

Optimal Operation with Changing Active Constraint Regions using Classical Advanced Control

Adriana Reyes-Lúa, Cristina Zotică, Sigurd Skogestad*

Department of Chemical Engineering Norwegian University of Science and Technology (NTNU) *sigurd.skogestad@ntnu.no

26 July 2018

IFAC ADCHEM 2018, Shenyang, China

Reyes-Lúa et al. (NTNU)

Advanced Control Structures

26 July 2018 1 / 21

(日) (周) (三) (三)

Outline

Introduction

- 2 Classical Advanced Control Structures
- 3 Optimal Operation using Advanced Control Structures
- 4 Case study: Optimal Control of a Cooler

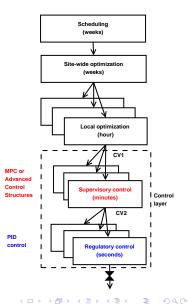
5 Conclusions

-∢ ∃ ▶

1. Control Hierarchy in a Process Plant

The control layer is divided into:

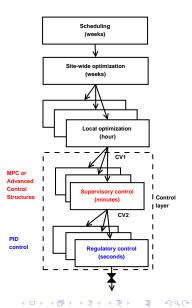
• Regulatory control



1. Control Hierarchy in a Process Plant

The control layer is divided into:

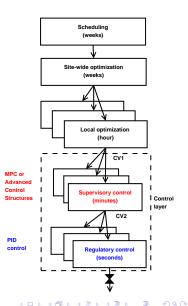
- Regulatory control
- Supervisory/advanced control



1. Control Hierarchy in a Process Plant

The control layer is divided into:

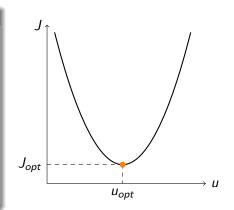
- Regulatory control
 - stable operation
- Supervisory/advanced control
 - follows the set points from long-term economic optimisation
 - calculates the set points for the regulatory layer



Objective function

 $\begin{aligned} \min_{u} J &= J(u, x, d) \\ \text{s.t.} \\ f(u, x, d) &= 0 \\ g(u, x, d) &\leq 0 \end{aligned}$

- f model equations
- g operational constraints
- *u* degrees of freedom
- x states
- *d* disturbances

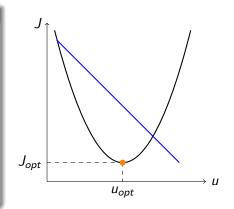


→ Ξ →

Objective function

 $\begin{aligned} \min_{u} J &= J(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) \\ \text{s.t.} \\ f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &= 0 \\ g(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &\leq 0 \end{aligned}$

- f model equations
- g operational constraints
- *u* degrees of freedom
- x states
- *d* disturbances

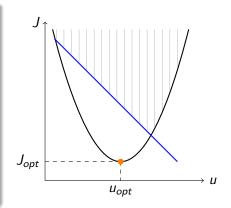


→ Ξ →

Objective function

 $\begin{aligned} \min_{u} J &= J(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) \\ \text{s.t.} \\ f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &= 0 \\ g(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &\leq 0 \end{aligned}$

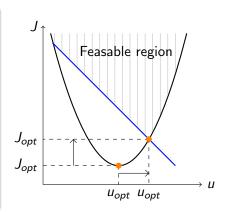
- f model equations
- g operational constraints
- *u* degrees of freedom
- x states
- *d* disturbances



Objective function

 $\begin{aligned} \min_{u} J &= J(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) \\ \text{s.t.} \\ f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &= 0 \\ g(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{d}) &\leq 0 \end{aligned}$

- f model equations
- g operational constraints
- *u* degrees of freedom
- x states
- *d* disturbances



→ ∃ →

Active Constraints

• variables that should optimally be kept at their limiting value

< ∃ >

Active Constraints

• variables that should optimally be kept at their limiting value

MV constraints¹

• valves, pumps

CV constraints²

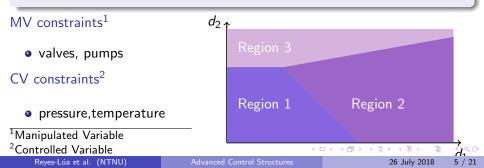
pressure,temperature

¹Manipulated Variable ²Controlled Variable

Reyes-Lúa et al. (NTNU)

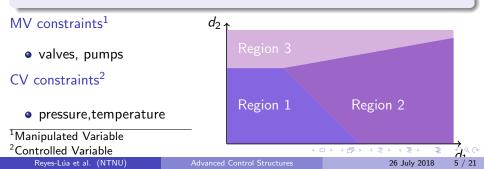
Active Constraints

- variables that should optimally be kept at their limiting value
- always control active constraints \rightarrow control structure (pairing) depends on the operating region



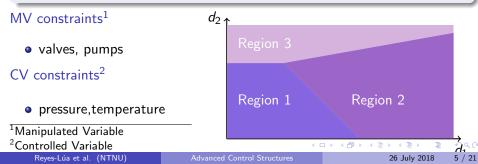
Active Constraints

- variables that should optimally be kept at their limiting value
- \bullet always control active constraints \rightarrow control structure (pairing) depends on the operating region
- disturbances may change active constraint region (space of active constraints)



Active Constraints

- variables that should optimally be kept at their limiting value
- always control active constraints \rightarrow control structure (pairing) depends on the operating region
- disturbances may change active constraint region (*space of active constraints*)
- how to ensure optimal operation with changing active constraint region in a systematic way?

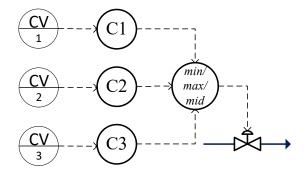


2. Classical Advanced Control Structures

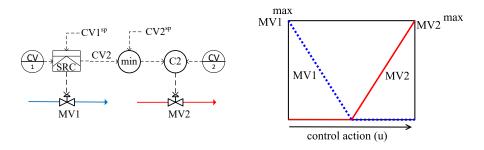
- Cascade control
- Ratio control
- Decoupling
- Feed-forward
- Selectors
- Selectors
 Split range control (SRC)
 Valve position control (VPC)¹

¹Also known as Input Resetting or Mid-Ranging

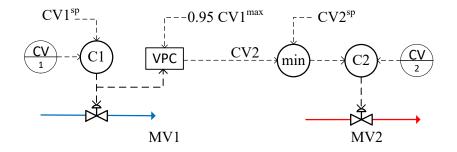
2.Selectors for changes in active constraints



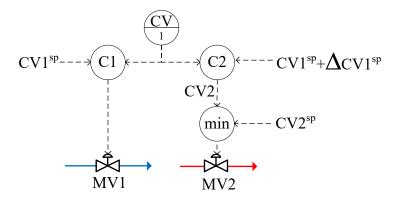
2. Split Range Control (SRC) for input constraints



2. Valve Position Controller (VPC) for input constraints



2. Two Controllers with min selector as alternative to SRC



Step 1 Define control objectives and priority list of constraints

- Step 1 Define control objectives and priority list of constraints
- Step 2 Design the control system around the nominal point \rightarrow choose pairings

- Step 1 Define control objectives and priority list of constraints
- Step 2 Design the control system around the nominal point \rightarrow choose pairings
- Step 3 Analyse how new constraints may become active with disturbances \rightarrow new active constraint region

- Step 1 Define control objectives and priority list of constraints
- Step 2 Design the control system around the nominal point \rightarrow choose pairings
- Step 3 Analyse how new constraints may become active with disturbances \rightarrow new active constraint region

In Step 1. If there are more CVs than MV \rightarrow

P1 MV inequality constraints \rightarrow physical constraints

l variables that minimize the loss when kept constant in spite of disturbances 🤞 🗆 🕨 👘 🖉 🔶 🖉 🔍 🔍

In Step 1. If there are more CVs than MV \rightarrow

P1 MV inequality constraints \rightarrow physical constraints

P2 CV inequality constraints \rightarrow may be given up

¹variables that minimize the loss when kept constant in spite of disturbances $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Xi \rangle$ $\langle \Xi \rangle$ $\langle \Xi \rangle$ $\langle \Xi \rangle$

In Step 1. If there are more CVs than MV \rightarrow

- P1 MV inequality constraints \rightarrow physical constraints
- P2 CV inequality constraints \rightarrow may be given up
- P3 MV or CV equality constraints \rightarrow optimal operation

In Step 1. If there are more CVs than MV \rightarrow

- P1 MV inequality constraints \rightarrow physical constraints
- P2 CV inequality constraints \rightarrow may be given up
- P3 MV or CV equality constraints \rightarrow optimal operation
- P4 Desired throughput (TPM) \rightarrow give up at bottleneck

variables that minimize the loss when kept constant in spite of disturbances 🕢 🗆 🗸 🗇 🖉 🗸 🖉 🕨 📱 🔊 🔍

In Step 1. If there are more CVs than MV ightarrow

- P1 MV inequality constraints \rightarrow physical constraints
- P2 CV inequality constraints \rightarrow may be given up
- P3 MV or CV equality constraints \rightarrow optimal operation
- P4 Desired throughput (TPM) \rightarrow give up at bottleneck
- P5 Self-optimizing variables ^1 \rightarrow can be given up

¹variables that minimize the loss when kept constant in spite of disturbances $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle \langle$

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should be paired with a manipulated variables (MV) that is not likely to saturate.

MV Constraint

• If pairing rule was followed: give-up low priority CV.

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should be paired with a manipulated variables (MV) that is not likely to saturate.

MV Constraint

- If pairing rule was followed: give-up low priority CV.
- If pairing rule was not followed: reassign high priority CV to MV controlling low priority CV.

→ Ξ →

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should be paired with a manipulated variables (MV) that is not likely to saturate.

MV Constraint

- If pairing rule was followed: give-up low priority CV.
- If pairing rule was not followed: reassign high priority CV to MV controlling low priority CV.
 - SRC or VPC + min/max selector

→ 3 → 4 3

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should be paired with a manipulated variables (MV) that is not likely to saturate.

MV Constraint

- If pairing rule was followed: give-up low priority CV.
- If pairing rule was not followed: reassign high priority CV to MV controlling low priority CV.
 - SRC or VPC + min/max selector

CV constraint

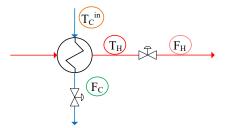
• Give-up low priority $\text{CV} \rightarrow \text{min}/\text{max}$ selector

- 4 同 6 4 日 6 4 日 6

4.Case study: Optimal Control of a Cooler Control Objectives

Case study: Counter-current heat exchanger.

- important CV: Th
- less important CV (TPM): Fh
- MV: *Fc*
- disturbance: T_c^{in}

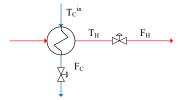


4. Priorities and Constraints

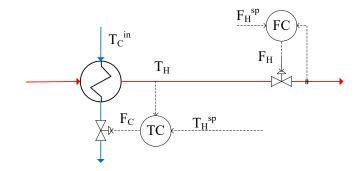
Define the priority list for step 1.

P1
$$F_C \leq F_C^{max}$$

P1 $F_H \leq F_H^{max}$
P2 $T_H = T_H^{sp}$
P3 $F_H = F_H^{sp}$



4. Pairing at the nominal operating point Step 2 in the procedure



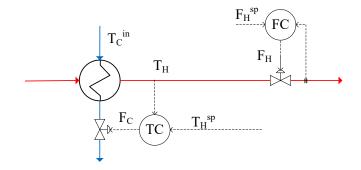
PairingUse *Fc* to control *Th*.

Reyes-Lúa et al. (NTNU)

Advanced Control Structures

26 July 2018 16 / 21

4. Pairing at the nominal operating point Step 2 in the procedure



Pairing

• Use *Fc* to control *Th*.

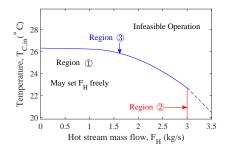
• Impossible to use the input saturation pairing rule \rightarrow Fc may saturate for a large T_c^{in} .

Reyes-Lúa et al. (NTNU)

Advanced Control Structures

26 July 2018 16 / 21

4. Active Constraints Regions



Active constraints in each region:

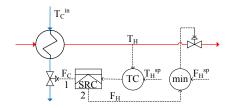
- Region 1: $F_H = F_H^{sp} < F_H^{max}$
- Region 2: $F_H = F_H^{sp} = F_H^{max}$

• Region 3:
$$F_C = F_C^{max}$$

Task

Compare 3 alternatives Advanced Control Structures to handle a transition from Region 2 (the nominal operation point) to Region 3.

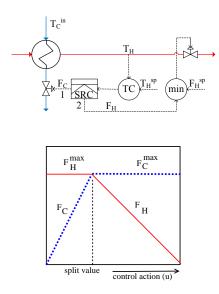
4. Alternative 1: Split Range Control



3

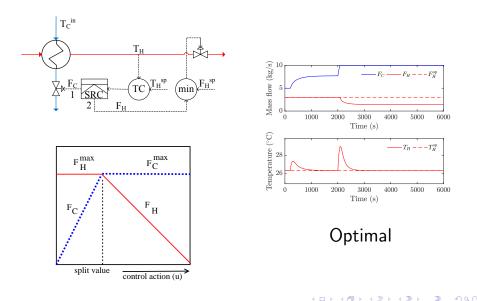
< /□ > < □

4. Alternative 1: Split Range Control



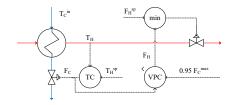
-

4. Alternative 1: Split Range Control

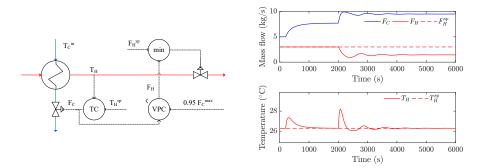


Advanced Control Structures

4. Alternative 2: Valve Position Controller

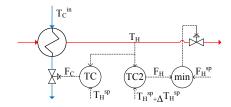


4. Alternative 2: Valve Position Controller



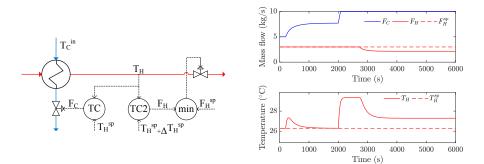
*(near-)*optimal

4. Alternative 3: Two Controllers



ም.

4. Alternative 3: Two Controllers



*(near-)*optimal

• Systematic procedure to find control structure for systems with change of active constraints

- Systematic procedure to find control structure for systems with change of active constraints
- A priority list of constraints is an important tool to design the supervisory control layer

- Systematic procedure to find control structure for systems with change of active constraints
- A priority list of constraints is an important tool to design the supervisory control layer
- Optimal control for simple systems with input saturation can be achieved using advanced control structures

- Systematic procedure to find control structure for systems with change of active constraints
- A priority list of constraints is an important tool to design the supervisory control layer
- Optimal control for simple systems with input saturation can be achieved using advanced control structures
- Split range control outperforms the two other alternatives

- Systematic procedure to find control structure for systems with change of active constraints
- A priority list of constraints is an important tool to design the supervisory control layer
- Optimal control for simple systems with input saturation can be achieved using advanced control structures
- Split range control outperforms the two other alternatives

Thank you!

