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Abstract
Control structures must be properly designed and implemented to maintain optimality. The two
options for the supervisory control layer are Advanced Control Structures (ACS) and Model Pre-
dictive Control (MPC). To systematically design the supervisory layer to maintain optimal op-
eration, the constraints that can be given up when switching active constraint regions should be
prioritized. We analyze a case study in which we control the temperature and the flow in a cooler
with two degrees of freedom (DOF) represented by two valves, one for each of the two streams.
Either valve can saturate and make a constraint active, forcing other constraints to be given-up,
and thus changing the set of active constraints. We show that optimal or near-optimal operation
can be reached with both ACS and MPC. We do a fair comparison of ACS and MPC as candidates
for the supervisory layer, and provide some guidelines to help steer the choice.

Keywords: Process control, supervisory control, PID control, MPC, optimal control, active con-
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1. Introduction

On a time-scale basis, the overall control problem of a process plant can be decomposed into differ-
ent layers. The upper layers are explicitly related to slow time scale economic optimization, which
sends economic setpoints to the lower and faster control layer. The control layer is divided into
supervisory layer and regulatory layer. The latter follows the set-points given by the former and
stabilizes the plant. Most process are operated under a set of constraints, which can be operational
limitations, quality specifications, or safety and environmental requirements. “Active constraints”
are related to variables that should be kept at their limiting value to achieve optimality. These can
be either Manipulated Variables (MVs) or Controlled Variables (CVs). The MVs correspond to
the dynamic (physical) DOF used by the control system, and a typical MV constraint is the maxi-
mum opening of a valve. An example of CV constraint is the maximum pressure in a distillation
column. Every process is subject to disturbances, such as changes in feed rate or product specifi-
cation. It is the task of the supervisory or “advanced” control layer to maintain optimal operation
despite disturbances. The supervisory control layer has three main tasks (Skogestad, 2012):

1. Switch between the set of CVs and control strategies when active constraint changes occur
due to disturbances.
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2. Supervise the regulatory layer, avoiding saturation of the MVs used for regulatory control.

3. Follow economic objectives by using the setpoints to the regulatory layer as MVs .

The supervisory control layer could be designed using classical ACS with PID controllers, or using
MPC, which achieves optimal operation and handles constraints and interactions by design. With
ACS, we refer to PID-based structures such as split range control (SRC), input resetting (valve
positioning), and use of selectors, to name a few.

2. Changes in active constraint regions and optimal operation

When a disturbance occurs, the process might start operating in a different active constraint region.
If the supervisory layer is well-designed, it is possible to maintain optimal operation by using ACS
with PID controllers, or by using MPC.

2.1. Optimal control in the presence of active constraint changes

Regardless of whether we choose ACS or MPC, the first step to systematically design the su-
pervisory control layer is to identify and prioritize all constraints. It is useful to visualize how
disturbances may cause new constraints to become active. In some cases, we can generate a plot
showing the active constraint regions (optimal operation) as a function of variations in important
disturbances by solving a series of optimization problems. This may be very time consuming and,
in some cases, difficult due to the lack of an appropiate model. Moreover, it can also be difficult
to visualize for more than two variables. Alternatively, we can use process knowledge and engi-
neering insight to minimize the need for numerical calculations (Jacobsen and Skogestad, 2011).
This information is useful regardless of the type of controller used in the supervisory layer.

Prioritization of constraints has been implemented in a few industrial MPC applications (Qin and
Badgwell, 2003). Reyes-Lúa et al. (2018) propose a guideline to generate a priority list of con-
straints that can be used also for ACS. Under this scheme, the constraints with the lowest priority
should be the first given-up when it is not feasible to fulfill all constraints. This way, controlling a
high priority constraint will never be sacrificed in order to fulfill a low priority constraint.

2.2. Advanced control structures in the supervisory layer

ACS requires a choice of pairings, which can become challenging with changing active constraints.
When implementing ACS, Reyes-Lúa et al. (2018) propose to start designing the control system
for the nominal point, with few active constraints and with most of the priorities satisfied. Then,
to minimize the need for reassignment of pairings when there are changes in active constraints,
we should pair MVs with CVs according to the Pairing Rule (Minasidis et al., 2015): An impor-
tant controlled variable (CV) (which cannot be given up) should be paired with a manipulated
variables (MV) that is not likely to saturate.

When a disturbance occurs and the process starts operating in a different active constraint region,
two types of constraints might be reached:

• MV constraint: we must give up controlling the corresponding CV. If the pairing rule is
followed, this MV is paired with a low priority CV, which can be given-up. However, if it
is not possible to follow the pairing rule, the high priority CV must be reassigned to an MV
which is controlling a low priority CV. This requires the use of ACS such as input resetting
(valve position control) or SRC combined with a selector block.

• CV constraint: we should give up controlling a CV with a lower priority. We can do this
using a min/max selector.
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2.3. Model predictive control in the supervisory layer

MPC uses an explicit process model to predict the future response of the plant and, by computing a
sequence of future MV adjustments, optimizes the plant behavior. The first input of the sequence
is applied to the plant, and the entire calculation is repeated at every sampling time (Qin and
Badgwell, 2003).

The main challenge when using MPC is that expertise and a good model is required. This is
either difficult to have ready at startup, or the modelling effort is too expensive. To achieve a truly
optimal operation, the model would need to be perfect, and all the measurements would need to
be available and reliable, which is unrealistic from a practical point of view. There are methods
to circumvent this, but there is no universal solution and this analysis is out of the scope of this
paper.

When an application lacks DOF to meet all control specifications, standard text-book MPC does
not handle changes in active constraints effectively. The standard approach is to use weights in
the objective function to assign the priorities. Having weights in the objectives function implies
a trade-off between the control objectives. An optimal weights selection can assure that a CV is
completely given-up, or that the solution will lie at the constraint, as explained in Section 3.4.2.
However, there is no systematic way of choosing the weights, as there are no tuning rules for MPC,
and this has to be done by trial and error.

An alternative approach consists of implementing a two-stage MPC with a priority list. The first
stage has the purpose of finding the solution of a sequence of local steady-state optimization
problems (LPs and/or QPs). In this sequence constraints are added in order of priority. The
resulting information regarding feasibility is used in the formulation of the dynamic optimization
problem for the MPC in the second stage (Qin and Badgwell, 2003).

3. Case study

We study a cooler in which the main control objective is to keep the outlet temperature in the hot
stream to a desired setpoint (TH = T sp

H ) by using cooling water (FC). Additionally, the setpoint for
the flow of the hot stream (Fsp

H ) can be changed.

There are two MVs, one corresponding to the cooling water (FC) and another to the hot stream
(FH ). Desired operation is at maximum throughput, with Fsp

H = Fmax
H . The primary input (FC) may

saturate for a large disturbance (T in
c ). This case is an extension of what is presented by Reyes-Lúa

et al. (2018).

3.1. Process model

We consider a countercurrent cooler, represented by the dynamic lumped model in Eq. (1). The
cooler is discretized in space into a series of n = 10 cells, as depicted in Fig. 1. Incompressible
fluids and constant heat capacities are assumed. The boundary conditions are: TH0 = THin for cell
i = 1 (inlet), and TC11 = TCin for cells i = 10 (outlet). The energy balance for cell i = 1 . . .n is:

dTCi

dt
=

FC

ρCVCi

(TCi+1 −TCi)+
UAi(THi −TCi)

ρCVCicpC

dTHi

dt
=

FH

ρHVHi

(THi−1 −THi)+
UAi(THi −TCi)

ρHVHicpH

(1a)

(1b)
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Figure 1: Lumped model for the studied cooler.

3.2. List of priorities

Table 1 shows the priority list of constraints for the cooler we are analyzing.

Table 1: Constraints for the studied cooler.

Priority level Description Constraints
1 MV inequality constraints which define the feasibility region FH ≤ Fmax

H
FC ≤ Fmax

C
2 MV or CV equality constraints, which is the control objective TH = T sp

H
3 Desired throughput FH = Fsp

H
4 CV inequality constraints or self optimizing variables none

3.3. Active constraint regions for cooler

As we want to keep TH = T sp
H , this constraint is always active and only one DOF remains. With

one DOF and three potential constraints we have three possible active constraint regions, which
are shown as a function of the throughput (FH ) and the disturbance (T in

c ) in Fig. 2.
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Figure 2: Active constraint regions for the cooler

3.4. Design of the supervisory layer for the cooler

We consider nominal operation in Region 2 (Fsp
H = Fmax

H ). According to the priority list, when T in
c

is so high that FC = Fmax
C , the controller should give up controlling FH = Fmax

H and reduce FH to
keep TH = T sp

H , thus switching to Region 1. We design both an ACS and an MPC for this case.

3.4.1. Classical advanced control structures for optimal operation

To design the supervisory layer using ACS, we implement SRC with a min selector block, as in
Fig. 3. The controller is tuned by fitting a first order plus delay model obtained from the open-loop
step response of the process, and applying the SIMC rule (Skogestad, 2003) with τc = 80 s and
Kc = −0.06. To account for the different gains that FC (negative) and FH (positive) have on TH ,
the MVs were respectively multiplied with a gain of 1 and −2.
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Figure 3: Split range control structure for cooler.

3.4.2. Model predictive control for optimal operation

The optimal control problem is discretized into a finite dimensional optimization problem divided
into N = 40 control intervals. We use a third order direct collocation scheme for a polynomial
approximation of the system dynamics for each time interval.

The dynamic optimization problem is setup in CasADi (Andersson, 2013), which is an algoritmic
differentiation tool. According to Eq. 1, the dynamic model is non-linear. The resulting NLP
problem is thus solved using IPOPT (Wächter and Biegler, 2005). The prediction horizon is set
to 400 s with a sampling time of ∆t = 10 s. We assume we have full state feedback and the
disturbance, T in

c , is measured.

In this paper, we chose to implement the standard MPC formulation given by Eq. 2, and to assign
different weights for the two control objectives. A high weight is assigned to the high priority CV
(TH ) and a low weight is assigned to the low priority CV (FH ). The values ω1 = 3 and ω2 = 0.1 are
used. These were found by trial and error. In addition, the MVs are restricted to a rate of change
of 10% of Fmax

H and Fmax
C respectively.

min
N

∑
k=1

(
ω1
∥∥(THk −T sp

H

)∥∥2
+ω2

∥∥(Fmax
Hk
−FHk

)∥∥2
)

s.t.

T k,i = f (THk,i,THk,i−1,TCk,i,TCk,i+1,FHk ,FCk)

0≤ FHk ≤ Fmax
H

0≤ FCk ≤ Fmax
C

 ∀k ∈ {1, . . . ,N}

0≤ ∆FHk ≤ 0.1Fmax
H

0≤ ∆FCk ≤ 0.1Fmax
C

}
∀k ∈ {1, . . . ,N−1}

(2)

where ∆Fk = Fk−Fk−1 ,∀k ∈ {1, . . . ,N− 1}. For k = 1, Fk−1 represents the flow at the nominal
operation point.

3.4.3. Simulation results

Fig. 4 shows the simulation results for the case study. T sp
H is 26.3◦C. MPC and SRC structures

are tested for the same step disturbances in T in
C : +2◦C at t = 10s, and an additional +4◦C at

t = 1000s. Both MPC and SRC follow the priority list and reach optimal operation at steady state.
Once FC = Fmax

C , the control structure gives-up controlling FH = Fmax
H , and FH is used as MV to

maintain TH = T sp
H .
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Figure 4: Simulation results for MPC and SRC.

4. Discussion and conclusion
The supervisory control layer can be designed using MPC or ACS. MPC uses the manipulated
variables to achieve optimal operation by design, but it requires expertise and a model, which may
be difficult to obtain. Well designed ACS can also maintain optimal operation, require much less
model information, and are usually easier to implement and tune. In our example, SRC efficiently
switches the MVs, achieving optimal operation. Compared to ACS, MPC implementation requires
more effort as the tuning of weights in the objective function is more challenging because it is done
by trial and error. As it is seen in Fig 4, for a short transient time during the first disturbance in the
MPC implementation, FH 6= Fmax

H . This could be improved by increasing ω2 relative to ω1. This
would however be at the expense of having an offset for TH from T sp

H , as its weight in the objective
function would be smaller. Therefore, we should point out that a different MPC implementation
or tuning could have better performance, especially on the input usage.

We recommend to use priority lists as a tool for analyzing and designing the supervisory layer.
Understanding the process is an important step to decide which controller should be implemented.
Both ACS and MPC have advantages and disadvantages, and the designer of the control layer
should be aware of these. While in simple cases such as the presented case study, ACS seems
better fitted due to achieving optimality with less implementation effort, in multivariable systems
with more interactions, MPC should be considered as the most convenient alternative.
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