
ISA Transactions 99 (2020) 339–350

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Practice article

Controlling industrial dead-time systems:When to use a PID or an
advanced controller
Lucian Ribeiro da Silva a, Rodolfo César Costa Flesch b,∗, Julio Elias Normey-Rico b

a Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
b Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

a r t i c l e i n f o

Article history:
Received 17 October 2018
Received in revised form 6 September 2019
Accepted 6 September 2019
Available online 12 September 2019

Keywords:
Constraints
Dead-time compensators
Model predictive control
PID control
Time delay

a b s t r a c t

This work presents a comparative analysis of PID, DTC and MPC strategies when used to control
SISO processes with dead time considering characteristics commonly found in industry, such as noisy
measurements in the process output and modeling error. For unconstrained processes, it is shown
that the performance improvement obtained by using a more advanced control strategy instead of a
PID is small or nonexistent for cases which require high robustness. However, for cases with well-
known process models it is shown that the improvement obtained by using a more complex control
structure is justified even for small delays. For constrained processes it was demonstrated that a PID
with anti-windup is able to provide similar or even better results than MPC when robust solutions are
considered.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many processes in industry have dead times in their dynamic
behavior [1]. Examples of this kind of processes can be seen
in distillation columns, heat exchangers, solar collector fields,
among others [2]. The design of controllers for processes with
dead time is not an easy task mainly due to the negative phase
introduced by the dead time, which reduces the stability mar-
gin [3]. Many control strategies have been proposed in literature
to deal with dead-time processes, being three of them the ones
most used in practice: proportional, integral and derivative (PID)
controllers, dead-time compensators (DTC), and model predictive
control (MPC) [1,2,4].

In most cases simple models such as first order plus dead
time (FOPDT), integrating plus dead time (IPDT) and unstable
first order plus dead time (UFOPDT) can be used with success
to represent the process dynamics of single-input single-output
(SISO) systems. For these cases, over the years, several PID tun-
ing rules have been proposed, to allow a satisfactory trade-off
between robustness and performance, while keeping a relatively
simple structure [5,6]. This is one of the main reasons why PID
controllers are widely used in industry [7,8].

One of the first DTC strategies, proposed by Smith [9] and
still widely used today, is the Smith predictor (SP). The main
advantage of this technique over PID controllers is that the effects
of dead time can be ideally eliminated from the closed-loop
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characteristic equation, thus allowing faster responses [2]. Many
extensions of the original SP are presented in literature to extend
its ideas to a broader class of problems, such as open-loop unsta-
ble processes or multi-input multi-output (MIMO) processes [10–
12]. Moreover, tuning can be derived for general cases, not being
limited to simple models with dead time.

MPC is a control technique which has made a significant
impact in industry due to its capability to deal with process con-
straints and also for presenting good performance when used to
control processes with significant dead time [1]. The main draw-
back of MPC is that an online optimizer is necessary to compute
the control action at each sampling instant, which may require a
considerable computational effort depending on the process char-
acteristics, thus limiting its use to processes with slows dynamics.
There are many works in literature which present strategies to
reduce the computation time of the optimization problem, but
most of these techniques are based on specific decompositions,
which are limited to certain classes of problems, such as those
covered in [13,14].

In the past, when only simple and low-memory hardware
were available at affordable prices, more complex control strate-
gies, such as DTC and MPC, were only considered for complex
SISO or MIMO plants, where the need for high performance
justified higher implementation costs. Nowadays, the availability
of low-cost hardware allows the implementation of advanced
controllers at lower levels. Recently, several researches were
conducted to study the application of MPC in SISO processes,
for example in the renewable energy area [15,16], heating pro-
cesses [17], pneumatic processes [18], and power converters and
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Nomenclature

2DOF Two-degree-of-freedom
AW Anti-windup
DTC Dead-time compensator
ER Error recalculation
FOPDT First order plus dead time
FSP Filtered Smith predictor
GPC Generalized predictive control
IAE Integrated absolute error
IFAC International Federation of Automatic

Control
IPDT Integrating plus dead time
MIMO Multi-input multi-output
MPC Model predictive control
PI Proportional and integral
PID Proportional, integral and derivative
QP Quadratic programming
SDD Stable delay dominant
SISO Single-input single-output
SLD Stable lag dominant
SP Smith predictor
UFOPDT Unstable first order plus dead time

drives [19–21]. Therefore, it is interesting to analyze the advan-
tages of using these more advanced control structures over the
classical PID solutions, considering the real situation in industry.

Comparisons between PID and DTC have been presented in
literature since the 1980’s. Rivera et al. [22] present a comparison
between a PID designed for FOPDT models and an ideal DTC
(i.e. with infinity gain) and show that for large ratios of dead time
and time constant it is possible to obtain significant performance
improvement by using a DTC instead of a PID. In [2] a discussion
about when to use a DTC or PID is presented, showing that the
performance gains of DTC are more affected by the dead-time
estimate error than by the absolute value of dead time. The work
of Grimholt and Skogestad [8] compares the performance of SP,
PI and PID strategies for FOPDT models, using the integrated
absolute error (IAE) performance index and delay margin (DM )
as function of the maximum sensitivity index (Ms) in the interval
from 1.2 to 2.0. The results show that, for a fixedMs value, the im-
provement obtained by using an SP with a PI as primary controller
instead of a PID is almost insignificant for most cases. In [23] a
comparison between PID and MPC strategies considering model
mismatch and measurements noise is presented, showing that
for first order processes the PID performance degrades almost
linearly when dead time exceeds twice of the time constant, and
for second order processes the same behavior is observed when
dead time exceeds about 10% of the equivalent time constant.
For these cases, MPC presented significantly better performance
than PID. In [24] a comparison between PID and MPC is presented
considering no modeling errors. The results show that for all
the case studies MPC presented better performance than PID.
In [25], the performances of a PI and an MPC are compared for
a reactive distillation MIMO process, showing that MPC presents
better results than the PI controller. A comparative analysis be-
tween a MIMO filtered Smith predictor (FSP) and a PI controller
is presented in [26], showing that the main advantage of FSP over
the PI strategy is related with the disturbance rejection response
of the system if the modeling error is small.

Among the cited works, the main conclusion which can be
drawn is that PID controllers still have significant importance due

their applicability in a wide range of processes with different
characteristics. Although the previously cited works focus on
comparing PID and DTC strategies and PID and MPC strategies,
none of them compares the three techniques in terms of per-
formance and robustness under the same conditions, including
characteristics commonly found in industry, such as measure-
ment noise, and constraints in the magnitude and rate of control
signal, and in the magnitude of the process output. In addition,
in most cases the comparisons are done for specific case studies
and no general conclusion is obtained for other processes. To fill
this gap, this paper presents the contributions listed below:

1. A comparative study between PID, DTC and MPC when con-
trolling SISO dead-time processes, considering important
aspects, such as performance, robustness and handling of
constraints;

2. A formalization of some of the results recently presented
in the plenary of Normey-Rico [27] at the IFAC PID 18
conference, where the study of PID, DTC and MPC strategies
for typical industrial SISO models was presented;

3. A formulation for dealing with process variable amplitude
constraints in PID and DTC controllers;

4. A straightforward method to decide whether to use clas-
sical PID controllers or advanced control strategies in typ-
ical process control problems, which is perhaps the main
contribution of this paper, being of great importance for
practitioners.

The MPC strategy used in this work is the generalized predic-
tive controller (GPC) and the DTC is the FSP, which is a strategy
that can solve some of the limitations of the original SP structure.
The choice for FSP is also based on the fact that it can provide
an ideal response for all cases (stable, integrating and unstable
plants with dead-time) when a controller with infinity gain is
considered.

The rest of this paper is organized as follows. Section 2
presents an analysis of the ideal solution for control of dead-
time processes, comparing the original SP and the FSP structures.
Section 3 presents a discussion of PID, FSP and GPC structures
and also a comparative analysis between the performance and
robustness of these control structures considering unconstrained
control problems. Section 4 presents a formulation that allows
the PID to deal with several types of constraints by using an anti-
windup (AW). Furthermore, the results of Section 3 are extended
for the constrained case in Section 4. An experimental analysis
which compares the performance of a PID and a GPC considering
a constrained process modeled as FOPDT is presented in Section 5.
The conclusions of the paper are presented in Section 6.

2. Ideal control of dead-time processes

It is well known that the original SP, shown in Fig. 1 if Fr (s) =

1, presents good setpoint performance when controlling dead-
time processes [8]. In Fig. 1, CSP (s) is the primary controller, P(s)
is the plant, Pn(s) = Gn(s)e−Lns is the nominal model, Gn(s) is the
dead-time-free model, Ln is the nominal dead time, r(t) is the
reference, u(t) is the control signal, y(t) is the plant output, e(t) is
the error, q(t) is the input disturbance, ŷ(t) is the model output,
ep(t) is the prediction error, and Fr (s) is a unity gain robustness
filter (or prediction filter). For a pure delay process (P(s) = e−Ls)
and considering an ideal case (i.e. the primary controller CSP (s)
has infinity gain), the SP results in an ideal solution, which is a
step-like response after dead time (Ln) has elapsed for setpoint
changes and after twice the dead time for input (load) distur-
bances. This ideal solution is presented in (1) and (2) in terms
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Fig. 1. Filtered Smith predictor, which is equivalent to SP when Fr (s) = 1.

of the closed-loop transfer functions for reference, Hyr (s), and for
input disturbance rejection, Hyq(s).

Hyr (s) = e−Lns (1)

Hyq(s) = e−Lns(1 − e−Lns) (2)

An important point to be highlighted is that even in the ideal
case it is not possible to eliminate one delay from the setpoint
response and two delays from the disturbance response. How-
ever, for systems with any dynamics other than a pure delay,
the disturbance rejection performance of SP is degraded, and it is
not able provide an ideal response because the open-loop poles
appear in the closed-loop response. For example, the transfer
function from an input disturbance to the process output, Hyq(s),
of the ideal SP for a FOPDT process, P(s) =

1
τ s+1e

−Lns, is given by

Hyq(s) =
1

τ s + 1
e−Lns(1 − e−Lns), (3)

which shows that the time constant of the process defines the
closed-loop dynamics. Furthermore, the original SP structure is
not able to control integrating and unstable processes [2]. A
simple solution for these drawbacks was proposed in [28] and
is known as FSP. It adds a filter, Fr (s), in the prediction error of
the SP structure, as shown in Fig. 1.

Considering the nominal case (i.e. Pn(s) = P(s)), the closed-
loop transfer functions for the reference and disturbance rejection
of the FSP strategy are given by

Hyr (s) =
CSP (s)Pn(s)

1 + CSP (s)Gn(s)
, (4)

Hyq(s) = Pn(s)
[
1 −

CSP (s)Pn(s)Fr (s)
1 + CSP (s)Gn(s)

]
. (5)

The tuning of Fr (s) in the FSP allows to eliminate the open-loop
poles of Pn(s) from Hyq(s). Thus, if an ideal primary controller,
CSP (s), with infinity gain and ideal filter, Fr (s), are used, the ideal
closed-loop response can be obtained.

An IPDT example is used to analyze the ideal case. The process
model is given by

P(s) =
e−s

s
, (6)

with time given in seconds. Consider that a controller CSP (s) = Kc
with infinity gain and a prediction filter Fr (s) = 1+s are used and
the plant model is perfect. In this case, the following closed-loop
transfer functions are obtained:

Hyr (s) = e−s (7)

Hyq(s) =
e−s

s
−

e−2s

s
− e−2s, (8)

Fig. 2. Performance comparison between SP and FSP for an ideal case.

Fig. 3. 2DOF PID structure.

which are the ideal responses for both setpoint tracking and
disturbance rejection, as in the pure delay system.

Fig. 2 shows a simulation which compares the performance of
SP and FSP for the system, where a unit step reference is applied
at 1 s and a step disturbance of amplitude 0.5 is applied at 20 s.

As shown in Fig. 2, the SP cannot reject the disturbance. On
the other hand, the FSP rejects the disturbance immediately after
2 s. This can be done due to a property of the FSP that makes it
possible to tune the filter Fr (s) so that the equivalent controller
has integral action, which is not possible to achieve in the original
SP structure [2].

Based on the previous analysis, in this paper, a cost function
J that considers the IAE performance index for setpoint tracking
and load disturbance rejection is used to quantify how much the
output response deviates from the ideal one. The proposed cost
function is given by

J =
1
2

[∫ td

ts+Ln
|r(t) − y(t)|dt +

∫
∞

td+2Ln
|r(t) − y(t)|dt

]
, (9)

where ts is the time at which the reference change is commanded,
and td is the time at which the disturbance is applied.1 It is
important to note that the IAE is measured from ts+Ln to td for the
setpoint tracking and from td +2Ln to infinity for the disturbance
rejection because no controller is able to change the output of
the system before ts + Ln for a reference change and td + 2Ln for
disturbance rejection. Note that by using the FSP structure it is
possible to achieve the ideal response, i.e. the performance index
J = 0 can be reached in the nominal case.

3. Performance and robustness analysis for unconstrained
processes

This section compares the two-degree-of-freedom (2DOF) PID
of Fig. 3 and an FSP for unconstrained processes. The aim of this
section is to aid in the decision of which structure to choose to
control dead-time processes when only a low-order model of the
plant is available. The MPC strategy is not explicitly considered
in the analysis because the DTC structure used is able to provide
exactly the same response as GPC for unconstrained cases, as
shown in Section 3.2.

1 td is chosen such that td > tss , being tss the settling time of the closed-loop
system.
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The performance analysis considers the cost function pre-
sented in (9). For the robustness analysis, two indices are used:
the robustness index, RI (ω), and the delay margin, DM . The first
one is given by [2]

RI (ω) =
|1 + C(jω)Pn(jω)|

|C(jω)Pn(jω)|
∀ ω ≥ 0 (10)

and is used to check the robust stability condition RI (ω) >

δP(ω), ∀ ω ≥ 0, where δP(ω) is the multiplicative uncertainty,
P(ω) = Pn(jω)[1 + δP(jω)], δP(ω) ≥ |δP(jω)|, ∀ω ≥ 0, C(s) is the
controller and Pn(s) is the process model used to tune C(s). The
delay margin is given by

DM =
PM
ωc

, (11)

where PM is the phase margin (given in rad) and ωc is the
crossover frequency (given in rad/s). It is used to evaluate the
robustness against modeling errors in dead time. DM represents
the smallest amount of time delay which causes the closed-loop
system to become unstable [29].

3.1. PID as a low-frequency approximation of FSP

The work of Normey-Rico and Guzmán [6] proposes a PID
tuning rule that is based on a low-frequency approximation of
the FSP. This technique can be used to control processes which
can be modeled as FOPDT, IPDT or UFOPDT. The main idea of this
rule is to obtain the equivalent controller of the FSP in a 2DOF
structure, as in Fig. 3, and then use Padé approximation for the
dead time. The result is a PID series controller,

C(s) =
Kc(sTi + 1)(sTd + 1)

sTi(sαTd + 1)
, (12)

which is tuned using only one parameter, T0, which represents
the desired closed-loop time constant. This parameter is used to
define the desired balance in the trade-off between performance
and robustness. In this case, the PID parameters, Kc , Ti, Td and α,
are computed based on the chosen value for T0 and also on the
parameters of the model used to represent the process dynamics
(see [6]).

Even though this tuning rule is simple, it provides satisfactory
results for a wide range of processes with dead time. In addition,
since this tuning rule is derived from the FSP, which can provide
the ideal solution for dead-time processes, it will be used as a
baseline for comparison.

3.2. Relation between FSP and GPC

GPC uses the discrete-time model

A(z−1)y(k) = z−dB(z−1)u(k − 1) +
T (z−1)η(k)

∆
(13)

to predict the plant future outputs which are used to calculate,
by minimizing a cost function, the control action [1]. In (13), u(k)
and y(k) are the input and output of the process, k is the discrete
time in samples, T (z−1) is a polynomial in the backshift operator
z−1 that represents the stochastic characteristics of the noise, d
is the dead time, η(k) is a zero-mean white noise, ∆ = (1− z−1),
and A(z−1) and B(z−1) are polynomials in z−1 with order na and
nb respectively. The function to be minimized is given by

Γ =

d+N∑
j=d+1

[ŷ(k + j|k) − r(k + j)]2 +

Nu∑
j=1

λ[∆u(k + j − 1)]2, (14)

where N is the prediction horizon, Nu is the control horizon, λ is
the control increment weight, ŷ(k + j|k) is the predicted output

for k + j at time instant k, r(k + j) is the future reference, and
∆u(k) is the control increment.

The future output predictions computed using (13) can be
written in a vector form as

ŷ = G∆u + Hu1 + Sy1, (15)

where ŷ = [ŷ(k + d + 1|k), ŷ(k + d + 2|k), . . . , ŷ(k + d + N|k)]T ,
∆u = [∆u(k), ∆u(k + 1), . . . , ∆u(k + Nu − 1)]T , u1 = [∆u(k −

1), ∆u(k − 2), . . . , ∆u(k − nb)]T , y1 = [ŷ(k + d|k), ŷ(k + d −

1|k), . . . , ŷ(k + d − na|k)]T , and G ∈ RN×Nu , H ∈ RN×nb and
S ∈ RN×na+1 are constant matrices [2]. By considering the future
reference signals r(k+ j) = r(k), for j ≥ 1 and substituting (15) in
(14), it is possible find an analytical solution that minimizes Γ ,
for the unconstrained case, which is given by [2]

∆u(k) = ly1y(k + d|k) + · · · + lyna+1y(k + d − na|k)
+ lu1∆u(k − 1) + lu2∆u(k − 2) + · · · + lunb ∆u(k − nb)

+

N∑
i=1

vir(k), (16)

where the coefficients [ly1 , . . . , lyna+1 ], [lu1 , . . . , lunb ] and [v1, . . . ,

vN ] can be calculated from the model parameters, the prediction
horizon, N , and the control increment weight, λ.

Reference [2] shows that in the unconstrained case GPC can
be represented as a 2DOF FSP in the discrete-time domain with
a reference filter F (z), a primary controller CSP (z) and a predictor
filter Fr (z) given by

CSP (z) = −
ly1 + · · · + lyna+1z

−na

(1 − z−1)(1 − lu1z−1 − · · · − lunb z
−nb )

, (17)

F (z) = −
v1zd+1

+ · · · + vNzd+N

ly1 + · · · + lyna+1z−na
, (18)

Fr (z) =
ly1Fd(z

−1) + · · · + lyna+1Fd−na (z
−1)

ly1 + · · · + lyna+1z−na
, (19)

where [Fd, Fd−1 . . . Fd−na ] are obtained by solving a Diophtantine
equation (see [2] for details). This analysis shows that an FSP can
obtain the same responses as an unconstrained GPC for any dead-
time process if a proper tuning is considered. Furthermore, in [2]
it is demonstrated that using this formulation to tune F (z) and
CSP (z), but choosing a different Fr (z) (which is not derived from
the optimal predictor model), it is possible either to improve the
dynamics of disturbance rejection or the closed-loop robustness.
This structure became known as DTC-GPC, and presents the same
nominal setpoint response as the original unconstrained GPC.

Remark. Although in this paper the focus is on GPC, a linear
model-based strategy, many of the ideas related to the robustness
of the MPC strategy when controlling a dead-time process can be
extended to other linear and nonlinear model based MPC strate-
gies [30–32]. Using classical predictors instead of the optimal
one, usually adopted in most MPC strategies, can provide a better
balance between robustness and performance in MPC when it is
used to control dead-time processes.

3.3. Comparative analysis between PID and FSP

This section compares the PID described in Section 3.1 and FSP
for dead-time processes which can be modeled as FOPDT, IPDT or
UFOPDT. The objective of this analysis is to give some guidelines
for the control designer to define whether to use a PID or an FSP.
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Fig. 4. Comparative analysis between the PID and FSP for stable lag dominant and stable delay dominant cases.

Remark. The results of Section 3.2 show that, for the uncon-
strained case, the comparison between PID and FSP can also be
considered as a comparison between PID and GPC, since it is
possible to represent any GPC as an FSP in this case.

As the PID tuning rule used in this study and FSP have the
same tuning parameter, T0, it becomes easier to compare ag-
gressive and conservative tuning rules for both controllers. The
analysis considers a trade-off between robustness, measured with
RI (ω) and DM , and performance, using J as a function of the
ratio T0/Ln. Moreover, for robustness analysis, the modeling error
δP(ω) is also shown in the figures. For all cases δP(ω) is computed
for a modeling error of 2% in the gain, time constant (when
applicable) and dead time. In order to present a general analysis,
a normalized model of the process with unity gain and time con-
stant (except for IPDT) is considered. The gain does not change the
dynamics of the process, since the controller gain can be tuned
accordingly to compensate for different gains of the process. The
relation which really matters is between the fast model dynamics
and the time delay, so it is possible to keep the dynamics fixed
and change just the delay value without loss of generality. The
three process models considered are: Ps(s) =

e−Lns

s+1 , Pi(s) =
e−Lns

s

and Pu(s) =
e−Lns

s−1 , with time given in seconds.
The first part of the comparative analysis considers a stable lag

dominant (SLD) process, with Ln = 0.2 s, and a stable delay dom-
inant (SDD) process, with Ln = 5 s. Fig. 4 shows a comparative
analysis between PID and FSP for both cases.

As shown in Fig. 4, for the SLD case, considering a robust
tuning with T0 = 0.3 s, FSP and PID present similar performance
and similar robustness characteristics. In fact, it can be observed
that the more robust is the tuning of the controllers, the greater
are their similarities in terms of robustness and performance.
In this case, the DM values obtained for the controllers were
DMPID = 0.271 s and DMFSP = 0.281 s, which show the equivalence
in the robustness properties of both strategies for this tuning.
On the other hand, for tuning solutions aiming fast responses,
with T0 = 0.15 s for example, there is a significant perfor-
mance improvement if FSP is used (as can be seen in the shaded

area). Furthermore, high differences in robustness are observed
for small T0/Ln values. The DM values obtained for PID and FSP
were respectively DMPID = 0.11 s and DMFSP = 0.06 s, which show
that FSP is more sensitive to dead-time uncertainties than PID.
The results for the SDD case, when a robust tuning is considered
(T0 = 3 s), are very similar to the ones obtained for the SLD
case in terms of both robustness and performance. The DM values
obtained for this tuning were close to each other, resulting in
DMPID = 8.94 s and DMFSP = 9.23 s. In addition, for a fast tuning
(T0 = 1 s) again PID presents worse performance and better
robustness in terms of dead-time uncertainties when compared
with FSP. The DM obtained for both controllers are DMPID = 5.52 s
and DMFSP = 1.49 s.

The second part of the comparative analysis considers inte-
grating and unstable processes, both with dead time of Ln = 1 s.
Fig. 5 shows the robustness and the performance analysis for both
cases.

As can be seen in Fig. 5, the results for the integrating case are
very similar to the ones obtained for the SLD case, where the DM
values obtained for a robust tuning (T0 = 1 s) were DMPID = 0.53 s
and DMFSP = 0.48 s, and for a fast tuning (T0 = 0.5 s) were
DMPID = 0.192 s and DMFSP = 0.142 s. For the unstable case, it
is possible to note that FSP presents a significant advantage in
terms of both robustness and performance over the PID when
robust and fast tuning solutions are considered. It is important
to note that along the whole interval of T0/Ln analyzed in this
paper the performance of the FSP is better than the one of PID
for the unstable case. The DM values obtained for a robust tuning
(T0 = 2 s) were DMPID = 0.14 s and DMFSP = 0.18 s, and for a fast
tuning (T0 = 1.2 s) were DMPID = 0.06 s and DMFSP = 0.12 s.

As can be seen in the previous examples, except for the unsta-
ble case, when robust solutions are considered the performance
and robustness of PID and FSP are essentially the same. For fast
tuning solutions, the performance of FSP is better than the one
of PID even for processes with small delays (lag dominant). On
the other hand, when aggressive tunings are considered, the delay
margin values for FSP are considerably smaller than the ones of
PID. This is caused by an oscillatory behavior next to the region of
magnitude 1 in the FSP loop-function frequency response, which
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Fig. 5. Comparative analysis between the PID and FSP for integrating and unstable cases.

causes a jump of the crossover frequency ωc to a higher frequency
resulting in a lower DM value. The study of this phenomenon,
known as crossover proliferation, can be seen in [33]. Similar drop
in DM was observed for the SP in [8,34].

As a general conclusion of the results presented in this section
it can be stated that in most cases, when a high robustness
system is necessary, a well-tuned PID is able to provide similar
results to FSP, even if the process is delay dominant. On the other
hand, when robustness is not a mandatory requirement and a
fast tuning is required, the performance improvement of using
an FSP instead of a PID is relevant and this result is valid even
if the process is lag dominant. As this conclusion is valid for any
constant ratio Ln/τ , it is possible to state that the advantages of
using an FSP are more associated with the process modeling error
than with the absolute value of dead time.

3.4. Unconstrained case example

To better illustrate the results presented in Section 3.3, a
comparison between PID and FSP for a particular example is
presented. The unconstrained case considered in this analysis is
a second order SDD process given by

P(s) =
1

s2 + 0.8s + 1
e−2s, (20)

with time given in seconds, which was approximated by the
following FOPDT

Pm(s) =
1

0.62s + 1
e−2.7s. (21)

The example also considers measurement noise with normal
distribution and variance of 0.02. The first part of this case study
compares a PID and an FSP in terms of performance, considering
the same tuning rule discussed in Section 3.1. Using a robust
tuning with T0 = 2 s the PID parameters obtained are Kc = 0.355,
Ti = 1.758 s, Td = 1.35 s, α = 1.305, and the resulting reference
filter is given by

F (s) =
1.14(s + 0.5)
(s + 0.57)

. (22)

Fig. 6. Comparative analysis between the performance of PID and FSP for the
unconstrained case (robust tuning).

The resulting primary controller of the FSP, CSP (s), is a PI with
Kc = 0.31 and Ti = 0.62 s, and the prediction filter, Fr (s), is given
by

Fr (s) =
0.88(s + 0.57)

s + 0.5
. (23)

Fig. 6 shows the simulation of the system and compares the
performance of the two strategies for a unit step reference at
t = 1 s and a step load disturbance of amplitude −0.2 at t =

50 s. As shown in Fig. 6, the performance of the two strategies is
similar for both reference tracking and disturbance rejection. This
similarity can also be observed by the equivalent performance
indices for PID and FSP, which are respectively JPID = 21.1 and
JFSP = 20.2. The DM values obtained for PID and FSP are DMPID =

5.53 s and DMFSP = 5.66 s, respectively.
In order to obtain a faster response, a new tuning of the con-

trollers was performed. In this case the tuning of the controllers
was performed using a perfect model of the process. The PID
was tuned using SWORD, which is a tool for optimal PID design
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Fig. 7. Comparative analysis between the performance of PID and FSP for the
unconstrained case (fast tuning).

of robust PID controllers [35]. Both controllers were tuned to
achieve Ms = 2. The PID parameters are Kc = 0.282, Ti = 0.992 s,
Td = 1.984 s and it also considers a second-order low-pass filter
FLP (s) in the feedback-loop given by

FLP (s) =
1

0.035s2 + 0.25s + 1
. (24)

As SWORD focuses on optimizing only the disturbance rejec-
tion response, the resulting setpoint response is oscillatory. A
second-order reference filter given by (25) is used to reduce the
oscillations in the transient setpoint response of the PID.

F (s) =
s2 + 1.4s + 1

(s + 1)2
(25)

For the FSP, the resulting primary controller CSP (s) and robust-
ness filter Fr (s) are given by

CSP (s) =
75.13(s2 + 2.03s + 1.96)

s(s + 26.96)
, (26)

Fr (s) =
0.2(s + 11.16)

s + 2.23
. (27)

Fig. 7 shows the simulation of the system for the new tuning.
As can be seen, using a tuning to obtain a fast response causes
an oscillatory response in the reference tracking and disturbance
rejection responses of the PID. On the other hand, the FSP tuned
using the perfect model presents a significant improvement in
the performance with less overshoot and smaller oscillations in
the disturbance rejection response when compared to PID. When
FSP is considered the system is more sensitive to noise due to the
large gain of the controller at high frequencies. The performance
indices for this case are JPID = 18.7 and JFSP = 11.8. The delay
margin values for PID and FSP are DMPID = 3.87 s and DMFSP =

0.52 s, which show that FSP is less robust than PID in terms of
dead time uncertainties.

This case study demonstrates that when only a low-order
model of the process is available and a robust solution is nec-
essary, the performance improvement of using an FSP instead
of a PID is small. On the other hand, when a good model of
the process is available, a well-tuned FSP is able to provide
much better results than PID, as shown in Fig. 7. These results
allow the control designer to choose between a PID controller
or a more complex structure, such as FSP or GPC, taking into
account performance and robustness specifications. However, this
analysis is sometimes not enough, since in real processes there
are physical limitations. Section 4 extends the analysis of this
section to processes with constraints.

4. Performance and robustness analysis for constrained pro-
cesses

This section compares PID with an AW scheme and GPC strate-
gies in terms of performance and robustness, where constraints in
the magnitude and rate of change of the control signal and in the
output of the process are considered. Firstly, a formulation that
allows the PID with AW to deal with several types of constraints
is proposed. Then, a comparative analysis between PID with the
proposed formulation and GPC for a process subjected to con-
straints is presented. For the sake of brevity, the simulation case
study presented in this section just considers an IPDT process, but
it is also valid for the FOPDT and UFOPDT cases.

4.1. Control with constraints

GPC considers the process constraints in the minimization of
the cost function (14), which results in a quadratic programming
(QP) problem that needs to be solved online to find the optimal
control signal at each sampling instant. In such cases, the length
of the control horizon, Nu, affects directly the complexity of the
QP problem and consequently the computational effort to find
the solution. The literature of MPC presents some works which
show that typically the choice of Nu = 1 is enough to control
simple plants, such as stable dead-time and nonminimum-phase
processes [36–38]. In this case, it is much easier to solve the
optimization problem.

On the other hand, PID controllers consider control constraints
a posteriori, that is, using AW schemes to avoid undesirable effects
of the constraints on the process output. In this work, based on
the behavior of the GPC with Nu = 1, an algorithm to compute
the control action of PID controllers for constrained systems is
presented.

Consider the following discrete-time FOPDT model2

(1 − az−1)y(k) = z−dbu(k − 1), (28)

subjected to the following constraints

umin ≤ u(k) ≤ umax, ∀ k,
∆umin ≤ ∆u(k) ≤ ∆umax, ∀ k,
ymin ≤ y(k) ≤ ymax, ∀ k,

(29)

where umin and umax are the minimum and maximum magnitudes
of the control signal, ∆umin and ∆umax are the minimum and
maximum rates of change in the control signal, and ymin and ymax
are the minimum and maximum allowed outputs of the process.
The main idea to compute a feasible control action is to rewrite all
the constraints in terms of u(k). This can be done by considering
∆u(k) = u(k) − u(k − 1), and also using the prediction model of
GPC with Nu = 1. Thus, the constraints in (29) can be rewritten
as

umin ≤u(k) ≤ umax, ∀ k,
∆umin + u(k − 1) ≤u(k) ≤ ∆umax + u(k − 1), ∀ k,

uymin ≤u(k) ≤ uymax , ∀ k,
(30)

where uymin and uymax are the minimum and maximum control
signals to maintain the predictions of the future outputs inside
the constraint boundaries and must be determined at each sam-
pling instant. To obtain these values, firstly the future output
predictions need to be computed by using (13), with T (z−1) = 1.
Future increments of the control action are necessary for comput-
ing the output predictions from k+d+1 to k+d+N , where N is the
control horizon, however if Nu = 1, ∆u(k+ j) = 0 for j ≥ 1, so the

2 For simplicity, in this paper only this model is considered, but the results
are also valid for other models.
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future predictions can be computed in terms of the past outputs,
the past and the current increments of the control action. For the
particular model (28) the predictions after the dead time can be
computed using

ŷ(k + d + j|k) = (a − 1)ŷ(k + d + j − 1|k) + aŷ(k + d + j − 2|k)

+ b∆u(k + j − 1), (31)

for j = 1 . . .N and ∆u(k + j − 1) = 0 for j > 1. Another aspect
that must be taken into account is that for processes with time
delay, the current control action affects the output only after d+1
sampling periods. For that reason, the future output predictions
used to compute uymin and uymax must be taken from k + d + 1
to k + d + N . Eq. (31) can be rewritten as function of ŷ(k + d|k),
ŷ(k + d − 1|k) and ∆u(k), thus resulting in

ŷ(k + d + j|k) = sj1ŷ(k + d|k) + sj2ŷ(k + d − 1|k) + gj∆u(k), (32)

where
s11 = 1 − a,
s12 = a,

sji =

2∑
k=1

s1ks(j−k)i, with sj0 = s0i = 1,

gj =

j−1∑
k=0

akb,

for j = 1 . . .N and i = 1 . . . 2.

(33)

To compute uymin and uymax , it is necessary guarantee that the
future output predictions satisfy

ymin ≤ ŷ(k + d + j|k) ≤ ymax, ∀ j = 1 . . .N. (34)

By substituting (32) in (34) and considering that ∆u(k) = u(k) −

u(k − 1), it is possible to obtain the minimum and maximum
control signal values to be applied at time instant k to satisfy the
output constraints at time instant k + d + j, uymin (j) and uymax (j)
respectively, as

uymin (j) ≥
ymin − sj1ŷ(k + d|k) − sj2ŷ(k + d − 1|k)

gj
+ u(k − 1),

uymax (j) ≤
ymax − sj1ŷ(k + d|k) − sj2ŷ(k + d − 1|k)

gj
+ u(k − 1),

for j = 1 . . .N.

(35)

From (35) it is possible to compute uymin and uymax as

uymin = max
{
uymin (j)

}
,

uymax = min
{
uymax (j)

}
,

for j = 1 . . .N,

(36)

since a value in the feasible region of (36) guarantees that all the
constraints defined in (35) are satisfied.

Thus, after computing the control signal limits for each con-
straint, it is possible to reformulate (30) as

Umin ≤ u(k) ≤ Umax, ∀k (37)

where
Umin = max{umin, ∆umin + u(k − 1), uymin},

Umax = min{umax, ∆umax + u(k − 1), uymax}
(38)

are the boundaries that define a feasible region for all the con-
straints defined in (29). Moreover, it is also possible to include
AW techniques in the previous formulation for cases in which the

control action computed is outside the feasible region defined by
Umin and Umax.

Finally, Algorithm 1 shows a systematic way to compute the
optimal control signal for processes subjected to the constraints
presented in (29). It is important to note that it is possible to use
the same algorithm for high-order process models by modifying
(28) and recomputing Eqs. (31) to (35).
Algorithm 1: control with constraints
1 repeat
2 Compute u(k)
3 for j = 1 to d + N do
4 Compute the predictions ŷ(k + j)
5 Compute uymin and uymax using (36)
6 Compute Umin and Umax using (38)
7 if u(k) ≤ Umin or u(k) ≥ Umax then
8 Use AW to recalculate u(k)
9 Apply u(k) to the plant

10 until controller is stopped

4.2. PID and GPC comparative analysis

This section presents a comparative analysis between a PID
with the formulation of Section 4.1 and GPC. The study considers
both robustness and performance of the controllers and aims to
demonstrate that the analysis presented in Section 3 is also valid
for processes subjected to constraints.

For the comparative analysis an IPDT process, Pi(s) =
e−Lns

s ,
with Ln = 1 s is considered. In the first part of the analysis, the
perfect model is used to tune the controllers, which allows a high
value of Ms to be used. The discrete-time representation of the
process with a zero-order hold and sampling time of 0.1 s is

Pi(z) =
0.1z−10

z − 1
. (39)

The controllers were both tuned to obtain a fast response, with
Ms = 3.8. For this tuning, the parameters obtained for the PID
are Kc = 0.99, Ti = 2.44 s, Td = 0.5 s, α = 0.21, T0 = 0.72 s and a
reference filter given by

F (s) =
0.05(s + 10)
s + 0.47

. (40)

For the GPC, the tuning parameters are N = 9, Nu = 1 and λ = 5.
This case also considers constraints in magnitude and rate

of change of the control signal umin = −0.1, umax = +0.6,
∆umin = −0.1, ∆umax = +0.1, and in the output of the process
ymin = 0 and ymax = 1.1. To deal with the constraints, a PID
using the formulation presented in Section 4.1 with N = 9 and
with the error recalculation (ER) AW strategy is used. The ER
AW strategy modifies both the current control and error signals
to keep the controller states consistent with the input signal
effectively applied to the process [39]. This AW technique is easy
to implement and presents good results especially in process
subjected to noisy measurements [40].

Fig. 8 shows the simulation for a unit step reference at t = 1 s
and a step load disturbance of amplitude −0.2 at t = 50 s. As
can be seen, both controllers were able to deal with all the con-
straints, however the GPC presented a better performance than
PID, presenting a response with no overshoot and disturbance
rejection without oscillations. The performance indices obtained
for this case are JGPC = 7.7 and JPID = 9.8. However, in terms of
robustness, the GPC presented a very small delay margin DMGPC =

0.09 s when compared to PID, which presented DMPID = 0.37 s.
Thus, the price to pay for the better performance of GPC is a less
robust closed-loop system. It is important to note that, for a given
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Fig. 8. Comparative analysis between PID and GPC considering no modeling
error.

Ms, even using a longer control horizon Nu the performance of the
GPC cannot be improved.

The second part of the analysis aims to evaluate a tuning
which would be more likely to be used in a real industrial applica-
tion, taking into account 20% of modeling error in the gain and in
the dead time, and measurement noise with normal distribution
and variance of 0.02. As the original GPC is very sensitive to
noisy measurements, this case also compares the performance
and robustness of a DTC-GPC strategy. The controllers were tuned
to obtain a robust solution with Ms = 1.9 for the unconstrained
case, which is inside the typical design range of values used in
industry [7]. The PID parameters for this tuning are Kc = 0.63,
Ti = 4.56 s, Td = 0.5 s, α = 0.44, T0 = 1.78 s and the resulting
reference filter is given by

F (s) =
0.39(s + 0.56)

s + 0.22
. (41)

For the GPC, the tuning parameters are N = 30, Nu = 1 and
λ = 1250. Using a small value of λ leads to a more aggressive
control action and a poorer performance. For the DTC-GPC, the
tuning parameters are N = 15, Nu = 1 and λ = 1, with a
robustness filter given by

Fr (z) =
0.149(z − 0.977)

(z − 0.944)2
. (42)

The DTC-GPC robustness filter improves system robustness and
allows tuning the controller with a smaller λ than the one used
for GPC. The improvement in the robustness obtained in this
example with the DTC-GPC can be generalized for other cases
and other MPC formulations, but in all cases the MPC tuning must
respect a trade-off between performance and robustness.

As the controllers were tuned to obtain a robust solution,
the control signal is smoother and does not reach the saturation
limits considered in the previous analysis. In order for the control
signal to saturate, the limits considered in this example are umin =

−0.1, umax = +0.3, ∆umin = −0.02, and ∆umax = +0.02.
In addition, the output constraints were implemented as soft
constraints in GPC to avoid the infeasibility of the optimization
procedure that can be caused by the large modeling error [41]. In
order to have an equivalent response with the PID controller, the
output constraints were also relaxed in this case.

Fig. 9 shows the simulation of the system for the new tuning
of the controllers. As can be seen, PID and DTC-GPC obtained
very similar performances, while GPC presented an oscillatory
response caused by measurement noise. The performance indices
for the three cases were JPID = 24.1, JGPC = 66.5, and JDTC−GPC =

24.4. In terms of delay margin, the three controllers obtained
similar values: DMPID = 1.09 s, DMGPC = 0.93 s, and DMDTC−GPC =

1.08 s.

Fig. 9. Comparative analysis between PID, GPC and DTC-GPC considering
modeling error and measurement noise.

The results of this example reinforce the central idea of this
work: even for constrained systems, for typical robust industrial
solutions based on simple models with delay, PID is the best
choice due to its simplicity and a very good trade-off between
robustness and performance.

5. Experimental case study

This section presents an experimental analysis which com-
pares the performance of PID with ER AW and GPC for a particular
process subjected to constraints. The process is composed of an
electric shower and an embedded system, in which the process
variable is the variation of the shower water temperature and the
manipulated variable is the number of trigger pulses, in a period
of 1 s, applied to the TRIAC for controlling the power delivered to
the shower heating resistor. A picture of the process and a gen-
eral diagram are shown in Fig. 10, where TT is the temperature
transducer, TC is the temperature controller and R is the shower
heating resistor. The embedded system contains a microcontroller
ATmega328P and the TRIAC driver circuit, which is composed of
a zero crossing detector, an optoisolator and passive electrical
components. In both cases, the embedded system is responsible
for reading the shower water temperature from the temperature
transducer and driving the TRIAC using the TRIAC driver circuit.
The PID algorithm was implemented directly in the embedded
system, but the GPC algorithm was implemented in a desktop
computer which uses an optimization algorithm to deal with the
constraints. In both cases the sampling time is 1 s.

5.1. Model identification

The control action u(t) was normalized so that u(t) = 1 is
equivalent to the maximum number of trigger pulses (120 power-
line semi-cycles), which represents the maximum power applied
to the shower heating resistor, and u(t) = 0 represents no
trigger pulse, i.e. the minimum power. The process output y(t)
is the temperature variation, in degree Celsius, in relation to the
initial water temperature. The identification of the process model
was performed using power steps with different amplitudes. The
resulting model is given by

Y (s)
U(s)

=
18.7e−8s

13.7s + 1
, (43)

with time given in seconds.
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Fig. 10. Illustration of the experiment.

The discrete-time representation of the process with a zero-
order hold is

Y (z)
U(z)

=
1.316z−8

z − 0.923
. (44)

The only constraints considered in this case are the minimum
and maximum magnitudes of the control signal, i.e. umin = 0 and
umax = 1.

5.2. Experimental results

Based on the identified model of the process, the PID and the
GPC were tuned to obtain reference tracking and disturbance re-
jection responses with no oscillations. The PID tuning parameters
are Kc = 0.06, Ti = 12.41 s, Td = 4 s, α = 0.41, with T0 = 8 s. The
PID also uses the formulation presented in Section 4.1 and the
ER AW strategy to deal with the saturation constraints imposed
by the system actuator. The tuning parameters for the GPC are
N = 60, Nu = 10 and a weight of control increment λ = 2100.
For this tuning, the obtained Ms and DM for the PID and the GPC
were MsPID = 1.8, DMPID = 12 s, MsGPC = 2.1, and DMGPC = 5 s.
In addition, a second tuning of the GPC aiming a faster response
than the first one, with λ = 700, is considered, resulting in
MsGPC = 2.54 and DMGPC = 2.15 s.

Fig. 11 shows the experimental results for a reference step
with amplitude of 14 ◦C at t = 5 s and a load disturbance step
with amplitude −0.15 at t = 200 s. As shown, the performance
of the PID and GPC with the first tuning are similar both for
reference and disturbance responses (JPID = 108.2 and JGPC =

114.9). Although both responses can be considered equivalent,
PID presents a control signal with smaller variability, which re-
sults in a better performance index value. It is possible to improve
the response presented by GPC by using a more aggressive tuning
(JGPC = 107.3), but the performance improvement is small when
compared to both the GPC with the first tuning and the PID.
Furthermore, the measurement noise affects more the control
signal for the second tuning.

The experimental results presented in this section are in
agreement with the analysis presented in this work. They show
that when a robust solution is necessary, even in cases where
the process is subjected to constraints, the advantages of using a
complex control strategy, such as MPC, rather than a well-tuned
PID with AW are practically insignificant or do not exist.

Fig. 11. Performance comparison between PID and GPC for the experimental
case.

6. Conclusions

This work presented a study of PID, DTC and MPC strategies
used to control SISO processes with time delay aiming to provide
some ideas to facilitate the choice of the best control strategy
to be used based on the characteristics of the process. Firstly it
was shown that when a perfect model of the plant is available,
FSP is able to provide the ideal response for dead-time processes,
that is, an instantaneous response after the input delay. Using this
ideal response as target, comparative analyses in terms of per-
formance and robustness between PID and FSP for unconstrained
processes, and between PID and GPC for a constrained case were
presented. Furthermore, an algorithm that allows the PID to deal
with several types of process constraints was proposed.

Considering the performance and robustness analysis of the
PID and FSP, it was shown that in most cases both controllers
present the same performance when a robust tuning is consid-
ered. On the other hand, when a good process model is available
and a fast tuning (with small robustness margins) is allowed, FSP
presents a significant performance improvement when compared
to PID.

Moreover, an analysis which considers a constrained case was
presented to show that when the system characteristics are sim-
ilar to those of an industrial environment (with large modeling
error and measurement noise) there is practically no advantage
in using a more complex control structure, such as MPC or DTC,
rather then the well-know PID with an AW technique, which is
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easy to implement and is also able to provide a good trade-off
between performance and robustness. A performance comparison
for a constrained case study with measurement noise showed
that for a given Ms the performance of the PID with AW is better
than the one of GPC and very similar to the one of DTC-GPC. On
the other hand, when a good process model is available, more
complex control structures, such as GPC and FSP, are able to
provide better performance than PID, especially for disturbance
rejection response.

The experimental analysis presented in Section 5 considers
a FOPDT process with constraints in magnitude of the control
action. The results show that PID with AW and GPC presented
similar performance when a robust tuning was considered. For
a fast tuning of the GPC, the performance improvement when
compared to the PID was almost insignificant, since it is lim-
ited by the quality of the prediction model. On the other hand,
it was observed that the control signal was more affected by
measurement noise for the fast tuning.

The main conclusion that can be drawn from this work is
that the choice between a more complex control strategy or a
PID depends more on the model quality than on the absolute
value of the dead time. For an industrial environment, where
typically robust solutions are needed, a PID with AW is able to
provide good or even better results than more complex strategies,
such as DTC or MPC. On the other hand, when robustness is not
necessary and a fast tuning is allowed, DTC and MPC structures
allow substantial performance improvement over PID even for
cases in which the dead time is small. Both conclusions are valid
almost independently of the magnitude of the dead time if a
proper PID tuning is considered.

In future work the following points will be developed: (i) the
time varying delay case will be investigated, in order to compare
the studied strategies for this type of processes; (ii) the proposed
PID with AW will be extended for MIMO processes; and (iii) the
AW strategy proposed in this study to deal with output con-
straints will be extended to cases with a control horizon different
from one.
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