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Abstract—This paper proposes a computationally efficient al-
gorithm for robust multistage model predictive control (MPC). In
multistage scenario MPC, the evolution of uncertainty in the pre-
diction horizon is represented via a scenario tree. The resulting
large-scale optimization problem can be decomposed into several
smaller subproblems where, for example, each subproblem solves
a single scenario. Since the different scenarios differ only in the
uncertain parameters, the distributed scenario MPC problem
can be cast as a parametric nonlinear programming (NLP)
problem. By using the NLP sensitivity, we do not need to solve
all the subproblems as full NLPs. Instead they can be solved
exploiting the parametric nature by a path-following predictor-
corrector algorithm that approximates the NLP. This results in a
computationally efficient multistage scenario MPC framework.
Simulation results show that the sensitivity-based distributed
multistage MPC provides a very good approximation of the fully
centralized scenario MPC.

Index Terms—Stochastic optimal control, Optimization, Un-
certain systems, Predictive control for nonlinear systems

I. INTRODUCTION

MODEL Predictive Control (MPC) under uncertainty
has been receiving significant attention recently, and

several different approaches have been proposed to handle
the uncertainty. One such approach is the multistage scenario
MPC, which was introduced as “feedback min-max MPC”
in [1] and later developed further for nonlinear systems as
“multistage MPC” in [2], which will be the main focus of
this paper. In multistage scenario MPC, the uncertainty set
is sampled to obtain a finite number of realizations of the
uncertain parameters, and the evolution of the uncertainty in
the prediction horizon is represented via a scenario tree. The
notion of feedback is then explicitly considered by allowing
the different optimal control trajectories to vary for each
scenario (closed-loop optimization).

It is important to note that the multistage scenario MPC
considered in this work must not be confused with other
scenario-based MPC approaches proposed in [3], [4], [5] etc.
One of the main difference between these approaches and
the multistage MPC used in this work is that, they compute
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a single control trajectory over all the scenarios. Hence,
there is no notion of feedback in the optimization problem
(open-loop optimization with closed loop implementation).
In contrast, the multistage MPC approach computes differ-
ent control trajectories for different scenarios subject to the
non-anticipativity constraints (closed-loop optimization with
closed-loop implementation) [1], [2]. The authors in [6] and
[1] also noted that in the presence of uncertainty, a better
strategy is to optimize over different control trajectories rather
than a single control trajectory.

However, the main drawback of the multistage scenario
MPC applied here, is the computational cost. The problem
size grows exponentially as the
• number of uncertain parameters increases,
• number of finite realizations of the uncertainty increases,
• length of the prediction horizon increases.

Solving large nonlinear optimization problems can thus be
prohibitively expensive in many applications. One way to
address this issue is by blocking the uncertainty evolution after
a certain number of samples (known as robust horizon) in the
prediction horizon as described and justified in [2].

Another way to address the issue of computational cost is by
solving a distributed scenario optimization problem. Different
scenario decomposition approaches were proposed recently
to exploit the fact that each scenario in the scenario tree
is an independent problem except for the non-anticipativity
constraints, which couples the different scenarios. Hence the
different subproblems can be solved independently (in par-
allel), and a master problem can be used to co-ordinate the
different scenarios iteratively.

Dual decomposition strategies for distributed multistage sce-
nario optimization were presented in [7], where the individual
subproblems are solved by relaxing the non-anticipativity con-
straints. The master problem iteratively adjusts the Lagrange
multiplier (the dual variables) to co-ordinate the different
scenarios. The non-anticipativity constraints are only satisfied
upon convergence of the dual master variable. Such methods
can however, take relatively large number of iterations to
converge and hence cannot be implemented in real time. In
such cases, the authors in [8] proposed to use an aggregated
variable such that the worst-case constraint violation for the
individual scenarios are minimized.

Recently, we proposed a primal decomposition approach [9]
which, unlike the dual decomposition approaches, ensures that
the non-anticipativity constraints are always feasible through-
out the master problem iterations, since it produces a pri-



mal feasible solution with monotonically decreasing objective
value at each iteration [10]. This is an attractive property for
closed-loop implementation of MPC.

To this end, both the dual and the primal decomposition
approaches involve solving each scenario independently and a
master problem co-ordinates the different scenarios. Although
performance improvements have been reported by decom-
posing the scenario decomposition approaches in [7],[8] and
[9], it still requires solving a nonlinear programming problem
(NLP) for each scenario. Even with today’s computing power,
solving nonlinear dynamic optimization problems online can
be computationally intensive.

In this paper, we propose to further improve the scenario de-
composition algorithms by using NLP sensitivity-based path-
following approaches [11], [12]. Since the scenarios differ only
in the uncertain parameters, we propose to re-cast the scenario
decomposition problem in the framework of parametric NLP.
Here, using the solution of one full NLP, the subsequent
scenario subproblems are solved by tracking the optimal path
along the parameter range that leads to the scenarios by a
sequence of predictor-corrector QPs. In simple terms, each of
these QPs tells us how the optimal solution changes when the
parameter changes by a small value, and the NLP solution
change for a larger parameter change can be found by solving
several QPs. We apply this idea to the distributed multistage
scenario MPC problem to compute how the optimal solution
changes from one scenario to the other.

The main contribution of this paper is the use of an NLP
sensitivity-based path-following method to efficiently solve
the distributed multistage scenario MPC algorithm. The main
result is presented as a Corollary of Theorem 1 and Algo-
rithm 1. To the best of our knowledge, parametric optimization
concepts have not been used previously to solve scenario
decomposition problems for multistage scenario MPC.

The reminder of the paper is organized as follows. We
briefly introduce the multistage scenario MPC problem in
Section II. In Section III, we present the sensitivity-based
distributed scenario MPC with a path-following algorithm
(main result). The proposed method is demonstrated on a
chemical reactor case example in Section IV.

II. MULTISTAGE SCENARIO MPC

A. Centralized Approach (CNLP )

Consider a discrete-time nonlinear system

xk+1 = f(xk,uk,pk) (1)

where x ∈ Rnx represents the states, u ∈ Rnu represents
the control inputs and p ∈ Rnp represents the uncertain
parameters. Further, f : Rnx × Rnu × Rnp → Rnx represents
the system equations. We assume that the uncertain parameters
have a known distribution p ∈ U . To account for the uncer-
tainty, the uncertainty space U is discretized to get M discrete
realizations of (1) at each time sample. A scenario tree is then
generated that represents the evolution of the uncertainty in the
prediction horizon. The path from the root node to a leaf node
is called a scenario. The branching at each time step results in
exponential growth of the number of scenarios, resulting in a

very large optimization problem. For that reason, the branching
is often stopped after a certain time period, known as robust
horizon Nr, after which the uncertain parameters as treated as
constants. Accordingly, we then have S = MNr scenarios.

The resulting dynamic optimization problem is then written
as,

min
xk,j ,uk,j

S∑
j=1

[
N−1∑
k=0

J(xk,j ,uk,j)

]
(2a)

s.t xk+1,j = f(xk,j ,uk,j ,pk,j) (2b)

g(xk,j ,uk,j ,pk,j) ≤ 0 (2c)

x0,j = x̂ (2d)
S∑
j=1

Ējuj = 0 (2e)

∀j ∈ {1, · · · , S},∀k ∈ {1, · · · , N}

where the subscript (k, j) represents the jth scenario at
time sample k. J(xk,j ,uk,j) is the cost function and
g(xk,j ,uk,j ,pk,j) represents the nonlinear inequality con-
straints. The initial conditions are enforced in (2d), where x̂
denotes the state measurements/estimates at the current time
step. To keep the presentation simple, we assume full state
feedback without measurement noise. The non-anticipativity
constraints are enforced in (2e) which implies that the states
that branch at the same parent node, must have the same
control input. Note that uj here represents the sequence
of optimal control inputs for the jth scenario, i.e. uj =[
uT0,j · · ·uTN−1,j

]T ∈ RnuN and Ēj is given by

Ē =


E1,2 −E1,2

E2,3 −E2,3

. . . . . .
ES−1,S −ES−1,S

 (3)

=
[

Ē1 Ē2 · · · ĒS

]
Let no,(j,j+1) denote the number of common nodes between
two consecutive scenarios j and j + 1, then Ej,j+1 ∈
Rnuno,(j,j+1)×nuN as described in [9] and [13]. An added
advantage of formulating the non-anticipativity constraints
using this chain structure is that it results in sparse structures,
which can be exploited by many solvers as explained in [13].
The reader is referred to [14] for recursive feasibility of the
multistage scenario MPC problem.

B. Distributed Multistage Scenario MPC (DNLP )

It can be seen from (2) that the cost is additively separable in
the scenarios and that the different scenarios are independent
except for the non-anticipativity constraints (2e)Computing
separate state and control trajectories xk,j and uk,j in (2)
for each scenario j then facilitates parallel computations,
where the different scenarios are decomposed into smaller
subproblems. A master problem then co-ordinates the different
subproblems. As motivated in [9], unlike dual decomposition,
primal decomposition always ensures feasibility of the non-
anticipativity constraints during the master problem iterations,
which is crucial for closed loop implementation. Therefore, we



only consider primal decomposition in this work and refer the
reader to [7], [8] and [13] for dual decomposition approaches.

Primal decomposition iterates directly on the coupling vari-
ables [10]. By introducing a new auxiliary coupling variable
tl ∈ Rnu , ∀l ∈ {1, . . . ,

∑Nr

m=1M
m−1} to ensure non-

anticipativity constraints, the subproblem for each jth scenario
can be formulated as

Φ(tl,pj) = min
xk,j ,uk,j

N−1∑
k=0

J(xk,j ,uk,j) (4a)

s.t xk+1,j = f(xk,j ,uk,j ,pk,j) (4b)

g(xk,j ,uk,j ,pk,j) ≤ 0 (4c)

x0,j = x̂ (4d)
Ējuj = t̄ ∀k ∈ {1, · · · , N} (4e)

where t̄ is used to enforce non-anticipativity constraints and
is given by

t̄ =


t1,2 −t1,2

t2,3 −t2,3
. . . . . .

tS−1,S −tS−1,S

 (5)

and tj,j+1 ∈ Rnuno,(j,j+1) is composed of auxiliary variables
tl ∈ Rnu as described in detail in [9]. The master problem to
update the auxiliary variables tl is then given by,

min
tl

S∑
j=1

Φ(tl,pj) (6)

Proposition 1. The solution to the master problem (6) can be
expressed as the gradient descent step,

t+l = tl + α(

S∑
j=1

λj), ∀l ∈ {1, . . . ,
Nr∑
m=1

Mm−1} (7)

Proof. The descent direction for the master problem (6) is
given by the subgradient −∇tlΦ(tl,pj) =

∑S
j=1 λj , where

λj is the Lagrange multiplier that corresponds to the non-
anticipativity constraints (4e). Equation (7) then provides
a gradient descent direction to the master problem with a
suitable step length α. See [10],[15] for more information.

The master problem and the scenario subproblems are itera-
tively solved until tl converges. One commonly used stopping
criteria is that the change in tl between two subsequent
iterations, denoted by ∆tl = ‖t+l − tl‖ must be less than
a certain user-defined tolerance ε as described in Algorithm 1
and also in [9].

III. SENSITIVITY-BASED DISTRIBUTED MULTISTAGE
SCENARIO MPC

A. Sensitivity in Parametric NLP

To keep the presentation simple, we now reformulate (4) as
a generic parametric NLP of the form,

min
X

J (X, p)

s.t. ci(X, p) = 0, ∀i ∈ E (8)
ci(X, p) ≤ 0, ∀i ∈ I

where X ∈ RnX denotes the optimization (primal) variables
of (4), p ∈ Rnp is the vector of uncertain parameters and the
objective function is denoted by J : RnX × Rnp → R. The
equality and inequality constraints c : RnX ×Rnp → Rnc are
denoted by the sets E = {1, . . . , v} and I = {v + 1, . . . , nc},
respectively.

The Lagrangian of (8) is defined as

L(X,λ,p) := J (X,p) + λT c(X,p) (9)

where λ is the vector of Lagrange multipliers (dual variable).
The Karush-Kuhn-Tucker (KKT) conditions for this problem
can be stated as

∇XL(X,λ,p) = 0,

ci (X,p) = 0, i ∈ E,
ci (X,p) ≤ 0, i ∈ I, (10)

λTi ci (X,p) = 0, i ∈ I,
λi ≥ 0, i ∈ I.

Definition 1 (KKT point). Any point (X∗,λ∗) that satisfies
the KKT conditions (10) for a given parameter vector p is
called a KKT point for p.

The active inequality constraints in (8) are denoted by the
set A (X,p) = {ci (X,p) = 0, i ∈ I} and the active set is
then given by E ∪ A. For a given KKT point (X∗,λ∗), the
active set A has two subsets, namely a weakly active set
A0 (X,λ,p) = {i ∈ A (X,p) | λi = 0} and a strong active
set A+ (X,λ,p) = {i ∈ A (X,p) | λi > 0}. Consequently,
the inactive set A− (X,λ,p) = {ci (X,p) < 0, i ∈ I} is the
complement of set A.

A constraint qualification is required to hold in order for the
KKT conditions to be a necessary condition of optimality and
in this work we consider the linear independence constraint
qualification (LICQ) which is defined as follows.

Definition 2 (LICQ). Given a vector p and a point X , the
linear independence constraint qualification (LICQ) holds at
(X,p) if the set of vectors {∇Xci (X,p)}i∈E∪A(X,p) are
linearly independent.

Definition 3 (SSOSC). The strong second order suffi-
cient condition (SSOSC) holds at any KKT point (X∗,λ∗),
if dTH (X,λ,p)d > 0 for all d 6= 0 such that
∇Xci (X,p)

T
d = 0 for i ∈ E ∪ A+, where the Hessian

of the Lagrangian (9) is given by

H (X,λ,p) = ∇2
XXJ (X,p) +

n∑
i=1

∇2
XXci (X,p)λi.

The LICQ and SSOSC guarantees that a KKT point is a strict
local minimum.

Assumption 1. X∗ satisfies the KKT conditions (10) for a
given parameter vector p0 and the linear independence con-
straint qualification (LICQ) and strong second order sufficient
condition (SSOSC) hold at (X∗,p0).

The reader is referred to Lemma 1 in [13] for detailed
description on how the assumption of LICQ and positive



definiteness of the Hessian translates to the multistage scenario
MPC problem (4).

Theorem 1. Let J , c be twice differentiable in p and X
near a solution of (8) (X∗,p0) and let Assumption 1 hold,
then the solution (X∗(p),λ∗(p)) is Lipschitz continuous in
the neighbourhood of (X∗,λ∗,p0) and the solution X∗(p)
is directionally differentiable. Additionally, the directional
derivative uniquely solves the following quadratic problem
(QP):

min
∆X

1

2
∆XT∇2

XXL (X∗,p0,λ
∗) ∆X

+ ∆XT∇XpL (X∗,p0,λ
∗) ∆p (11)

s.t.

∇Xci (X∗,p0)
T

∆X

+∇pci (X∗,p0)
T

∆p = 0 i ∈ A+ ∪ E,
∇Xci (X∗,p0)

T
∆X

+∇pci (X∗,p0)
T

∆p ≤ 0 i ∈ A0

Proof. See [16] and [17, Section 5.2].

The theorem above implies that a quadratic programming (QP)
problem (11), often referred as pure-predictor QP, can be
solved instead of a full NLP problem, in order to compute
an approximate solution of (8) in the neighborhood of pertur-
bation p0. This is the key to the sensitivity-based approach
that we now use to efficiently solve the distributed multistage
scenario MPC problem.

B. Path-following predictor-corrector QP

A corrector term can be added to the objective function
in (11) to improve the approximation accuracy, as shown in
[12]. With the technical assumptions that the parameter enters
linearly in the constraints, we can formulate the following QP.

min
∆X

1

2
∆XT∇2

XXL (X∗,p0 + ∆p,λ∗) ∆X

+ ∆XT∇XpL (X∗,p0 + ∆p,λ∗) ∆p

+∇XJ T∆X (12)
s.t.

ci (X∗,p0 + ∆p) +∇pci (X∗,p0 + ∆p)
T

∆p+

∇Xci (X∗,p0 + ∆p)
T

∆X = 0 , i ∈ A+ ∪ E,
ci (X∗,p0 + ∆p) +∇pci (X∗,p0 + ∆p)

T
∆p

+∇Xci (X∗,p0 + ∆p)
T

∆X ≤ 0 , i ∈ A0.

The QP formulation (12) is known as the predictor-
corrector QP. It can be thought of a combination of a first-
order sensitivity step and an SQP step towards the solution
for the new parameter value. In the small neighborhood of
p0, the predictor-corrector QP formulation was shown to
provide good approximations of the NLP solution. However,
the different models M used in the scenario optimization need
not necessarily be in the small neighbourhood of each other.
Therefore, in order to allow for large perturbations (i.e. large
∆p, we propose to apply a path-following approach [12],

where we solve a series of QP problems sequentially similar to
an Euler integration scheme for ordinary differential equations.
1

Given an optimal solution X∗(pj−1) for a parameter vector
pj−1, we want to compute the optimal solution for a parameter
vector pj . The path-following predictor-corrector QP then
updates X for the parameter sequence p according to

p (νκ) = (1− νκ)pj−1 + νκpj (13)

where ν0 = 0 until it reaches νκ = 1. In other words ν0 =
0 < ν1 < ν2 < · · · < νκ = 1. Given a sufficiently small step
∆ν, the path-following predictor-corrector QP, after solving a
series of QP problems, provides the optimal solution X∗(pj)
for a parameter vector pj . In this paper, for simplicity, we use
a fixed step size ∆ν = νκ+1 − νκ.

C. Sensitivity-based path-following distributed multistage sce-
nario MPC

Based on these developments, we are now ready to formu-
late the sensitivity-based distributed multistage scenario MPC
algorithm.

Assumption 2. There exists a continuous path of unique
optimal solutions between the subproblems Φ(tl,pj−1) and
Φ(tl,pj).

Corollary 1 (Main result). Let
[
X∗(pj−1),λ∗(pj−1)

]
be the

solution for one scenario subproblem obtained by solving
the NLP Φ(tl,pj−1) and let Assumptions (1) and (2) hold.
Further, let pj be in the neighbourhood of pj−1, then the
solution for all other scenario subproblems Φ(tl,pj) with the
same set of auxiliary variables tl is Lipschitz continuous in the
neighbourhood of

[
X∗(pj−1),λ∗(pj−1)

]
and can be obtained

by repeatedly solving the predictor-corrector QP (12).

Proof. Since the only difference between the scenarios
Φ(tl,pj−1) and Φ(tl,pj) is the parameter vector pj , it
follows from Theorem 1 that the NLP problem Φ(tl,pj) can
be approximated by repeatedly solving the QP problem (12)
for a small parameter perturbation ∆p along the path from
pj−1 to pj .

Corollary 1 above suggests that instead of solving S number
of NLPs, the multistage scenario MPC problem can be solved
using MNr−1 number of NLPs and the remaining subproblems
can be solved as QPs. The number of common nodes between
two consecutive scenarios no,(j,j+1) is used to check if the
two scenarios have the same set of auxiliary variables tl.
The sensitivity-based distributed scenario MPC algorithm then
consists of the following three steps.

1) For a given primal master variable tl, solve the NLP
problem Φ(tl,pj−1) for one subproblem with the pa-
rameter vector pj−1 to obtain the optimal primal and
dual variables X∗(pj−1) and λ∗(pj−1), respectively.

2) For the subsequent scenario subproblems with the same
set of auxiliary variables, compute an approximation of

1Note that the path-following in [12] was applied to advance step MPC,
whereas in this paper, we apply it to the distributed scenario MPC problem.



the NLP problem Φ(tl,pj) using the QP (12) in a path-
following manner as described in Section III-B.

3) Using the computed Lagrange multipliers corresponding
to the non-anticipativity constraints (4e) λ ⊂ λ from all
the subproblems, update the primal master variable tl
according to (7).

A sketch of the proposed sensitivity-based multistage scenario
MPC procedure is described in Algorithm 1.

Algorithm 1 Sensitivity-based distributed multistage scenario
MPC

Define tolerance ε > 0, ∆ν ≤ 1.
Input: At each time step, initial state x̂, initial t0l and ∆tl >
ε, initial α

while ∆tl > ε do
for j = 1, 2, . . . , S do

if (j = 1) ∨ (no,(j−1,j) ≤ Nr − 1) then[
X∗(pj),λ

∗(pj)
]
← solution NLP Φ(tl,pj)

else . Approximate NLP using QP (12).[
∆X∗,λ∗(pj)

]
← QP PF(X∗,λ∗,pj−1,pj).

Set X∗(pj) = X∗(pj−1) + ∆X∗.
end if

end for
Update t+l = tl + α(

∑S
j=1 λj)

Update ∆tl = ‖t+l − tl‖
end while

function QP PF(X∗(pj−1),λ∗(pj−1),pj−1,pj)
Define A+.
Set νκ = 0.
while νκ < 1 do

[∆X∗,λ∗]←solution QP (12) with p = p (νκ)
X∗ = X∗ + ∆X∗

νκ+1 ← νκ + ∆ν
p (νκ) = (1− νκ)pj−1 + νκpj

end while
return ∆X∗,λ∗

end function

Output: X∗(pj),∀j ∈ {1, . . . , S}

IV. ILLUSTRATIVE EXAMPLE

In this work, we consider an exothermic chemical reactor
case study from [18] that is widely used in process control
literature, where component A is converted to product B (A�
B). The reaction rate is given as r = k1CA − k2CB where
k1 = C1e

−E1
RT and k2 = C2e

−E2
RT . The dynamic model consists

of two mass balances and an energy balance:

ĊA =
1

τ
(CA,i − CA)− r (14a)

ĊB =
1

τ
(CB,i − CB) + r (14b)

Ṫ =
1

τ
(Ti − T ) +

−∆Hrx

ρCp
r (14c)

where time constant τ = 60s, CA and CB are concentrations
of the two components in the reactor and CA,i and CB,i are

in the inflow. Ti is the inlet temperature and T is the reaction
temperature. Other model parameters for the process can be
found in [18]. The objective is to compute the optimal inlet
temperature Ti such that we can minimize the operational
cost while keeping the reactor temperature T ≤ 425K. We
assume the concentration of component B in the feed stream
is uncertain and consider five discrete realizations, namely,
CB,i ∈ {0, 0.05, 0.1, 0.15, 0.2}molL−1.

We use a multistage scenario MPC with a prediction horizon
of T = 300s divided equally into N = 20 samples. The system
model (14) is discretized using third order direct collocation
and the resulting finite horizon multistage MPC problem
was implemented in MATLAB using CasADi algorithmic
differentiation tool version 3.1.0 [19]. The NLP problem was
solved using the IPOPT solver and the QP problems were
solved using TOMLAB MINOS. The optimization problem
then consists,

1) J(xk,j ,uk,j) =
(
−2.009CB + (1.657× 10−3Ti)

2
)
,

2) discretized system model,
3) uncertain parameter p = CBi

discretized into M = 5
finite models, namely, CBi

∈ {0, 0.05, 0.1, 0.15, 0.2} ,
4) process constraints g(xk,j ,uk,j) = T − 425, and
5) non-anticipativity constraints (2e).

We note that in the considered case study, the constraint
T ≤ 425K becomes active at steady state only when CBi ∈
{0, 0.05} and not when CBi

∈ {0.1, 0.15, 0.2}. Therefore the
active constraint set changes between the different scenarios.
The true realization of CBi

used in the simulations changes
from CBi = 0.15molL−1 to CBi = 0.05molL−1 at time
t = 300s.

1) Simulation 1: In the first simulation we consider a robust
horizon of Nr = 1 and hence we have S = 5 scenarios.
We first compute the solution of a fully centralized approach
(CNLP ), i.e. (2) to be used as a benchmark. The multistage
scenario MPC is then solved using the primal decomposition
approach i.e. (4), where all the scenario subproblems are
solved as NLP problems (DNLP ). We then solve the optimiza-
tion problem using the proposed path-following QP (pf-QP),
where the first scenario was solved as NLP problem and the
subsequent four scenarios are solved using the path-following
predictor-corrector QP (12) as described in Algorithm 1 with
a fixed step size ∆ν = 0.5. Hence two QPs were solved
to approximate each subproblem. For the distributed scenario
approaches, the tolerance was chosen to be ε = 0.001 and a
feasibility ensuring backtracking algorithm was used to select
a suitable step length α.

The closed loop implemented solution for the proposed
sensitivity-based distributed scenario MPC are compared with
the fully centralized scenario MPC (CNLP ) and the distributed
scenario MPC solved using full NLPs (DNLP ) along with the
corresponding absolute errors in Fig.1a.

2) Simulation2: In the second simulation we consider the
same problem, but a robust horizon of Nr = 2 leading to a sce-
nario tree with S = 25 scenarios. By using the path-following
predictor-corrector QP (12), we solve 5 scenarios using NLPs
and 20 scenarios were solved using path-following QPs. The
closed loop implemented solution for the proposed sensitivity-
based distributed scenario MPC (pf-QP) are compared with the



(a)

(b)

Fig. 1: Closed loop simulation results for fully centralized approach
CNLP (Thick gray lines), distributed approach with full NLP DNLP

(solid red lines) and the proposed path-following approach pf-QP
(black dashed lines) for (a) Nr = 1, S = 5 scenarios (b) Nr = 2,
S = 25 scenarios. The corresponding absolute errors are plotted in
the right hand side subplots.

fully centralized scenario MPC (CNLP ) and the distributed
scenario MPC solved using full NLPs (DNLP ). The closed-
loop results and the corresponding absolute errors are shown
in Fig.1b.

The average CPU times for each subproblem for the two
simulation cases are reported in Table I. Note that the com-
putation time depends heavily on the implementation and
computation time of the QP may be further improved by using
dedicated high performance QP solvers instead of an off-the
shelf solver.

The simulation results in Fig.1a and Fig.1b clearly demon-
strates that the proposed sensitivity-based distributed Scenario
MPC is able to provide a very good approximation of the
centralized scenario MPC and full NLP distributed scenario
MPC. The simulations also demonstrate that the proposed

TABLE I: CPU times (in sec)

Nr = 1 Nr = 2

max avg min max avg min

NLP 0.137 0.073 0.053 0.127 0.085 0.077
pf-QP 0.093 0.011 0.0082 0.062 0.024 0.012

approach can handle changes in active constraint set between
the different subproblems.
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