
 

  

A feedback real-time optimization strategy applied to 
an evaporator process 
 
Dinesh Krishnamoorthya, Esmaeil Jahanshahib, and Sigurd Skogestadc,* 
 

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 
Trondheim, Norway 
E-mail: adinesh.krishnamoorthy@ntnu.no, besmaeil.jahanshahi@hotmail.com , cskoge@ntnu.no 
(Corresponding author) 
 
 
Abstract. This paper presents the application of a feedback based RTO using transient 
measurements for optimal operation of an evaporator process. The proposed method is 
based on estimating the steady-state gradient of the cost function by linearizing the nonlinear 
dynamic model around the current operating point. Any feedback control can then be used 
to control the estimated steady-state gradient to achieve optimal operation. Since the 
proposed method uses transient measurements, it avoids the steady-state wait time which is 
a huge limitation in the traditional steady-state RTO. Since the optimization is achieved via 
feedback, it does not require to solve numerical optimization problems. Hence it is 
computationally more efficient than dynamic RTO. Compared to self-optimizing control, 
the proposed method does not have any steady-state losses when operated far away from 
the nominal optimal point. Compared to model-free methods such as extremum seeking 
control, it is significantly faster and does not require external process excitation for steady-
state gradient estimation. The performance of the proposed method for the evaporator 
process is compared with traditional static RTO, dynamic RTO, hybrid RTO, self-
optimizing control and extremum seeing control. 
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1. Introduction 
Real-time optimization of chemical processes traditionally involves solving a steady-state optimization 
problem using rigorous steady-models of the process. Following any changes in the disturbance or the 
operating conditions, the optimization problem must be solved to re-compute the new optimal points. 
However, before the new optimal points can be recomputed, it is necessary to wait for the process to settle 
to a steady-state operating point. This steady-ate wait time is a fundamental limitation of the traditional steady-
state optimization of chemical processes [1]. Dynamic real-time optimization does not suffer from the steady-
state wait time. However, the computation cost is prohibitively expensive in many applications even with 
today's computing power. 
 
In order to address the steady-state wait time issue of the traditional static RTO and the computation cost of 
dynamic RTO, we recently proposed a hybrid RTO strategy, where the model adaptation is dine using 
dynamic models and the numerical optimization is solved using the corresponding steady-state model. The 
hybrid RTO approach thus requires the maintenance of both the static and the dynamic models. 
 
Recently, there has been an increasing interest in the so-called direct input adaptation methods, where optimal 
operation is achieved by means of feedback control. Self-optimizing control, extremum seeking control, 
NCO-tracking etc. are some well known approaches that belong to such a category. In self-optimizing control 
we control a combination of measurements to a constant setpoint such that the economic losses are 
minimized. However when the process is operated far from the nominal optimal region, this leads to large 
steady-state losses [2]. 
 
Model-free approaches such as extremum seeking control and NCO-tracking on the other hand are based 
on estimating the steady-state gradient directly from the measurements and controlling them to a constant 



 

setpoint of zero. However, the main disadvantage of these methods is that it has a very slow convergence to 
the optimum. In addition, these methods also require additional perturbation for accurate gradient estimation 
[3]. Extremum seeking like approaches are also known to provide unwanted deviations in the presence of 
abrupt disturbances as motivated by [4]. 
 
In this paper, we apply a recently developed feedback-based RTO approach for the evaporator process, which 
is based on converting the hybrid RTO into a feedback control problem. The proposed method is based on 
estimating the steady-state gradient of the cost function by linearizing the nonlinear dynamic model around 
the current operating point. The estimated steady-state gradient can then be controlled to a constant setpoint 
of zero. Since the proposed method uses nonlinear dynamic models, it can use transient measurements and 
hence avoid the issue of steady-state wait time. It also does not require any additional dither to estimate the 
steady-state gradient. 
 

2. Feedback RTO using steady-state gradient control 
Consider a nonlinear dynamic system of the form, 
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where xn
x , un

u , dn
d  and yn

y  are the states, inputs, disturbances and the measured 

outputs respectively. Note that the un control inputs considered here are the unconstrained degrees of 

freedom. In the proposed feedback RTO method, any state estimator such as an extended Kalman filter 
(EKF) [5] can be applied to estimate the states x of the system by using the measurements and the nonlinear 
dynamic model (1). 
 
Let the cost be modelled as,  

 ( , )J h x u  (2) 

with : x un n
h   . Note that the cost does not need to be measured in the proposed method. Using 

the updated states, the nonlinear model from the inputs to the cost can be linearized around the current  
operating point to get a local linear state-space model, given by (3) as described  in [6]. 
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where the system matrices A , B ,C  and D  are the Jacobians of the non-linear functions f , and h  from 

(1) and (3), evaluated around the current operating point, 
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The steady state gradient can then be obtained by setting 0x   to get, 

  1J CA uB D    (5) 

The estimate of the steady-state gradient around the current operating point is then given by, 
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since 
uJ J u   . 

To optimize the operation of the process, the estimated steady-state gradient is driven to a setpoint of ˆ 0uJ 

by using any feedback controller thus satisfying the necessary conditions of optimality [6]. 
It is important to note that by using a nonlinear state estimator and a dynamic model for estimating the 

steady-state gradient ˆuJ , we can use transient measurements, without the need to wait for steady-state, as in 

traditional RTO. The proposed method is schematically shown in Fig. 1. 



 

  

 
 
Fig. 1. Block diagram of the Feedback RTO approach 
 

3. Optimal operation of an evaporator process 
We now apply the proposed method on an evaporator process shown in Fig. 2 and compare it with the 
traditional static RTO (SRTO), dynamic RTO (DRTO) and the recently developed hybrid RTO (HRTO). In 
addition, the proposed method is also compared with two other direct-input adaptation methods, namely, 
self-optimizing control (SOC) and extremum seeing control (ESC). The purpose of the evaporator process 

is to increase the concentration of the dilute liquor by evaporating the feed solvent 1F while the liquor is 

circulated through the heat exchanger. The model is the same as the one used in [7]and for more detailed 
information on the model equations and the model parameters, the reader is referred to [7]. 

 
Fig. 2. Evaporator process  
 
The objective is to minimize the operation cost, and the optimization problem is formulated as, 
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There are four dynamic degrees of freedom, namely, 2F , 200P , 3F and 200F .At the optimal point, two of the 

inequality constraints are active, namely 2 35.5%X  and 100 400kPaP  . Therefore, these two active 

constraints are tightly regulated using PI controllers. The input 2F  is used to control 2X at a constant 



 

setpoint of 2 35.5%X  , and 
100P is an input itself which is maintained at a constant of 

100 400kPaP  . 

In addition, the separator level which does not have any steady-state effect is controlled by 3F . Therefore,  

200F  is the only remaining unconstrained degree of freedom that can be used for optimization. In other 

words, we only have one steady-state degree of freedom, i.e. 200u F . By using 200F  for control, we 

optimize 2P , thus optimizing the evaporator process. We assume there are four unmeasured disturbances 

 1 1 1 200d F X T T and the available measurements are  100 200 32y F F T F . 

 
As mentioned earlier, the proposed method uses a state estimator. In this work, we use an extended Kalman 
filter (EKF) for combined state and disturbance estimation by augmenting the unmeasured disturbances with 
the states, as described in [5]. The steady state gradient of the cost is then estimated according to (6). In this 
work, we use a PI controller to control the estimated gradient to a constant setpoint of zero. The process is 
simulated for a total simulation time of 10h with variations in the unmeasured disturbances as shown in Fig.3. 
The measurements are assumed to be available with a sampling rate of 1s. 

 
Fig. 3. Disturbance trajectories affecting the evaporator process.  
 
3.1. Comparison with optimization based approaches 
First, we compare the proposed method with the traditional steady state RTO (SRTO), where the 
disturbances are estimated using a static model of the system. The system is subject to disturbances as shown 
in Fig. 3. To use only the steady-state operating points, a steady-state detection (SSD) algorithm as described 
in [8] was used. The steady-state wait time due to the SSD is a fundamental limitation of the traditional SRTO 
and the plant is operated sub-optimally for significant periods before the model can be updated. 
 
Then we apply the hybrid RTO (HRTO) approach and dynamic RTO (DRTO) to the evaporator process 
using the same extended Kalman filter as the one used in the proposed feedback RTO approach. As 
mentioned earlier, the hybrid RTO approach uses the dynamic model and the EKF to update the model 
using the transient measurements, but uses the corresponding updated static model to solve a static numerical 
optimization problem. The only difference between the hybrid RTO and the proposed feedback RTO is that 
the hybrid RTO solves a numerical optimization problem, whereas in feedback RTO, optimization is 
achieved via feedback control. 
 
For the dynamic RTO, the updated dynamic model is directly used to solve a dynamic optimization problem 
with a prediction horizon of 30 min and a sampling time of 1s to compute the optimal input trajectory. As 
mentioned earlier, the main challenge with DRTO is the computation time. 
 
The performance of the proposed feedback RTO (red solid lines) is compared with the traditional static RTO 
(black dash-dotted lines), dynamic RTO (green dashed lines) and hybrid RTO (blue dashed lines) in Fig.4 

The cost function J is shown in Fig.4a along with the integrated loss in Fig.4b, which is given by the 
expression, 
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3.2. Comparison with self-optimizing control 
For comparison with self-optimizing control, null-space method was used to compute the optimal selection 

matrix. The resulting self-optimizing variable 
2 100 201 30.002 0.0976 0.0081 0.0125c F F T F     is 

controlled to a constant setpoint of 0.9951sc   , as described in [7]. The simulations were performed with  

  
(a) (b) 

Fig. 4. Comparison of the proposed method with traditional static RTO, dynamic RTO and hybrid RTO 
(a)Profit (b) Integrated Loss given by (8) 
 
the same disturbances as in the previous case. The performance of the proposed feedback RTO (red solid 
lines) is compared with self-optimizing control (solid blue lines) in Fig.5 where the cost function is shown in 
Fig.5a and the integrated loss is shown in Fig.5b 
 
It can be clearly seen that when the disturbances move the operating point of the system away from the 
nominal optimal point, self-optimizing control leads to steady-state losses. This is not the case with the 
proposed feedback RTO. This is because, in the proposed method, the nonlinear model is linearized around 
the current operating point as opposed to linearizing around a nominal optimal point in self-optimizing 
control. 

  
(a) (b) 

Fig. 5. Comparison of the proposed method with self-optimizing control (a) Profit (b) Integrated loss given 
by (8)  
 
3.3. Comparison with extremum seeking control  
In this subsection, we compare the performance of the proposed method with extremum seeking control, 
which is also based on estimating and controlling the steady-state gradients directly from measurements. In 
this section we use the least square based extremum seeking control as introduced in [9]. In this method, the 
steady-state gradient is estimated purely based on the measurements by constantly perturbing the system 
around the current operating point. The estimated steady state gradient is then driven to zero using integral 
action. 
 
Since the steady-state gradient are estimated directly from the measurements, it requires time scale separation 
between the system dynamics, perturbation and the convergence to the optimum. Therefore, the convergence 
of the extremum seeking control is prohibitively slow in many cases. 
 
Due to the slow convergence, the process is simulated with a total simulation time of 100h (10 times longer 

than the previous simulation cases). In this simulation, an integral gain of 0.02ESCK  was chosen. In this 

simulation, the disturbances vary over a period of 100h instead of 10h. The simulation results are shown in 
Fig.6. From the simulation results, it can be seen that the proposed method converges significantly faster 
than the extremum seeking control.  



 

 

4. Conclusion 
We have proposed a new method of utilizing transient measurements and a dynamic estimator to estimate 
the steady-state gradient and then using a simple PI controller for driving the process to its optimal operation. 
For an ammonia synthesis reactor with both disturbances and plant-model mismatch, the proposed method 
outperforms comparable control strategies. The industrial applicability is conceivable due to the usage of only 
seven measurements of the process besides the used dynamic model. An extended Kalman filter (EKF) 
allows the estimation of the steady-state gradients, even in case of plant-model mismatch by including 
unmeasured but modelled parameters in the estimator. 
 

  
(a) (b) 

Fig. 6. Comparison of the proposed method with extremum seeking control (a) Profit (b) Integrated loss 
given by (8)  
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