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Abstract: In this paper, we consider the decomposition of scenario-based model predictive
control problem. Scenario MPC explicitly considers the concept of recourse by representing
the evolution of uncertainty by a discrete scenario tree, which can result in large optimization
problems. Due to the inherent nature of the scenario tree, the problem can be decomposed into
each scenario. The different subproblems are only coupled via the non-anticipativity constraints
which ensures that the first control input is the same for all the scenarios. This constraint
is relaxed in the dual decomposition approaches, which may lead to infeasibility of the non-
anticipativity constraints if the master problem does not converge within the required time.
In this paper, we present an alternative approach using primal decomposition which ensures
feasibility of the non-anticipativity constraints throughout the iterations. The proposed method
is demonstrated using gas-lift optimization as case study.

Keywords: Scenario Optimization, Primal decomposition, Uncertainty, Distributed
optimization

1. INTRODUCTION

Model predictive control (MPC) has proven to be a highly
successful control methodology in the process control in-
dustry due to its ability to handle large and complex
multivariable systems, subject to process and operating
constraints. MPC typically uses models that represents the
system and computes an optimal input trajectory based
on model predictions in order to minimize a certain cost
function over the prediction horizon. Recently, there has
been an increasing trend in the use of Economic NMPC,
where the economic objectives are incorporated into the
MPC problem.

The presence of plant-model mismatch or process varia-
tions can easily lead to constraint violations or suboptimal
operation. Different approaches have been proposed in
the literature to handle uncertainty in the MPC problem,
such as min-max MPC (Campo and Morari, 1987), which
computes an optimal input trajectory that minimizes the
cost of the worst-case realization of the uncertainty. This,
however, leads to a very conservative solution, since the
optimization is performed in an open-loop fashion. It ig-
nores the fact that new information will be available and a
new control trajectory will be re-computed in the future. In
other words, min-max MPC ignores one of the important
aspect of uncertainty handling, namely, feedback. Feedback
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min-max MPC scheme was proposed by Scokaert and
Mayne (1998) to overcome the limitations of the open-
loop min-max MPC. Feedback min-max MPC is a closed-
loop optimization scheme, where the notion of feedback is
explicitly taken into account by optimizing over different
control policies rather than a single control trajectory by
representing the evolution of the uncertainty by a scenario
tree. This approach was later studied in detail for nonlinear
systems in the context of multistage NMPC problem and
was shown to reduce the conservativeness at the cost of
computational time (Lucia et al., 2013a).

One of the main challenges of this method is that the com-
putational size of the problem grows exponentially with 1)
length of the prediction horizon, 2) number of uncertain
parameters and disturbances and 3) number of discrete
models for each uncertain variable that is considered in
generating the different scenarios. This poses a challenge
for real-time implementation, despite advancements in
computational power and efficient numerical solvers.

One solution to this problem is to stop the branching after
a certain number of samples in the prediction horizon
(known as robust horizon) in order to curb the number
of scenarios as described in Lucia et al. (2013a). Another
solution is to exploit the fact that each scenario can be
written as an independent subproblem except for the so-
called non-anticipativity constraints. Hence decomposition
methods can be employed by solving the subproblems
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independently and later use a master problem to co-
ordinate the individual subproblems iteratively.

Scenario decomposition using dual decomposition was pro-
posed by Lucia et al. (2013b) and Mart́ı et al. (2015). Dual
decomposition (also known as Lagrangian decomposition)
method solves the subproblems by relaxing the coupling
constraints. A master problem then co-ordinates the in-
dividual subproblems iteratively. The previously relaxed
constraints are feasible only upon convergence. Mart́ı et al.
(2015) indicates that such methods require a relatively
large number of iterations between the master problem
and the subproblem to converge, leading to challenges
with practical implementation. The use of augmented
lagrangian methods can help improve the convergence
properties, however this makes the problem non-separable
(Boyd et al., 2011).

The risk of dual decomposition is then that the master
problem may not converge within the required time. This
leads to infeasibility of the non-anticipativity constraints,
the implications of which are that the different subprob-
lems may give different control inputs at the first sample
time in the prediction horizon. This is not acceptable for
real-time closed-loop implementation. In this paper, we
propose an alternative approach to scenario decomposition
using the primal decomposition approach which ensures
the non-anticipativity constraints are always feasible. This
is because, in contrast to dual decomposition, primal
decomposition produces a primal feasible solution with
monotonically decreasing objective value at each iteration.

The key challenge in any real-time implementation of
optimizing controllers such as MPC is clearly, how best
to deal with time. Quoting Kerrigan et al. (2015), “The
correctness of a computation is a function of time”. The
late-arrival of a solution in many cases may simply not
be acceptable. In real-time optimization, approximate so-
lution now is better than an accurate solution tomorrow.
This strategy is adopted in many optimization algorithms
(Kerrigan et al., 2015). This is also the motivation to use
primal decomposition as opposed to dual decomposition
for the scenario MPC problem.

The paper is organized as follows. The framework of sce-
nario MPC is introduced in section 2. The decomposition
algorithm is presented in section 3. The proposed method-
ology is verified using a case study in section 4 before
concluding the paper in section 5.

2. SCENARIO MPC

Consider a discrete-time nonlinear system of the form,

xk+1 = f(xk,uk,dk) (1)

where, xk ∈ Rnx denotes the state vector at time step k,
uk ∈ Rnu is the vector of control inputs and dk ∈ Rnd

represents the uncertain parameters and disturbances.
Let us assume that the uncertainty belongs to a known
distribution such that dk ∈ U ∀k.

If the model (1) is perfect, the predicted state trajectory
is given by x[k,k+N ] for the open-loop implementation of
the corresponding input trajectory u[k,k+N−1] over the
prediction horizon [k, k + N ]. However, in the presence
of plant-model mismatch, u[k,k+N−1] must be associated
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· · ·
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· · ·
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· · ·
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· · ·
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· · ·
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Fig. 1. Scenario Tree for M = 3 and Nr = 2.

with a cone of state trajectories {x[k,k+N ]}U depending
on the realization of the uncertain variables (Guay et al.,
2015). Optimizing over a single control trajectory (open-
loop optimization) disregards feedback. In other words,
it disregards the fact that new information will be avail-
able in the future and the control trajectory will be re-
optimized. It may be prudent to optimize over different
control policies rather than a single control trajectory, see
Mayne (2014) and Mayne (2015). In other words, the opti-
mization problem should compute a cone of possible con-
trol trajectories {u[k,k+N−1]}U instead of a single control
trajectory. A simple approach to solve this problem is to
discretize the uncertainty space and represent the cone of
trajectories as discrete scenarios. This is the basic principle
behind scenario MPC. Scenario MPC (also known as mul-
tistage MPC or feedback min-max MPC) is thus a closed-
loop optimization approach, where the evolution of the
uncertainty is explicitly taken into account by modelling
a tree of discrete scenarios as described by Scokaert and
Mayne (1998). By doing so, we can considerably reduce
the conservativeness of the solution compared to min-max
methods that optimize over a single control trajectory
(Lucia et al., 2013a).

To formulate the scenario MPC mathematically, the
discrete-time nonlinear system (1) reads as,

xk+1,j = f(xk,j ,uk,j ,dk,j) (2)

where, the subscript (·)k,j represents the jth scenario at
time step k.

The first step to building a scenario tree is to discretize
the uncertainty space U to get M discrete realizations. A
common practice is to consider a combination of nominal
and extreme values to cover the overall uncertainty space,
which has been shown to give good results in many
different application examples, see Lucia et al. (2013a),
Krishnamoorthy et al. (2017) and the references therein.

From the discrete realizations of the uncertainty, a scenario
tree is generated as shown in Fig.1. Each scenario is defined
as the path from root node to the leaf node. The number
of scenarios resulting from the branching at each time
step leads to exponential growth of the problem. A simple
strategy to curb this is to stop the branching after a certain
period of time Nr (known as robust horizon) as justified
in Lucia et al. (2013a). The total number of scenarios is
then given by S = MNr .
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The resulting optimization problem is then written as,

min
xk,j ,uk,j

S∑
j=1

[
ωj

N∑
k=1

J(xk,j ,uk,j)

]
(3a)

s.t

xk+1,j = f(xk,j ,uk,j ,dk,j) (3b)

g(xk,j ,uk,j) ≤ 0 (3c)
S∑

j=1

Ējuj = 0 ∀j ∈ {1, · · · , S} (3d)

where ω is the probability or weight for each scenario,
J(xk,j ,uk,j) is the cost function, f(xk,j ,uk,j ,dk,j) is the
system model, g(xk,j ,uk,j) represents the nonlinear con-
straints. The constraints in (3d) are known as non-
anticipativity or causality constraints which impose the
fact that the future control inputs cannot anticipate the
realization of the uncertainty. This implies that the states
that branch at the same parent node, must have the same
control input. Note that uj here represents the sequence
of optimal control input for the jth scenario, i.e. uj =[
uT
0,j · · ·uT

N−1,j
]T ∈ RnuN . To explain the notation of Ē,

we first introduce the notation:

p = nu

S−1∑
j=1

nc,(j,j+1) (4)

where nc,(j,j+1) represents the number of common nodes
for two consecutive scenarios j and j + 1 in the scenario
tree (Klintberg et al., 2016). The matrices Ēj ∈ Rp×nuN

can then be given as,

Ē =


E1,2 −E1,2

E2,3 −E2,3

. . .
. . .

ES−1,S −ES−1,S

 (5)

=
[
Ē1 Ē2 · · · ĒS

]
where

Ej,j+1 =

 Inu

. . . 0
Inu

 ∈ Rnunc,(j,j+1)×nuN (6)

and 0 ∈ Rnunc,(j,j+1)×nu(N−Nr) is a zero matrix. Using such
a chain structure for the non-anticipativity constraints
results in sparse structures, which can be an added ad-
vantage (Klintberg et al., 2016).

3. SCENARIO DECOMPOSITION

As described above, the different scenarios are independent
except for the non-anticipativity constraints, which couple
the different scenarios together. To this end, the differ-
ent scenarios are easily separable. Different decomposition
strategies exists that facilitates efficient solutions of such
large scale optimization problems by decomposing them
into smaller subproblems. This way the different subprob-
lems can be parallelized. A master problem is then em-
ployed to co-ordinate the coupling constraints, (Bertsekas,
1999).

scenario 1

Φ1(t)

scenario 2

Φ2(t)

scenario S

ΦS(t)· · ·

t
+ = t+ α

P
λj

λ1 λ2 λS

t

Fig. 2. Block diagram showing the structure information
flow between the subproblems and the master prob-
lem.

3.1 Lagrangian Decomposition

In Lagrangian decomposition, the dual variables λ corre-
sponding to the non-anticipativity constraints are used to
define the Langrange function,

L(x,u, λ) =

S∑
j=1

[
ωj

N∑
k=1

J(xk,j ,uk,j)

]
+ λT

S∑
j=1

Ējuj (7)

Since L(x,u, λ) is separable in x and u, each scenario can
be solved independently by relaxing the non-anticipativity
constraints as shown (Klintberg et al., 2016),

Lj(xj ,uj , λ) = ωj

N∑
k=1

J(xk,j ,uk,j) + λT Ējuj (8)

Note that (7) and (8) are also subject to the system
model (3b) and nonlinear constraints (3c) for all j ∈
{1, . . . , S}. The master problem iterates on λ and the
non-anticipativity constraints become feasible only upon
convergence of λ. Different forms of augmented Lagrangian
decomposition methods have also been introduced in Mart́ı
et al. (2015), where an additional quadratic penalty term is
added to (7) to improve the convergence properties. How-
ever, this makes the problem not separable in x and u. The
subproblems must then be solved sequentially using the
Alternating Directions Method of Multipliers (ADMM)
approach (Boyd et al., 2011). Solving the subproblems
sequentially can then make the computation time longer
for problems with large number of scenarios.

The relaxation of the non-anticipativity constraints in
Lagrangian decomposition poses a challenge for real time
implementation. In an MPC framework, the optimization
problem is solved to compute the optimal control trajec-
tory and the first control move in implemented in the
plant in a receding horizon fashion. In scenario MPC, the
non-anticipativity constraints ensure that the first control
input is the same for all the scenarios. However, if λ fails
to converge within the required sampling time, infeasi-
bility of the non-anticipativity constraints would mean
that the first control move provided by the different sce-
nario subproblems may be different. This is not acceptable
for closed-loop implementation. We therefore, provide an
alternative approach using primal decomposition frame-
work which always produces a primal feasible point with
monotone-decreasing objective value at each iteration.

3.2 Primal Decomposition

Primal decomposition iterates directly on the shared
variables (Bertsekas, 1999). This ensures that the non-
anticipativity constraints are always feasible at any point
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u0;1; d0;1 u1;1; d1;1 u2;1; d2;1 uN;1; dN;1
· · ·

u0;2; d0;1 u1;2; d1;2 u2;2; d2;2 uN;2; dN;2
· · ·

u0;3; d0;1 u1;3; d1;3 u2;3; d2;3 uN;3; dN;3
· · ·

u0;4; d0;2 u1;4; d1;1 u2;4; d2;1 uN;4; dN;1
· · ·

u0;5; d0;2 u1;5; d1;2 u2;5; d2;2 uN;5; dN;2
· · ·

u0;6; d0;2 u1;6; d1;3 u2;6; d2;3 uN;6; dN;3
· · ·

u0;7; d0;3 u1;7; d1;1 u2;7; d2;1 uN;7; dN;1
· · ·

u0;8; d0;3 u1;8; d1;2 u2;8; d2;2 uN;8; dN;2
· · ·

u0;9; d0;3 u1;9; d1;3 u2;9; d2;3 uN;9; dN;3
· · ·

Nr = 2

t1 t2

t3

t4

S1

S2

S3

S4

S5

S6

S7

S8

S9

Fig. 3. Parallalized representation of the scenario tree for
an uncertainty with 3 discrete realizations (M = 3)
and a robust horizon of 2 samples (Nr = 2). The non-
anticipativity constraints that couple the different
scenarios are marked in different coloured boxes.

in time. Thus the first control move provided by all the
scenario subproblems will be the same, enabling closed-
loop implementation.

The subproblem for each scenario can be written by
introducing a new auxiliary variable tl,

Φj(tl) = min
xk,j ,uk,j

ωj

N∑
k=1

J(xk,j ,uk,j) (9a)

s.t

xk+1,j = f(xk,j ,uk,j ,dj) (9b)

g(xk,j ,uk,j) ≤ 0 (9c)

Ējuj = t̄j (9d)

where t̄ has a similar structure to Ēj as shown below,

t̄ =


t1,2 −t1,2

t2,3 −t2,3
. . .

. . .
tS−1,S −tS−1,S

 (10)

= [ t̄1 t̄2 · · · t̄S ]

tj,j+1 ∈ Rnunc,(j,j+1) is composed of auxiliary variables
tl ∈ Rnu . The index l can be given by the expression,

l ∈ {1, . . . ,
Nr∑
m=1

Mm−1} (11)

The master problem is then written as,

min
tl

S∑
j=1

Φj(tl) (12)

which simplifies to updating each tl using the correspond-
ing lagrange multipliers from the different subproblems as
shown in Fig.2.

The generation of tj,j+1 and the master problem update
is illustrated using an example with M = 3 and nR = 2.
The corresponding scenario tree is shown in Fig.1 and the
decomposed tree is shown in Fig.3. For such a tree, l = 4
and tl = {tT1 , · · · , tT4 }. Table 1 shows the tj,j+1 or each
scenario pair.

Each tl is then updated in the master problem as shown,

t+1 = t1 + α1(λ1,1 + · · ·+ λ1,9) (13)

t+2 = t2 + α2(λ2,1 + · · ·+ λ2,3) (14)

t+3 = t3 + α3(λ2,4 + · · ·+ λ2,6) (15)

t+4 = t4 + α4(λ2,6 + · · ·+ λ2,9) (16)

where the subscripts of λk,j represents the lagrange mul-
tiplier at sample instant k for the jth scenario and α is a
suitable step length. A simple stopping criteria for the iter-
ations between the master problem and the subproblems
could be when the change in t between two consecutive
iterations is less than some small user-defined tolerance ε.

By introducing the auxiliary variables tl, the first control
input for all the scenarios is u1,j = t1. The master problem
iterates to drive t1 to the optimal input. In the case, where
the master problem does not converge to the optimum
within the required sampling time, the non-anticipativity
constraints are still feasible, thus enabling closed-loop im-
plementation. By warm-starting tl in the subsequent time
steps, the optimization problem is expected to eventually
converge to the true optimum.

4. ILLUSTRATIVE EXAMPLE

4.1 Process description

The primal decomposition approach proposed above is
implemented on an oil and gas production optimization
problem. We consider a gas lifted well network consisting
of 2 wells producing to a common manifold and a riser as
shown in Fig.4. More detailed description of the system
can be found in Krishnamoorthy et al. (2016) and the
references therein.

The objective of the optimization problem is to find the
optimum gas lift injection rates for the two wells such that
the the profits from the oil production is maximized and
the cost of gas compression is minimized. The gas-oil-ratio
GORi for each well i ∈ {1, · · · , nw}, is assumed to be
uncertain. The nominal value GOR0i and the variance σi
are assumed to be known a-priori.

min
wgl

N∑
k=1

[
−$o

nw∑
i=1

wpo,ik + $gl

nw∑
i=1

wgl,ik

]
(17a)

s.t.

xk+1 = f(xk,uk, GORik) (17b)

GORi ∈ {GOR0i ± σi} (17c)

∀i ∈ {1, · · · , nw}, k ∈ {1, · · · , N}
where wpo is the oil production rate from each well, wgl is
the gas lift injection rate for each well, nw = 2 is the
number of wells, $o and $gl are the value of produced

Table 1. Construction of tj,j+1 for the scenario
tree in Fig.3.

(j, j + 1) nc,(j,j+1) tj,j+1

(1,2) 2 [tT1 , tT2 ]T

(2,3) 2 [tT1 , tT2 ]T

(3,4) 1 [tT1 ]
(4,5) 2 [tT1 , tt3]T

(5,6) 2 [tT1 , tt3]T

(6,7) 1 [tT1 ]
(7,8) 2 [tT1 , tt4]T

(8,9) 2 [tT1 , tt4]T

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

348



wgl;1 wgl;2
W

e
ll
1

W
e
ll
2

R
is
e
r

wpo;1 wpo;2

Fig. 4. Schematic of a gas lifted well network with 2 wells
producing to a common riser manifold.

Table 2. The discrete realizations of GOR used
in the optimizer

GOR well 1 0.08 0.10 0.12
GOR well 2 0.10 0.12 0.14

oil and cost of gas compression respectively. The system
constraints are enforced in (17b).

The continuous time differential equations are discretized
into (17b) using a third order direct collocation scheme
in CasADi v3.0.1 (Andersson, 2013) using the MATLAB
R2017a programming environment. The NLP problem is
then solved using IPOPT version 3.12.2 running with
mumps linear solver.

The dynamic optimization problem was solved with a
prediction horizon of N = 15 and a sampling time of
Ts = 5min. A robust horizon of nR = 2 was chosen.
M =3 discrete realizations of the uncertain parameter
GOR chosen are shown in Table.2. For the scenario de-
composition approach, the step length was fixed at α =
[0.0001, 0.0002, 0.0002, 0.0002]T . The stopping criteria was
defined as when the change in t between two consecutive
iterations is less than ε = 0.001.

4.2 Results and Discussion

In this section, the performance of the centralized ap-
proach and the distributed approach using primal decom-
position as proposed above is compared using the case
study described above. For the comparison of scenario
MPC with nominal and worst case MPC for this problem,
the reader is referred to Krishnamoorthy et al. (2017).

In the first simulation, we compare the centralized solution
with the decomposed solution. The true realization of
GOR for the cases is as shown in Fig.5. The total produced
oil for the centralized and decomposed case are shown in
top left subplot in Fig.5. The error between the centralized
and decomposed solution is shown in top right subplot.
The control input (gas lift injection rates for wells 1 and
2) for centralized and decomposed solution is plotted in the
middle left subplot and the corresponding error is plotted
in the middle right subplot. The number of iterations
required for the scenario decomposition to converge at
each time step is plotted in the bottom right subplot.
From the simulation results, it can be seen that the

Fig. 5. Comparison of centralized approach and decompo-
sition approach.

primal decomposition approach provides similar solution
as the centralized approach. Warm starting the problem
at subsequent time steps reduced the number of iterations
required to converge in the subsequent time steps. The
average computation time for each subproblem was around
1s, as opposed to 11s for the centralized problem.

As mentioned earlier, the main advantage of primal de-
composition over dual decomposition methods is when
the master problem does not converge within a required
sample time. This will lead to violation of the non-
anticipativity constraints in dual decomposition, thus lead-
ing to closed-loop implementation issues. However, pri-
mal decomposition always ensures the feasibility of non-
anticipativity constraints. From the results in Fig.5, it was
seen that the number of iterations varied between 1 and 19
to converge. To emulate the case where the master problem
has to be terminated before it converges fully, the number
of iterations is capped at 5. The simulation setup is the
same as the previous case. In the case of dual decom-
position, prematurely stopping the iterations as done in
this simulation will result in an infeasible solution, which
causes implementation issues.

The results are shown in Fig.6. It can be clearly seen
that the error between the centralized and decomposed
approach is much larger during the first hour compared
to the results in Fig.5. It can also be seen that the error
becomes smaller over time, clearly showing the benefits
of warm starting the master problem. The number of
iterations required is also reduced to 1 when the change in
GOR is constant for a period. This shows that if the the
disturbance is not varying too much, the primal decom-
position is able to converge to the true optimal solution
despite terminating the master problem prematurely. A
close look of the first 1 hour of simulation comparing the
simulation with the number or iteration uncapped (Fig.5)
and capped (Fig.6) is shown in Fig.7.
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Fig. 6. Comparison of centralized approach and decompo-
sition approach with the maximum number of itera-
tions capped at 5.

Fig. 7. Closer look at the first one hour of simulation
to compare the centralized, decomposed, and decom-
posed with max iterations capped at 5.

5. CONCLUSION

In this paper, we presented an alternative approach to
scenario decomposition using primal decomposition. The
primal decomposition approach always ensures the feasi-
bility of the non-anticipativity constraints, hence enabling
closed-loop implementation, unlike dual decomposition
methods. Warm-starting the master problem eventually
leads to convergence over time. Primal decomposition ap-
proach may thus be an useful way to decompose scenario
MPC for applications with higher sampling rates. The
proposed method was tested on a gas lift optimization
case study. The simulation results clearly demonstrates
the benefit of primal decomposition approach for scenario
decomposition. Simulation results show that the primal
decomposition eventually converges to the solution of the
centralized counterpart despite being terminated prema-
turely.
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