 9 are redundant in this model
structure as heat exchanger 10 is cooling the stream to a
fixed outlet temperature. However, in a real plant, the
cooling in heat exchangers 8,9, and 10 is achieved using an
ammonia refrigeration loop. The different heat exchangers515

correspond then to a liquid ammonia refrigerant at differ-
ent pressure levels.

The separation section has 13 independent variables
(u). These are the inlet pressure pin, the inlet tempera-
ture Tin, 5 molar flows ṅi,in (H2, N2, NH3, Ar, and CH4),
the inlet flow rate ṅH2O,in and temperature TH2O,in of the
cooling water in HEx6, 1 split ratio, and the outlet tem-
peratures of the heat exchangers THEx8,out, THEx9,out, and
THEx10,out. The 12 dependent variables (y) are the stream
variables of the two streams leaving the section (∆p, ∆T ,
and ṅi) corresponding to the product (subscript P ) and
the recycle (subscript R) stream, the temperature change
of the water stream in heat exchanger 6, ∆TH2O , and the
heat duties in the heat exchangers 8, 9, and 10 (QHEx8,
QHEx9, and QHEx10). Note, that the temperature differ-
ence between the liquid outlet stream and the feed stream
as dependent variable can be calculated using the two in-
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Table 6: Upper and lower bounds of the independent variables (u)
(case study 2).

Variable Unit Lower Upper
Bound Bound

pin [bar] −10 +10
T [K] −25 +25
ṅH2,in [%] −15 +15
ṅH2,in

ṅN2,in
[%] −10 +10

ṅNH3,in [%] −20 +20
ṅAr,in [%] −20 +20
ṅCH4,in [%] −20 +20
ṅH2O,in [%] −20 +20
TH2O,in [K] −5 +5
THEx8,out [K] −4 +4
THEx9,out [K] −4 +4
THEx10,out [K] −8 +8
Split Ratio [pp] −5 +5

dependent variables Tin and THEx10,out as

∆TP = Tin − THEx10,out (20)

We proposed to use a “grey-box” modelling approach
where exact component mass balances are introduced to
avoid the creation or destruction of mass through the intro-
duction of surrogate models (Straus and Skogestad, 2017b).
This can be achieved through defining a separation factor
αi for each chemical component i:

ṅi,R = αiṅi,in (21)

ṅi,P = (1− αi) ṅi,in (22)

Consequently, 12 surrogate models have to be fitted. The
upper and lower bounds of the independent variables are
given in Table 6. The parameters used are the same as520

in the reaction section and for the pipe model (Table 3).
The surrogate model structure is a 2-layer cascade forward
neural network with 5 hidden neurons in each layer. The
validation space consists of nval = 104 randomly sampled
points.525

5.2.2. Results

We apply PLSR to all dependent variables y simulta-
neously because with ny = 12 it is computationally more
expensive to perform PLSR independently. With the se-
lected threshold γ = 0.05 and augmented Latin hypercube530

sampling, the method terminated after np = 625. With
the selected value β = 2 %, we find that ns = 5 significant
weights explain 90.81 % of the variance in the dependent
variables y. The first neglected insignificant weight w6

explains 1.59 % whereas w7 explains 1.30 % which is only535

slightly below β. Figure 7 shows the evaluation of the
averaged norm for the simultaneous approach.

The model fit measures, |εj |max and RMSEj are given
in Table 7. As the splitting factors for H2, N2, Ar, and
CH4 are all around 99 %, it is not useful to calculate the540

Figure 7: Development of the Frobenius norm
∣∣∣∣∆Wk

s

∣∣∣∣ as a function
of the number of sampling points with γ = 0.05 (case study 2).

error directly. Hence, their errors are calculated as the er-
ror in the recycle stream ṅi,R. The relative error according
to Eq. (17) results in a maximum absolute relative error
of around 0.1 % for the first 9 dependent variables in Ta-
ble 7. The last three variables (heat exchanger duties)545

have however a relative error of around 1 %. This can
be explained by the phase change occurring in the heat
exchangers through the condensation of ammonia. This
phase change is not captured perfectly using the surrogate
model approach. Applying the method 20 times gives an550

average number of sampling points of np = 639 and a
standard deviation s = 59.6. Similar to the reaction sec-
tion case study, Sobol and Monte Carlo sampling were also
tested. Monte Carlo sampling terminated after np = 660
whereas Sobol sampling required np = 585 which is simi-555

lar to the value np = 630 with Latin hypercube sampling.
We also compared the resulting model fit in the dependent
variables (Table 7). Again, the errors are of the same or-
der of magnitude. The differences depends mainly on the
seed of the neural network fitting.560

5.3. Combination of surrogate models for optimization

So far, we fitted individual surrogate models to the re-
action and separation section in two separate case studies.
The resulting validation errors of the resulting surrogate
models are small. However, in the real process the two565

models are combined using a recycle (Figure 4), but good
individual fits do not guarantee that the combined model
converges to the correct optimum. To study this, the reac-
tion and separation sections are combined with the mod-
els of the purge split and the compressor train to form570

the flowsheet in Figure 4 which has 9 operational degree
of freedom. The surrogate models for the dependent vari-
ables y are explicit. The introduction of a grey-box model
structure through the separation factors α and the rate
of extent of reaction ξ̇ guarantees mass consistency in the575

recycle system. The overall flowsheet is then given by a
nonlinear system of equations with fewer states than the
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Table 7: Comparison of model fit errors with Latin hypercube (LHS),
Monte Carlo (MC), and Sobol sampling (case study 2).

y Unit ε Design |εj |max RMSEj

∆pR [mbar]
LHS 2.23 0.21
MC 7.5 0.9

Sobol 30.3 0.33

∆TR [K]
LHS 0.17 0.02
MC 0.08 0.01

Sobol 0.12 0.01

∆pP [mbar]
LHS 6.9 0.7
MC 1.13 0.12

Sobol 1.6 0.09

∆TH2O,out [mK]
LHS 5.7 0.3
MC 4.32 0.3

Sobol 1.6 0.15

αH2 [mmol/s]
LHS 1.14 0.15
MC 2.60 0.32

Sobol 22.0 2.0

αN2 [mmol/s]
LHS 0.43 0.06
MC 0.07 0.01

Sobol 0.42 0.04

αNH3 [mmol/s]
LHS 115.4 13.5
MC 783.8 34.4

Sobol 409.0 38.1

αAr [mmol/s]
LHS 2.0 0.19
MC 0.21 0.02

Sobol 0.7 0.07

αCH4 [mmol/s]
LHS 0.62 0.06
MC 1.81 0.17

Sobol 0.45 0.05

QHEx8 [kW]
LHS 188 23.3
MC 284 36.6

Sobol 323 29.8

QHEx9 [kW]
LHS 71 8.1
MC 56 5.3

Sobol 99 7.1

QHEx10 [kW]
LHS 84 11.2
MC 122 13.8

Sobol 177 11.9

original model.
The economic cost function to minimize is

J =− pP ṅP − ppurgeṅPurge − pSQHEx5

+ pfeedṅfeed

+ pC (QComp1 +QComp2 +QComp3)

+ pHEx (QHEx8 +QHEx9 +QHEx10)

(23)

The prices for the feed, product, and purge stream as well
as the compressor duties are adopted from (Arajo and Sko-580

gestad, 2008) with pfeed = 0.704 $/kmol, pP = 3.4 $/kmol,
ppurge = 0.0112 $/kmol, and pC = 0.072 $/kWh. The
heat duty in heat exchanger 5 has a cost term of pS =
0.036 $/kWh whereas the cooling in heat exchangers 8,
9, and 10 has a cost term of pHEx = 0.027 $/kWh. The585

cooling water flow and temperature to heat exchangers 1

and 6 are considered to be at a fixed value.
The operational constraints are given by the bounds

in the decision variables for surrogate model generation.
In addition, there are bounds on the purge split ratio and590

the compressor speed. The duties of heat exchanger 8 and
9 may be different between the surrogate model and the
original model. This is caused by the redundancy of both
heat exchangers.

Both the original model and the surrogate-based model595

are subsequently optimized for a given feed. The results
are very similar. 8 degrees of freedom are at constrained
operation. The compressor speed is unconstrained and the
error with respect to the original model is 0.07 %. The re-
sulting relative error in the cost function is 0.3 %. hanging600

the initial values of the operational degrees of freedom does
not change the results.

The application of a different initial sampling design
does not have a large influence on the results of the opti-
mization. Using the surrogate models obtained via Sobol605

sampling and Monte Carlo sampling gave a similar small
error in the optimization results compared to the surrogate
models obtained via Latin hypercube sampling. All active
constraints are identified whereas the error in the com-
pressor speed with respect to the original model is given610

by 0.09 % and 0.07 % for Sobol and Monte Carlo sampling
respectively.

6. Discussion

6.1. Comparison with other methods

The proposed incremental sampling procedure does not615

require the fitting of a surrogate model. In this respect,
it differs from the ALAMO approach (Cozad et al., 2014),
the smart sampling algorithm (Garud et al., 2017a), and
the adaptive sampling approach of Eason and Cremaschi
(2014). One advantage with our approach is that the deci-620

sion about the surrogate model basis function is separated
from the sampling. This allows to choose the best basis
function based on the sampled space and does not require
that both steps are done by the same person/group. De-
pending on the detailed model, the number of independent625

variables nu, the number of dependent variables ny, and
the computational expense of fitting a surrogate model, it
can be furthermore advantageous to avoid fitting a sur-
rogate model at each iteration step. However, it is not
possible to draw a general conclusion as the applications630

vary.
Although the developed procedure results only in ng =

1.8 and ng = 1.6 points (see (1)) in a regular grid for the
reaction and separation section case studies respectively,
it can result in a larger number of sampling points com-635

pared to existing adaptive procedures as it does not fit a
surrogate model, and hence exploit, its fit. The question
remaining is how expensive it is to fit surrogate models
compared to sample additional points. If the number of
independent variables ny is large and solving the detailed640
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model is not very expensive, then it may be advantageous
to avoid the fitting of ny surrogate models at each sam-
pling step. Contrary, if ny is small and the computation
expense of sampling one point is large, then other adaptive
procedures could be preferable.645

6.2. Choice of tuning parameters

Several tuning parameters have to be chosen. The most
important tuning parameter is the threshold γ for termi-
nation. It is possible to continue the procedure by lowering
the threshold γ if one is not satisfied with the performance650

of the surrogate model. Hence, it may be good to start
with a high threshold to avoid oversampling. The results
of the three case studies indicate that a threshold of ap-
proximately γ = 0.05 works for several cases, where PLSR
is performed after every fifth sampled point.655

A second important tuning parameter is the threshold
β used to select the significant weights in Wk

s . Depending
on the definition of the independent variables, this thresh-
old may exclude the majority of the weights (Straus and
Skogestad, 2017a). For example, if molar flows are used660

as independent variables in the pipe case study, then only
1 weight is significant. On the other hand, using mole
fraction as independent variables results in the presented
3 significant weights. Furthermore, using a hard bound β
may result in frequent switching of ns. This results in large665

changes in the norm as illustrated for ∆Wk
s in Figure 7.

This was less significant in the presented case studies by
using the minimum value of ns of the last two steps. As an
alternative, it is possible to choose ns directly after sam-
pling a certain number of points instead of choosing the670

threshold β. In all case studies, ns did not change after
a certain number of sampled points, with

∥∥∆Wk
s

∥∥av
F

still
much larger than the threshold γ.

Other tuning parameters are the number of sampled
points in each iteration, nadd, and the past horizon nf675

for averaging the norm. It is advisable to have a small
value for nadd to avoid problems in the calculation of the
differences ∆Wk

s . However, if nadd is chosen too small,
it can be that the sampling space is not properly filled
if the original Latin hypercube is not augmented. Provost680

et al. (1999) proposed an alternative to the arithmetic sam-
pling approach. In this geometric approach, the number
of sampled points increases with increasing step number.
They showed that the computational load is reduced as
the termination criterion does not have to be evaluated as685

frequently. Applying this approach for the PLSR-based
termination criterion can however be problematic as the
procedure is relying on the difference in the weights . As
the calculation of the weights is not computationally ex-
pensive, at least if applied simultaneously, the arithmetic690

approach used in this paper seems reasonable.
The past horizon nf is important to remove problems

with oscillatory behaviour of the norm. Oversampling can
be the result if it is chosen too high. The value nf = 5
used in the case studies seems to be reasonable. It avoids695

Table 8: Simultaneous vs. individual application of PLSR.

Case Study Approach np s

1. Reaction
Individual 406 38.6

Simultaneous 393 49.0

2. Separation
Individual 646 91

Simultaneous 639 59.6

oversampling while preventing preemptive termination of
the sampling.

6.3. Simultaneous and individual application of PLSR

If ny > 1, one has to decide whether PLSR is applied
individually to each dependent variable yi or simultane-700

ously to all dependent variables. We used the simultaneous
approach in both case studies. The advantage of applying
PLSR individually is that it is possible to see which of the
dependent variables requires the most sampling points.

Both of the ammonia case studies were repeated 20705

times to see if there is a difference if PLSR is applied simul-
taneously or individually. The resulting average number
of sample points and standard deviations can be found in
Table 8. The difference in the average number of sampling
points is not significant in either case study. Hence, we710

conclude that is advantageous to apply PLSR simultane-
ously to all dependent variables as it reduces the compu-
tational load in calculating the weights.

6.4. Choice of norm

The choice of the norm for
∣∣∣∣∆Wk

s

∣∣∣∣ is in general not715

very important. It only has an influence on the defined
threshold. The 1-norm will correspond to the the 1-norm
of the weight wk

ns
as the difference is usually largest in the

last significant weight. The contribution from the other
weights wk

i with i < ns are then neglected. As a result,720

the termination threshold has to be higher than in the
case of other norms. The infinity-norm on the other hand
calculates the maximum absolute row sum. As the indi-
vidual weights wk

i are the columns of the matrix Wk
s , this

approach seems counter intuitive. The 2-norm and the725

Frobenius norm both incorporate all entries in the differ-
ence ∆Wk

s . The Frobenius norm was eventually chosen
due to the similarity of the Frobenius norm to the vector
2-norm and its performance in the application.

6.5. Design of experiment730

The termination criterion was applied to three different
design of experiment methods; Latin hypercube, Monte
Carlo and Sobol sampling. It is interesting to note that
the differences are small. One would expect that Sobol
and Latin hypercube sampling are superior to Monte Carlo735

sampling because of better space-filling properties (Garud
et al., 2017b), but somewhat surprisingly our results do
not show this.
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7. Conclusion

A new termination criterion for incremental sampling740

based on partial least squares regression was introduced.
It predicts when sufficient points are sampled. This ter-
mination criterion is independent of the surrogate model
basis functions and does not require the fitting of a surro-
gate model at each sampling step. This is advantageous if745

the fitting of the surrogate model is computationally ex-
pensive and/or the number of dependent variables, ny, is
large. Furthermore, it allows for the separation between
the sampling and surrogate model generation tasks. It can
however result in an increased number of sample points750

compared to the existing adaptive sampling methods, as
it does not utilize exploitation for the identification of new
sampling points. The two case studies showed that the ap-
plication of the termination criterion allows a reduction in
sampling points compared to predefined sampling. For the755

ammonia process, the combination of the surrogate models
with the compressor train and the mass recycle stream of
the original model resulted in very good results in the sub-
sequent optimization when compared to using the original
detailed model.760
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Pflüger, D., Peherstorfer, B., Bungartz, H.-J., 2010. Spatially adap-

13

http://github.com/bgrimstad/splinter
http://github.com/bgrimstad/splinter
http://github.com/bgrimstad/splinter


tive sparse grids for high-dimensional data-driven problems. Jour-
nal of Complexity 26 (5), 508 – 522, SI: HDA 2009.

Provost, F., Jensen, D., Oates, T., 1999. Efficient progressive sam-875

pling. In: Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’99.
ACM, New York, NY, USA, pp. 23–32.

Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R.,
Tucker, P. K., 2005. Surrogate-based analysis and optimization.880

Progress in Aerospace Sciences 41 (1), 1 – 28.
Quirante, N., Caballero, J. A., 2016. Large scale optimization of a

sour water stripping plant using surrogate models. Computers &
Chemical Engineering 92 (Supplement C), 143 – 162.

Sobol, I., 1967. On the distribution of points in a cube and the885

approximate evaluation of integrals. USSR Computational Math-
ematics and Mathematical Physics 7 (4), 86 – 112.

Straus, J., Skogestad, S., 2017a. Use of latent variables to reduce
the dimension of surrogate models. In: Espua, A., Graells, M.,
Puigjaner, L. (Eds.), 27th European Symposium on Computer890

Aided Process Engineering. Vol. 40 of Computer Aided Chemical
Engineering. Elsevier, pp. 445 – 450.

Straus, J., Skogestad, S., Jan 2017b. Variable reduction for surrogate
modelling. In: Proceedings of Foundations of Computer-Aided
Process Operations 2017, Tucson, AZ, USA, 8-12 Jan. 2017.895

Wilson, Z. T., Sahinidis, N. V., 2017. The ALAMO approach to
machine learning. Computers & Chemical Engineering 106, 785 –
795, ESCAPE-26.

Wold, S., Martens, H., Wold, H., 1983. The multivariate calibration
problem in chemistry solved by the PLS method. Springer Berlin900

Heidelberg, Berlin, Heidelberg, pp. 286–293.
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