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Abstract

This paper proposes a primal decomposition algorithm for efficient computation

of multistage scenario model predictive control, where the future evolution of

uncertainty is represented by a scenario tree. This often results in large-scale

optimization problems. Since the different scenarios are only coupled via the so-

called non-anticipativity constraints, which ensures that the first control input

is the same for all the scenarios, the different scenarios can be decomposed

into smaller subproblems and solved iteratively using a master problem to co-

ordinate the subproblems. We review the most common scenario decomposition

methods and argue in favour of primal decomposition algorithms, since it ensures

feasibility of the non-anticipativity constraints throughout the iterations which

is crucial for closed-loop implementation. We also propose a novel backtracking

algorithm to determine a suitable step length in the master problem to ensure

the feasibility of the nonlinear constraints. The performance of the proposed

approach and the backtracking algorithm is demonstrated using a CSTR case

study.
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1. Introduction

Model predictive control (MPC) is widely used in the process control in-

dustry due to its ability to handle multivariable systems subject to state and

input constraints. In recent years, there has been an increasing trend in the use

of economic objectives in the framework of nonlinear model predictive control,5

known as economic MPC. In many processes, the optimal economic operation

often corresponds to driving the system to some of its constraints. In such

cases, model uncertainty and process variations can easily lead to constraint

violations. Explicit measures to handle uncertainty in the MPC problem then

becomes very important.10

Different approaches to handle uncertainty in the MPC problem have been

proposed in the literature. For example, the min-max MPC formulation pro-

posed in [1] computes an optimal input trajectory that minimizes the cost of

the worst-case uncertainty realization. This often results in very conservative

solutions, since it ignores the fact that new information will be made avail-15

able in the future and a new control input trajectory will be re-computed. In

other words, the notion of feedback is ignored when computing a single control

trajectory that optimizes over all possible realizations of the uncertainty. A

feedback min-max MPC framework, also known as multistage scenario MPC

was introduced in [2] and later in [3], where the future evolution of uncertainty20

is represented using discrete scenarios and the notion of feedback is explicitly

taken into account by optimizing over different control trajectories instead of a

single control trajectory (closed-loop optimization).

One of the main drawbacks of this approach is that the problem size grows

exponentially with 1) the number of uncertain parameters, 2) the number of25

finite realizations of the uncertainty, and 3) the length of the prediction hori-

zon. As justified in [3], one way to curb the exponential growth of the problem

size is by considering the branching of the tree only up to a certain number

of samples in the prediction horizon, known as robust horizon. Another solu-
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tion is to exploit the structure of the problem to decompose the problem into30

several smaller subproblems. The different scenarios are independent and ad-

ditively separable, except for the non-anticipativity constraints, which capture

the effect that the optimal inputs cannot anticipate the future realization of

the uncertainty. To this end, decomposition methods can be used to solve the

different scenarios independently and later use a master problem to iteratively35

co-ordinate the different subproblems.

Scenario decomposition using dual decomposition methods were proposed

in [4] and [5], where the different subproblems are solved by relaxing the non-

anticipativity constraints. A master problem then updates the Lagrangian mul-

tipliers corresponding to the non-anticipativity constraints iteratively. The non-40

anticipativity constraints are thus feasible only upon convergence of the master

and subproblem iterations. Dual decomposition methods may require a rel-

atively large number of iterations between the master problem and the sub-

problems to converge. This leads to challenges with practical implementation

as noted in [5]. If the iterations between the master problem and the sub-45

problems do not converge within the required sample time of the MPC, the

non-anticipativity constraints remains infeasible. As a result, the different sce-

narios may give different optimal control inputs at the first sample, which is not

acceptable for real-time closed-loop implementation.

To overcome the closed-loop implementation issue with dual decomposition,50

we recently proposed a primal decomposition algorithm for scenario decompo-

sition in [6]. In contrast to dual decomposition, primal decomposition produces

a primal feasible solution with monotonically decreasing objective value at each

iteration [7]. Primal decomposition thus ensures that the non-anticipativity con-

straints are always feasible through out the iterations. This implies that even55

if the master problem and subproblem iterations are prematurely terminated,

the non-anticipativity constraints are still feasible and the first control input

provided by all the scenarios are the same. This is an important property for

closed-loop implementation of the multistage scenario MPC problem.

This paper extends the conference paper in [6] with a more detailed dis-60
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cussion and introduces a novel back-tracking algorithm to select a suitable

step-length in the master problem update. The proposed primal decomposi-

tion approach and the novel backtracking algorithm are demonstrated using a

continuously stirred tank reactor (CSTR) case study.

The remainder of the paper is organized as follows. The multistage scenario65

MPC framework is described in Section 2. Section 3 describes the different

decomposition approaches for scenario decomposition. Section 4 introduces a

novel backtracking algorithm for choosing a suitable step length in the master

problem. The proposed method is then demonstrated using a CSTR case study

in Section 5. Finally, discussions are provided in Section 6 before concluding70

the paper in Section 7

2. Multistage Scenario MPC

Consider a discrete-time nonlinear system of the form

xk+1 = f(xk,uk,pk) (1)

where x ∈ Rnx denotes the states, u ∈ Rnu denotes the manipulated inputs

and p ∈ Rnp denotes the vector the uncertain parameters or disturbances with75

an a-priori known distribution p ∈ U . The system model is represented by

f : Rnx × Rnu × Rnp → Rnx .

The uncertainty space U is discretized to get M finite realizations of (1). The

future evolution of the uncertainty in the prediction horizon is then represented

by a scenario tree as shown in Fig.1, where a scenario is represented by the

path from the root node to a leaf node [3]. As mentioned earlier, to curb the

exponential growth of the problem size, the branching is stopped after a certain

number of time samples, known as robust horizon Nr, after which the uncertain

parameters are treated as constants. Consequently, the number of scenarios and

the number of MPC problems to be solved, is given by S = MNr . Allowing for

the different cost weights ωj to represent the likeliness of the different scenarios

4



u2,1, p2,1 uN,1, pN,1
· · ·

u2,2, p2,2 uN,2, pN,2
· · ·

u2,3, p2,3 uN,3, pN,3
· · ·

u2,4, p2,1 uN,4, pN,1
· · ·

u2,5, p2,2 uN,5, pN,2
· · ·

u2,6, p2,3 uN,6, pN,3
· · ·

u2,7, p2,1 uN,7, pN,1
· · ·

u2,8, p2,2 uN,8, pN,2
· · ·

u2,9, p2,3 uN,9, pN,3
· · ·

Nr = 2

S1

S2

S3

S4

S5

S6

S7

S8

S9

p0,1

p0,2

p0,3

p1,1

p1,1

p1,1

p1,2

p1,2

p1,2

p1,3

p1,3

p1,3

Figure 1: Schematic representation of a scenario tree with M = 3 and Nr = 2 leading to

S = 9 scenarios.

5



j, the resulting dynamic optimization problem can be formulated as,

min
xk,j ,uk,j

S∑
j=1

ωj

[
N−1∑
k=0

J(xk,j ,uk,j)

]
(2a)

s.t xk+1,j = f(xk,j ,uk,j ,pk,j) (2b)

g(xk,j ,uk,j ,pk,j) ≤ 0 (2c)

x0,j = x̂ (2d)

S∑
j=1

Ējuj = 0 (2e)

∀j ∈ {1, · · · , S}

∀k ∈ {0, · · · , N − 1}

where the subscript (·)k,j represents the jth scenario at time sample k. The cost

function is given by J(xk,j ,uk,j) and g(xk,j ,uk,j ,pk,j) represents the nonlinear

inequality constraints. Initial condition are enforced in (2d) for all the scenarios,

where x̂ denotes the state measurements or estimates at the current time step.

(2e) enforces the non-anticipativity constraints, which ensures that the states

that branch at the same parent node, has the same control input. Note that uj

here represents the sequence of optimal control input for the jth scenario, i.e.

uj =
[
uT
0,j · · ·uT

N−1,j

]T ∈ RnuN and Ēj is given by

Ē =


E1,2 −E1,2

E2,3 −E2,3

. . .
. . .

ES−1,S −ES−1,S

 (3)

=
[

Ē1 Ē2 · · · ĒS

]
where,

Ej,j+1 =


Inu

0 · · · 0

. . .
...

. . .
...

Inu
0 · · · 0

 (4)
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If no,(j,j+1) denotes the number of common nodes between two consecutive sce-

narios j and j + 1, then Ej,j+1 ∈ Rr×nuN and Ēj ∈ Rq×nuN where,

q = nu

S∑
j=1

no,(j,j+1) and r = nuno,(j,j+1)

as described in [8]. Formulating the non-anticipativity constraints using this

chain structure also results in sparse structures, which may be exploited by

many solvers [8].80

3. Distributed Multistage Scenario MPC

The multistage scenario MPC problem (2) consists of S independent MPC

problems, except for the non-anticipativity constraints (2e) which couple the

different scenarios together. Different decomposition approaches can be used to

solve the different scenarios (in parallel) and use a master problem to co-ordinate85

the different subproblems.

3.1. Dual Decomposition based approaches

Scenario decomposition using dual decomposition approaches is the most

common strategy. Here each scenario subproblem is solved by relaxing the non-

anticipativity constraints, see for example [4], [5] and [8].90

The scenario optimization problem (2) can be rewritten as,

min
xk,j ,uk,j

S∑
j=1

[
ωj

N−1∑
k=0

J(xk,j ,uk,j)

]
+ λT

S∑
j=1

Ējuj

s.t.

xk+1,j = f(xk,j ,uk,j ,pk,j) (5)

g(xk,j ,uk,j ,pk,j) ≤ 0

x0,j = x̂

∀j ∈ {1, · · · , S},∀k ∈ {0, · · · , N − 1}

where λ ∈ Rq is the Lagrange multiplier corresponding to the non-anticipativity

constraint (2e). It can be seen that (5) is now additively separable in x and
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u and each jth scenario subproblem can be reformulated as a function of λ as

shown below,

Γj(λ) := min
xk,j ,uk,j

ωj

N−1∑
k=0

J(xk,j ,uk,j) + λT Ējuj

s.t.

xk+1,j = f(xk,j ,uk,j ,pk,j) (6)

g(xk,j ,uk,j ,pk,j) ≤ 0

x0,j = x̂

∀k ∈ {0, · · · , N − 1}

The Lagrange multiplier λ is iteratively updated in the master problem and the

non-anticipativity constraints becomes feasible upon convergence of λ.

The master problem is then given by

min
λ

S∑
j=1

Γj(λ) (7)

Proposition 1. Let (x∗
k,j ,u

∗
k,j) be the optimal solution for the jth subproblem,

then a solution to the master problem (7) can be expressed as the gradient descent95

step,

λ+ = λ+ α

S∑
j=1

Ēju
∗
j (8)

where λ+ represents the updated lagrange multiplier for the next iteration and

α is a suitable step length.

Proof. The descent direction for the master problem (7) is given by the subgra-

dient
∑S

j=1∇λΓj(λ) =
∑S

j=1 Ēju
∗
j . The solution to the master problem along100

the descent direction using a suitable step length α can then be expressed by

(8), see [9] and [7].

Different forms of augmented Lagrangian decomposition methods were also

presented in [5], where an additional quadratic penalty term is added to (6) to

improve the convergence properties. However, the additional quadratic penalty105
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terms makes the different subproblems nonseparable in x and u and hence

cannot be solved in parallel. In such cases the subproblems must be solved

sequentially using the alternating directions method of multipliers (ADMM)

approach [10].

However, the main challenge of dual decomposition approach is that, relaxing110

the non-anticipativity constraints may impede real-time closed-loop implemen-

tation. In the receding horizon control framework, at each time step, the first

control move is implemented in the plant. In multistage scenario MPC, the non-

anticipativity constraints ensure that the first control move is equal for all the

scenarios to enable closed-loop implementation. However, if the master problem115

and subproblems fail to converge within the required sampling time, the non-

anticipativity constraints are not satisfied. Consequently, the first control input

computed by the different scenarios are different, thus impeding closed-loop

implementation.

One way to address this issue is to take a weighted average of the ma-120

nipulated inputs at the first sample based on the probabilities of the different

scenarios [11]. However, this may not be a good approach since the weighted

average can lead to an infeasible solution. The authors in [5] proposed to com-

pute an average of the control inputs at the first sample such that the worst-case

constraint violation for the local subproblems is minimized, which is given by125

solving an additional linear programming (LP) problem. In this paper, we in-

stead propose a primal decomposition approach to solve this issue, which always

ensures the feasibility of the non-anticipativity constraints.

3.2. Primal Decomposition based approaches

To address the issue of non-anticipativity constraint feasibility, we propose a130

primal decomposition algorithm, which always produces a primal feasible point

by iterating directly on the shared variables [7]. Therefore, at any point in time,

the non-anticipativity constraints are always feasible and the first control move

provided by all the scenarios are the same, which is a desirable property for

closed-loop implementation as described earlier.135

9



The primal subproblem for the jth subproblem can be written by intro-

ducing a new auxiliary variable tl ∈ Rnu , ∀l ∈ {1, . . . ,
∑Nr

m=1M
m−1} for each

non-anticipativity constraints. Note that the number of non-anticipativity con-

straints is given by
∑Nr

m=1M
m−1. Each scenario subproblem is then expressed

as a function of the auxiliary variables as shown below,

Φ(tl,pj) = min
xk,j ,uk,j

N−1∑
k=0

J(xk,j ,uk,j) (9a)

s.t xk+1,j = f(xk,j ,uk,j ,pk,j) (9b)

g(xk,j ,uk,j ,pk,j) ≤ 0 (9c)

x0,j = x̂ (9d)

Ējuj = τ̄ j ∀k ∈ {0, · · · , N − 1} (9e)

where τ̄ is given by

τ̄ =


τ1,2 −τ1,2

τ2,3 −τ2,3
. . .

. . .

τS−1,S −τS−1,S

 (10)

=
[
τ̄ 1 τ̄ 2 · · · τ̄S

]
(11)

and τj,j+1 ∈ Rnuno,(j,j+1) is a matrix that is composed of the auxiliary variables

tl ∈ Rnu .

The master problem to update the auxiliary variables tl is then given by,

min
tl

S∑
j=1

Φ(tl,pj) (12)

Proposition 2. The solution to the master problem (12) can be expressed as

the gradient descent step,140

t+l = tl + αl(

S∑
j=1

∇tlΦ(tl,pj)), ∀l ∈ {1, . . . ,
Nr∑
m=1

Mm−1} (13)

Proof. The sesarch direction for the master problem (12) is given by the sub-

gradient σ =
∑S

j=1∇tlΦ(tl,pj), which are simply the lagrange multipliers that
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u0,1, p0,1 u1,1, p1,1 u2,1, p2,1 uN,1, pN,1
· · ·

u0,2, p0,1 u1,2, p1,2 u2,2, p2,2 uN,2, pN,2
· · ·

u0,3, p0,1 u1,3, p1,3 u2,3, p2,3 uN,3, pN,3
· · ·

u0,4, p0,2 u1,4, p1,1 u2,4, p2,1 uN,4, pN,1
· · ·

u0,5, p0,2 u1,5, p1,2 u2,5, p2,2 uN,5, pN,2
· · ·

u0,6, p0,2 u1,6, p1,3 u2,6, p2,3 uN,6, pN,3
· · ·

u0,7, p0,3 u1,7, p1,1 u2,7, p2,1 uN,7, pN,1
· · ·

u0,8, p0,3 u1,8, p1,2 u2,8, p2,2 uN,8, pN,2
· · ·

u0,9, p0,3 u1,9, p1,3 u2,9, p2,3 uN,9, pN,3
· · ·

Nr = 2

t1 t2

t3

t4

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 2: Schematic representation of the decomposed scenarios showing the non-

anticipativity constraints enforced using the auxiliary variables tl.

corresponds to the non-anticipativity constraints (9e), which are computed by

solving the different scenario subproblems [9]. Hence the subgradient for the

master problem is essentially available for “free” without the need for any ad-145

ditional computations.

The solution to the master problem along the descent direction with a suit-

able step length α can then be given by (13), see [7] and [9].

One commonly used stopping criteria for the master problem and subprob-

lem iterations is that the change in tl between two subsequent iterations, de-150

noted by ∆tl = ‖t+l − tl‖ must be less than a certain user-defined tolerance ε.

To illustrate this, consider a scenario tree with M = 3, Nr = 2 and S = 9
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as shown in Fig.1. For such a tree l = 4 and tl ∈ {tT1 , tT2 , tT3 , tT4 }. The non-

anticipativity constraints for the scenario tree is such that the control input for155

all the scenarios at the first control sample is the same.

u1,j = u1,j+1 = t1, ∀j ∈ {1, . . . , S − 1} (14)

where S − 1 = 8 in this case.

The non-anticipativity constraints at the second time sample is then given

by

u2,1 = u2,2 = u2,3 = t2

u2,4 = u2,5 = u2,6 = t3 (15)

u2,7 = u2,8 = u2,9 = t4

This is schematically represented in Fig.2. The auxiliary variables are then

updated in the master problem using the gradient descent step (13),

t+1 = t1 + α1

9∑
j=1

∇t1Φ

where
∑9

j=1∇t1Φ =
∑9

j=1 λ1,j

t+2 = t2 + α2

9∑
j=1

∇t2Φ

where
∑9

j=1∇t2Φ = λ2,1 + λ2,2 + λ2,3

t+3 = t3 + α3

9∑
j=1

∇t3Φ

where
∑9

j=1∇t3Φ = λ2,4 + λ2,5 + λ2,6

t+4 = t4 + α4

9∑
j=1

∇t4Φ

where
∑9

j=1∇t4Φ = λ2,7 + λ2,8 + λ2,9, and the notation λk,j denotes the La-

grange multipliers corresponding to the the non-anticipativity constraints at

time step k for the jth scenario.160

12



4. Back-tracking algorithm

As mentioned in the previous section, when using primal decomposition, we

solve the subproblems by fixing the manipulated inputs for the non-anticipativity

constraints to be equal to an auxiliary variable tl for all the scenarios by means of

the equality constraint (9e). The auxiliary variable tl is then iteratively updated165

using a step length α as shown in (13). The equality constraint (9e) ensures

that the non-anticipativity constraints are always feasible throughout the iter-

ations. However, if the step length α is not suitably chosen, then the nonlinear

constraints g(xk,j ,uk,j ,pk,j) ≤ 0 may become infeasible by fixing the control

input at t+l using the equality constraint (9e). Choosing a step length too small170

on the other hand leads to a very slow convergence. Hence, careful selection of

the step length α is important in the presence of nonlinear constraints.

Therefore, in this paper we propose a feasibility ensuring backtracking algo-

rithm to suitably choose the step length α, such that we can choose a sufficiently

large step length and backtrack when required to ensure that the nonlinear con-175

straints g(xk,j ,uk,j ,pk,j) ≤ 0 remain feasible throughout iterations. The pro-

posed backtracking algorithm is based on a forward integration of the system

dynamics and the nonlinear constraints one time step ahead using the pro-

posed step length. In other words, a one-step-ahead model prediction for each

scenario using the prospective t+l is used to evaluate the nonlinear constraint180

feasibility before t+l is fixed in the subproblems using the equality constraint

(9e) in the next iteration. The prospective t+l is given by t+l = tl + αlσ, where

σ = (
∑S

j=1∇tlΦ(tl,pj)) is the search direction or the subgradient. The step

length α is backtracked until the nonlinear constraints in the one-step-ahead

model prediction is feasible. This is illustrated in Algorithm 1.185

In order to show that the proposed backtracking algorithm converges, assume

that a feasible point t ∈ F is available. As shown in [12, Ch.9], the subgradient

σ is feasible by construction. Hence there is an α such that,

t+ ασ ∈ F ∀0 < α ≤ α (16)

The task of the feasibility ensuring backtracking algorithm is then to find this

13



Algorithm 1 Feasibility-ensuring backtracking algorithm

Define c < 1.

Input: at each iteration between master problem and subproblem: initial state

x̂, initial α0, t and subgradient σ =
∑S

j=1∇tΦ(t,pj)

for j = 1, 2, . . . , S do

α← α0

Evaluate xk+1,j = f(x̂, (t+ ασ),pk,j),

∀k ∈ {1, . . . , Nr}

while g(xk+1,j , (t+ ασ),pk,j) > 0 do

α← cα

end while

end for

Output: α

upper bound α using Algorithm 1 such that the updated value t+ = t + ασ190

is feasible, i.e. t+ ∈ F . The availablity of an initial feasible guess for t is

discussed in Section 6.2.

However, the backtracking algorithm proposed here backtracks the step

length alpha based on the constraint evaluation to ensure that the nonlinear

constraints are feasible.195

The sketch of the proposed primal decomposition algorithm for multistage

scenario MPC problem using the feasibility ensuring backtracking algorithm is

given in Algorithm 2.

5. Case Study

In this section, we test the proposed primal decomposition-based distributed200

multistage scenario MPC on a continuous stirred tank reactor (CSTR) process

from [13] and [14]. Consider a reversible exothermic reaction where component

14



Algorithm 2 Distributed multistage scenario MPC using Primal decomposition

Define tolerance ε > 0.

Input: at each time step: initial state x̂ and ∆tl > ε, initial α

while ∆tl > ε do

for j = 1, 2, . . . , S do

[X∗,λ∗]← solution NLP Φ(tl,pj)

end for

for l ∈ {1, . . . ,
∑Nr

m=1M
Nr−1} do

Update subgradients ∇tlΦ(t,pj)

Backtrack α using Algorithm 1

Update t+l = tl + α(∇tΦ(t,pj))

Update ∆tl = ‖t+l − tl‖

end for

end while

Reset α to initial guess.

Output: X∗(pj),∀j ∈ {1, . . . , S}

15



A is converted to component B

A
 B (17)

The reaction rate is given as r = k1CA − k2CB where k1 = C1e
−E1
RT and

k2 = C2e
−E2
RT . The process model consists of two mass balances and an energy

balance:

dCA

dt
=

1

τ
(CA,i − CA)− r where τ =

H

F
(18a)

dCB

dt
=

1

τ
(CB,i − CB) + r (18b)

dT

dt
=

1

τ
(Ti − T ) +

−∆Hrx

ρCp
r (18c)

where the concentrations [mol/l]of the two components in the reactor are de-

noted by CA and CB , respectively. CA,i and CB,i denote the feed concentrations.205

Ti and T are the inlet and reaction temperatures, respectively. The model pa-

rameters are given in Table 1.

Table 1: Nominal values for CSTR process

Description Value Unit

F ∗ Feed rate 1 mol/min

C1 Constant 5000 s−1

C2 Constant 106 s−1

Cp Heat capacity 1000 cal/kg/K

E1 Activation energy 104 cal/mol

E2 Activation energy 15000 cal/mol

C∗
A,i Inlet A concentration 1 mol/l

C∗
B,i Inlet B concentration 0 mol/l

R Universal Gas Constant 1.987 cal/mol/K

∆Hrx Heat of reaction -5000 cal/mol

ρ Density 1 kg/l

H reactor holdup 1 mol

τ Time constant 60 s

The objective is to maximize the product concentration CB while penalizing

the utility cost of heating the input stream using the inlet temperature u = Ti as

16



A *) B

CA;i CB;i

Ti

T CA

CB

Figure 3: Case 1: Exothermic reactor process

the manipulated variable. In addition, the reactor temperature has a maximum

limit of 425K.

min
Ti

J = −[2.009CB − (1.657× 10−3Ti)
2]

s.t. (18) (19)

T ≤ 425

We assume that the concentration of component B in the feed stream is

uncertain and is known to vary in the range CB,i ∈ [0, 0.2]mol/l. We design

a multistage scenario MPC with a prediction horizon of T = 300s equally di-210

vided into N = 20 samples. For the scenario tree, we consider M = 3 discrete

realizations of the uncertainty, namely, CB,i ∈ {0.0, 0.1, 0.2}mol/l. The system

dynamics (18) are discretized using third-order direct collocation. The mul-

tistage scenario MPC was implemented in CasADi version 3.1.0 [15] using the

MATLAB programming environment. The resulting nonlinear programming prob-215

lem was solved using IPOPT version 3.12.2 running with a MUMPS linear solver.

The simulations were carried out on a 2.6GHz workstation with 16GB memory.

The plant simulator was implemented using the IDAS integrator [16].
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5.1. Simulation case 1

In the first simulation case, we design the multistage MPC with a robust220

horizon of Nr = 1, leading to S = MNr = 3 scenarios. The process was

simulated for a total simulation time of 600s. The concentration of component

B in the feed stream changes at time t = 300s from 0.15mol/l to 0.0mol/l. The

process was first simulated with a fully centralized multistage scenario MPC

problem (2) to be used as a benchmark (shown in thick yellow curves in Fig.4).225

The process was then simulated using the proposed primal decomposition-

based distributed multistage scenario MPC (9), where the step length αl was

initialized with α = 2000. At each iteration, the step length α was suitably

adjusted using the proposed back-tracking algorithm introduced in Section 4.

At each time step, warm-starting was implemented for the auxiliary variables230

tl using the predicted control trajectories from the previous time step. The

simulation results are compared with the fully centralized approach in Fig.4.

The cost function J , outlet temperature T , and the inlet temperature Ti are

shown in the left hand side subplots (solid red curves). The corresponding

absolute errors compared to the fully centralized approach is shown in the right235

hand side subplots (solid red curves). From the plots, it can be clearly seen that

the primal decomposition approach of solving the multistage scenario MPC

problem results in the same solution as the centralized solution, thus indicating

proper formulation. The total number of master and subproblem iterations

taken at each time step are shown in the bottom right subplot and the step-240

length α value obtained from the proposed backtracking algorithm is shown in

the bottom left subplot.

As mentioned earlier, one of the main motivations to use primal decompo-

sition is that it enables closed-loop implementation even if the master problem

and subproblems have not fully converged. In order to test this, the iterations245

between the master problem and the subproblems were capped at 5 iterations

to prematurely terminate the iterations. The simulation results are shown in

Fig.4 using black dashed curves. It can be seen that by prematurely terminating

the iterations, the non-anticipativity constraints remain feasible, however, the
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closed-loop solution is sub-optimal. However, by warm starting the auxiliary250

variables, the proposed primal decomposition approach eventually converges

to the optimal solution provided by the centralized approach even when the

master and subproblem iterations are prematurely terminated. This is clearly

seen in the error subplots, where the absolute error compared to the centralized

approach (shown in black dashed lines) diminishes quickly over time.255

Effect of the step-length size. The step-length α backtracked using the proposed

backtracking algorithm is shown in the bottom left subplot. When the distur-

bance in the input feed stream changes at time t = 300s, the optimal solution

drives the process to the constraint on reactor temperature. At time t = 410s,

the step-length α is backtracked to a small value when operating close to the260

constraint. Keeping the step length constant at α = 2000, resulted in infeasi-

bility of the reactor temperature constraint. This is because for the operating

conditions after about 400s of simulation, the upper bound on the step length

α for which the master problem remains feasible as shown in (16) is much lower

than the initally used step length value α = 2000. By using the proposed back-265

tracking algorithm, the step length was backtracked to find the upper bound α

as shown in the bottom-left suboplot in Fig. 4, such that it ensures the non-

linear process constraints also remain feasible throughout the iterations while

updating the auxiliary variables in the master problem.

5.2. Simulation case 2270

In this subsection, we simulate the system with a robust horizon of Nr = 2,

leading to S = MNr = 9 scenarios. The process was simulated for a total

simulation time of 600s. The concentration of component B in the feed stream

changes at time t = 300s from 0.15mol/l to 0mol/l just as in simulation case 1.

The process was then simulated using the primal decomposition based sce-275

nario decomposition, where the step length αl was initialized with 500 for all

l. At each iteration, the step lengths were suitably adjusted using the pro-

posed back-tracking algorithm in Section 4. The simulation results and the

corresponding absolute errors for this simulation case is shown in Fig.5.
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Figure 4: Simulation results with Nr = 1 showing the optimal solution provided by the

centralized approach (thick yellow lines), primal decomposition approach (solid red lines) and

the primal decompostion approach with the maximum number of iterations capped at 5 (black

dashed lines).
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Table 2: CPU times (in sec) for simulation 1 and 2

Nr = 1 Nr = 2

max avg min max avg min

Centralized 0.219 0.168 0.154 0.549 0.429 0.377

Decomposed 0.064 0.051 0.037 0.077 0.050 0.036

The proposed method was also simulated with the total number of itera-280

tions capped at 15 iterations. The simulation results are shown in Fig.5 using

black dashed curves. It can be seen that the proposed primal decomposition

approach eventually converges to the optimal solution provided by the central-

ized approach even when the master and subproblem iterations are prematurely

terminated.285

As can be seen from the simulation results from Fig. 4 and Fig. 5, the solution

obtained by the proposed primal decomposition approach is almost identical to

the one provided by solving the multistage problem in a centralized fashion.

The Primal decomposition method was also shown to enable closed-loop im-

plementation when the iterations between the master and scenario subproblems290

are prematurely terminated. The computation times for the multistage problem

solved as a fully centralized problem and using the primal decomposition are

also shown in Table. 2, which shows that, by using the proposed primal decom-

position approach for multistage MPC, the same solution can be obtained at

lesser computation times.The proposed primal decomposition based multistage295

scenario decomposition approach was also demonstrated using an oil and gas

production optimization case study in our recent work [6].

6. Discussions

6.1. Scenario decomposition using Primal decomposition

One of the key challenges today in real-time implementation of optimizing300

controllers such as model predictive control is the computation time. The late
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Figure 5: Simulation results with Nr = 2 showing the optimal solution provided by the

centralized approach (thick yellow lines), primal decomposition approach (solid red lines) and

the primal decompostion approach with the maximum number of iterations capped at 15

(black dashed lines).
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arrival of a solution in many cases may simply not be acceptable. A solution to

the optimization problem must ideally be available within the sampling time.

As the author in [17] puts it, the correctness of a computation is a function of

time.305

Decomposition methods for scenario decomposition has its roots in multi-

stage stochastic optimization problems studied in the operations research com-

munity, see [18, 19, 20, 21] to name a few. Problems studied in the operations

research field do not focus on real-time closed-loop implementation in the same

fashion as MPC in the process control community. The nature of the prob-310

lems studied in operations research community often call for offline optimization

problems as opposed to MPC applications in the process industries. For exam-

ple, in many process control applications, a new control input must be computed

at every sampling instant, which may be in the time scale of seconds to minutes.

As a result, the dual decomposition methods developed for multistage stochastic315

optimization problems may not be directly applicable for the multistage MPC

problem. Keeping this in mind, it may seem that approximate solution now

is better than accurate solution tomorrow. Many optimization solvers are also

based on this strategy, see for example [22]. We have used a similar motiva-

tion in this paper to use primal decomposition approach to efficiently solve the320

multistage scenario decomposition problem. Initializing the optimization rou-

tine for the very first time can be done by for example initializing the auxiliary

variables using any feasible sub-optimal operating point, such as the last known

operating value of the control inputs.

Since primal decomposition provides a primal feasible solution with mono-325

tonically decreasing objective value with each iteration, premature termination

of the iterations only results in suboptimal operation and does not violate the

non-anticipativity constraints. By warm-starting the subsequent time steps, the

solution eventually converges to the true optimal solution. This was also seen

in the error plots in Fig.4 and Fig.5. We believe, the primal decomposition ap-330

proach addresses the practical implementation issues of distributed multistage

scenario MPC problem.
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6.2. Feasibility-ensuring backtracking algorithm

In this paper, we also proposed a feasibility ensuring backtracking algorithm

to suitably choose the step length size in the master problem update such that335

the nonlinear constraints in the subproblems remain feasible throughout the

iterations. In algorithm 1, we check the forward simulation for all the discrete

realizations of the uncertainty used in the scenario tree to backtrack the step

length used in the master problem. However, if the worst-case realization of the

uncertainty is known a-priori, we then need to check the feasibility of the local340

constraints only for the worst case scenario w.r.t to the nonlinear constraints

instead of all the scenarios. This is justified because if the local constraints

within a subproblem are feasible for the worst case scenario, then it must also

be feasible for all other scenarios.

With the proposed primal decomposition approach, it is important to note345

that the initial guess of the auxiliary variables t must be a feasible guess with

respect to the nonlinear constraints. As described in 4, with the assumption of

a feasible initial guess, the backtracking algorithm used here always ensures the

feasibility of the nonlinear constraints in the scenario subproblems according to

(16). One simple aopproach to get an initial feasible guess is by warm starting350

the auxiliary variable using the predicted control trajectory. The predicted con-

trol trajectory ranges from u1 to uN for each scenario. The first control input

u1 (which is the same for all the scenarios due to the non-anticipativity con-

straints) is implemented on the plant. For the next MPC iteration, the auxiliary

variable can be initalized using the predicted control trajectory starting from355

the second time step u2 to uNr+1 in the prediction horizon corresponsing to the

worst case scenario. By initializing the auxiliary variables using the predicted

control input for the worst case scenario, the initial guess will be feasible for all

other scenarios as well. Additional back-off on predicted control input from the

worst case scenario may also be used when initializing the auxiliary variables at360

each time step to ensure a feasible initial guess.
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6.3. Scenario Decomposition using NLP sensitivities

The performance of the scenario-based MPC scheme can be further improved

by using NLP sensitivities. Since the different scenario subproblems Φ(tl,pj)

differ only in the parameter pj , the scenario decomposition problem can be365

recast in the framework parametric optimization problem. By doing so, we

then need to solve only one subproblem as a full NLP problem. The subsequent

subproblems can be solved by exploiting the parametric nature using a predictor-

corrector quadratic problem (QP) that approximates the NLP [23], [24].

The predictor-corrector QP has been shown to provide good approximations370

of the NLP solution for small variations in the parameters. If the different

discrete realizations of the uncertain parameters are not in the small neighbour-

hood of each other, then a path-following predictor-corrector QP can be applied.

In the path-following approach, a series of QP problems are solved sequentially

similar to an Euler integration scheme for ordinary differential equations. This375

is explained in more detail and applied to a scenario decomposition problem in

[25].

7. Conclusion

We propose a primal decomposition approach (9) to solve scenario-based

MPC problems as an alternative to dual decomposition approaches. Primal380

decomposition enables real-time closed-loop implementation even in the case

where the iterations between the master problem and subproblems are termi-

nated prematurely. We also present in Section 4 a novel feasibility-ensuring

backtracking algorithm to suitably choose the size of the step length in the

master problem update. A CSTR case study demonstrates the effectiveness of385

the proposed method.
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