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Abstract: We consider batch process optimization and robust implementation of optimal
control policies. The dynamic optimization of such processes is in most cases model based,
and therefore subject to uncertainties. This may lead to sub-optimal control trajectories with
significant economical losses. In this paper we extended the concept of self-optimizing control
for the optimal operation of transient processes. The main idea is to find a function of the
measurements whose trajectory is optimally invariant to disturbances, and then track the
trajectory using standard feedback controllers. Doing so results in near-optimal economic
operation in spite of varying disturbances without the need for re-optimization. We show that
the invariant trajectories can be computed as linear combinations of the measurement vector,
where the combination matrix is easily obtained from optimal sensitivities. We illustrate the
application of the proposed method in a semi-batch reactor case study.

1. INTRODUCTION

Optimal economic operation of chemical processes may be
in general formulated as a dynamic optimization problem.
This includes problems that are transient in nature, where
the dynamic behaviour must be considered, such as batch
operations, grade changes and start-up and shut-down
of continuous plants. The optimal solutions should not
be implemented in an open-loop manner in most cases
because of uncertain and unknown disturbances, which
may lead to large economic losses or even infeasibility.

Two paradigms exist for implementation of near optimal
control: an on-line approach, where the optimization prob-
lem is solved in real-time at every sample time when new
information is available. An example of this approach is
the economic model predictive control (EMPC)(Ellis et al.,
2014).

An example of the offline optimization paradigm is self-
optimizing control, which combines an off-line analysis
with an on-line implementation using feedback control to
track the optimal properties of the solution. For processes
whose economics are defined by the steady-state behaviour
the concept of self-optimizing control was introduced by
Skogestad (2000).

Self-optimizing control focuses on selecting a set of con-
trolled variables c that, when kept at constant setpoints,
indirectly result in near-optimal economic operation in
spite of disturbances without the need for re-optimization.
Diverse systematic methods are available to find the right
variables to control for steady-state problems. Skogestad
and Postlethwaite (2005) proposed the Maximum Gain
Rule to select individual measurements. Alstad and Sko-
gestad (2007) presented the Null Space method to select
optimal linear combinations of measurements to be con-
trolled. The Null Space method is very simple and yet gives

zero economical loss if enough measurements are available
and measurement noise is negligible.

In this paper we extended the steady state Null Space
method to optimal control of batch processes. The main
idea is to find a function of the measurements cr(t) whose
trajectory is optimally invariant to disturbances and then
track the trajectory using standard feedback controllers.
By doing so, the input trajectories are optimally updated
in case disturbances occur.

In this paper, we show that the invariant trajectories can
be computed as linear combinations of the measurement
vector. The optimal combination matrix can be easily
computed off-line using optimal sensitivity information,
which is easy to calculate. Our proposed control structure
is shown in Fig. 1 where cr(t) is the optimally invariant
reference trajectory that we track. As illustrated in a fed-
batch case study, the proposed method is very simple and
intuitive and yet is able to give near-optimal results.
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Fig. 1. Proposed implementation based on simple feedback

There are alternative approaches for self-optimizing con-
trol of batch processes currently available in the literature
(see for instance (Grema et al., 2015; Jaschke et al., 2011;
Wuhua Hu, 2012)). However, the method presented in this
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paper stands out for its simplicity and ease of implemen-
tation.

The paper is divided as follows: Section 2 outlines the
proposed method; Section 3 gives the results for the
semi-batch reactor case study; Sections 4 and 5 show a
discussion and the conclusion for the paper, respectively.

2. NULL-SCAPE METHOD FOR TRANSIENT
PROCESSES

Consider the following dynamic optimization problem:

min
u
J(x(tf ), d) (1)

subject to:

ẋ = f(x, u, d) (2)

y = g(x) (3)

p(x, u) ≤ 0 (4)

where tf is the final time, x ∈ Rnx are the state variables
and u ∈ Rnu are the control inputs. In addition, we define
y ∈ Rny as the vector of known variables (measurements),
which may include states, disturbances and control inputs.
The optimization problem depends explicitly on the uncer-
tain parameters by d ∈ Rnd . State and input constraints
are summarized by p(x, u). In this paper we make the
assumption that the active constraint set does not change
with the disturbances and time.

Assume the nominal optimal input sequence u0(t) and
nominal optimal measurements y0(t) for a given distur-
bance d0 is known a priori. The goal is to obtain all the
neighbouring solutions for deviations ∆d = d − d0 in the
problem parameters without the need for re-optimization.
It can be shown that if the cost function J is twice con-
tinuously differentiable in a neighbourhood of the nominal
solution and the linear independence constraint qualifica-
tions and the sufficient second-order conditions hold, then
the optimal sensitivity matrix F is well defined:

F (t) =
∂yopt(t, d)

∂d
(5)

and, a first order, local approximation of the optimal
solution in terms of outputs y in the neighbourhood can
be obtained from

yopt(t, d) ≈ y0(t, d0) + F (t)∆d (6)

To find the invariant measurement combination, c(y(t), d)
whose optimal value is independent of ∆d, i.e., we want
copt(y(t), d) = c0(y(t), d0) for any ∆d sufficiently small. A
simple choice is a linear combination of the measurements:

c(t) ≡ H(t)y(t) (7)

where H(t) is a nu×ny matrix, and c(t) is a nu×1 vector.
This way we can write

copt(t, d) = H(t)[y0(t, d0) + F (t)∆d] (8)

and we define the nominal combination of measurements:

c0(t, d0) = H(t)y0(t, d0) (9)

By subtracting (9) from (8) we obtain:

copt(t, d)− c0(t, d0) = H(t)F (t)∆d (10)

To have optimality with the given control policy, we must
require that copt(t) = c0(t) or

copt(t, d)− c0(t, d0) = 0 (11)

or

H(t)(yopt(t)− y0(t)) = 0 (12)

or

H(t)F (t)∆d = 0 (13)

Since this must hold for any value of ∆d, we must select
H(t) such that for any t we have H(t)F (t) = 0. This is
always true if H(t) lies in the left null space of F (t). The
main result is summarized in the following theorem.

Theorem 1 (Nullspace method for dynamic systems)
Consider a disturbance vector ∆d consisting of perturba-
tions in the initial value of certain system parameters, and
let F (t) denote the optimal sensitivity matrix of the mea-
sured outputs y with respect to these disturbances, that is,
∂yopt
∂d (d) = F (t)∆d. Then for a small disturbance (within a

range where F (t) is independent of the magnitude of ∆d)
the controlled system, with the control policy c(t) = c0(t),
behaves optimally if we select H(t) such that it lies in the
nullspace of FT (t), that is

H(t)F (t) = 0, ∀t (14)

A non-trivial optimal solution H(t) of rank nu can always
be found if we have sufficient number of independent
measurements y(t). This requires that ny ≥ nu + nd.

In this approach there is an indirect assumption of ’perfect
control’ since we assume that we can adjust u(t) such that
c(t) is kept at its setpoint c0(t) for all t. This may seem
limiting but this is often not the case. First, we know that
there does exists a feasible u(t), because this is how we

obtain c0(t) and
∂yopt
∂d (d) = F (t)∆d. Second, there may be

fundamental limitations, such as time delay, which limits
perfect control, but this will not be important for the
economics if the time scale required for optimal dynamic
operation is much longer than the achievable closed-loop
time constant for control.

Using this approach we obtain a trajectory copt(t, d) that is
optimally invariant due to disturbance. We can transform
the problem of implementing u(t) in a ’open-loop’ manner
to a reference tracking problem with optimal setpoints
cr(t, d) = copt(t, d) (see Fig. 1). By tracking cr, a sim-
ple controller automatically generates inputs u that are
optimal for any disturbance d sufficiently small and thus,
the online optimization is avoided.

The whole procedure has offline and online steps which are
summarized as follows:

Offline:

• Solve the dynamic optimization problem with d0;
• Select appropriate measurements y;
• Compute the optimal sensitivities F (t) and the com-

bination H(t);
• Compute the reference trajectories cr(t) = H(t)y0(t).

Online:

• Track the reference cr by a feedback controller.

The first step of the offline analysis is often the most time-
consuming step of the procedure because a large nonlinear
optimization problem needs to be solved in order to obtain
u0 and y0(t). In the second step, the measurements should
be selected to ensure good controllability, which is achieved
by having high input-output gains.
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An important assumption in our approach is the time-scale
separation between the (slower) dynamic evolution of the
overall trajectory and the (faster) optimal input update
given by the feedback control. That is, the local conver-
gence to the setpoint (c(t) = cs(t)) is much faster than the
evolution of cs(t) and may be considered instantaneous
from the slower scale point of view.

Remark 1. The proposed approach is closely related to
the neighbouring-extremal (NE) control introduced in the
seventies (see Bryson and HO (1975) for details). In NE
control, and optimum state feedback law is applied to
compute fast corrections of the control trajectory for small
deviations. However, the controller is obtained from a
boundary value problem whose solution is not straight-
forward. Furthermore, differently from our approach, in
NE control all the states are required to be measured or
estimated.

Remark 2. The optimal sensitivity has been used recently
to compute online fast optimal control updates in the
context of nonlinear model predictive control (as for exam-
ple in Zavala and Biegler (2009)) and real time dynamic
optimization as in Würth et al. (2009). However, in both
cases the proposed methods required measurement or esti-
mation of the disturbance/model uncertainty ∆d. Here we
only require enough independent measurements y and the
solution is given by an simple output feedback controller.

3. SIMULATION EXAMPLE: FED-BATCH REACTOR

Consider the fed batch reactor optimization problem stud-
ied in Srinivasan et al. (2003), Jaschke et al. (2011) and
Gros et al. (2009) where we have two chemical reactions:

A+B −→ C and B −→ D (15)

where C is the product and D is the undesired side
product. A is already presented in the reactor while B
is fed during the batch. The goal is to maximize the
difference between the amount of C and D at the end
of the batch.The dynamics are given by:

ċA = −k1cAcB − cAu/V (16)

ċB = −k1cAcB − 2k2cB − (cB − cBin
)u/V

V̇ = u,

where cA and cB are the concentrations [mol/l] of A and B
respectively, V [l] is the volume and u [l/min] is the inlet
feed rate and cBin

is the inlet concentration [mol/l]. The
initial conditions cA(0) = cA0, cB(0) = cB0 and V (0) = V0.
Additionally, the initial product concentration is zero.

Concentrations cC(t) and cD(t) are obtained from mass
balance and are written as:

cC(t) =
1

V
(cA0V0 − cA(t)V (t)) (17)

and

cD(t) =
1

2V
[(cA(t)+cBin−cB(t))V (t)−(cA0+cBin−cB0)V0]

(18)
The optimization problem is thus formulated as:

min
u
J(tf ) = −(cC(tf )− cD(tf )) (19)

subject to the dynamic model (16) and u ≤ umax and u ≥
umin. The final time is fixed. All the problem parameters
for the nominal conditions are summarized in Table 1.

3.1 Nominal optimal solution

The input and output trajectories for the nominal condi-
tions are given in Fig. 2 and Fig. 3 respectively.
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Fig. 2. Scaled input for the nominal case (optimal solution
for d = d0)
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Fig. 3. State variables for the nominal case (optimal
solution for d = d0)

3.2 Disturbances and measurements

We consider here 20% disturbance on the kinetic param-
eters k1 and k2 (d = [k1, k2]T ). Because we consider

Table 1. Nominal parameters values

Symbol Value Unit

k1 0.053 l/(mol×min)
k2 0.128 l/(mol×min)

cBin
5 mol/l

tf 250 min
umin 0 l/min
umax 0.001 l/min
cA0 0.72 mol/l
cB0 0.0614 mol/l
cC0 0 mol/l
cD0 0 mol/l
V0 1 l
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two disturbances (nd = 2) and we have one manipulated
variable (nu = 1), we will make use of thee measurements
to satisfy the condition ny ≥ nu + nd = 3. We consider
measurements of concentrations cA and cB in addition to
the volume V . Thus, our measurement vector becomes

y = [cA cB V ]
T

(20)

3.3 Computing invariant trajectories

Once the important disturbances d and the measurement
vector y have been defined the next step is to compute
the optimal sensitivity F (t). A simple practical method to
obtain F is to use finite differences, where we recompute
the optimal solution for a perturbed problem and approxi-
mate the sensitivities using the deviation from the nominal
solution, that is

F (t) ≈ yd
∗

opt(t)− y0(t)

d∗ − d0
(21)

where d∗ is the perturbed parameter vector and yd
∗

opt is the
optimized for the perturbed problem. Note that the devia-
tion ‖d∗−d0‖ should be small to bound the approximation
error. Nonetheless, this approach may be computationally
demanding for large dimension problems with large num-
ber of disturbances. For such cases, we may use more effi-
cient methods for calculations of the sensitivities as those
provided by (Pirnay et al., 2012). In that approach, the
basic strategy is based on the application of the Implicit
Function Theorem to the KKT conditions of the NLP,
where it can be shown that sensitivities can be obtained
simply by solving a linearization of the KKT conditions.
The main implementation idea is to take advantage of the
exact second derivatives used in the intermediate steps of
the NLP algorithm to computed exact parametric sensi-
tivities with very little added computation (Pirnay et al.,
2012).

Finally, the final step is to compute the optimal invariant
trajectory c0(t) = H(t)y0(t) such that F (t)H(t) = 0. The
optimal combination matrix H(t) = [h1(t) h2(t) h3(t)]
for our problem is depicted in the bottom of Fig. 4. Note
that the weights are fairly constant, a fact that may sim-
plify the implementation tasks, such as the control tuning.
Figure 4 also shows the invariant c0(t). The final step is
the online implementation, where we design a feedback
controller to track the reference c0(t). The controller used
here is a simple PI.

3.4 Closed-loop evaluation

In this simulation study we consider four disturbance
cases, which are summarized in Table 2. Figures 5 and
6 show the performance of the proposed method in com-
parison with the reoptimized solution and the open-loop
nominal solution for the disturbance case 2 (see Table 2).
Note in Fig. 5 that the optimal solution (red line) consists
of a short boundary arc u(t) = umin of about ∆t = 2.5
min followed by a sensitivity seeking arc. Interestingly, al-
though the proposed controller starts with nominal values,
it rapidly catches up with the optimal input trajectory.
As a consequence, the state trajectories in the proposed
method (shown in 6) are nearly identical to the optimal
ones.
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Fig. 4. Nominal inputs

Table 2. Disturbances

Case k1 k2

Nominal 0.0530 0.1280

Case 1 0.0424 0.1024

Case 2 0.0424 0.1536

Case 3 0.0636 0.1024

Case 4 0.0636 0.1536

In Gros et al. (2009) Neighbouring-Extremal (NE) con-
troller for singular optimal control problems is proposed.
The main idea of that NE consists in linearizing the neces-
sary conditions of optimality around an optimal trajectory
of the corresponding undisturbed problem leading to a
state-feedback control law. The NE feedback law computes
directly the updates δu to the nominal control input un
so that u = δu+ un. We compare the proposed controller
with the one presented in Gros et al. (2009) for different
disturbance scenarios. Table 3 summarizes the compar-
isons. As it can be seen, the self-optimizing controller and
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Fig. 5. Case 2: Control input. Blue line: open-loop nominal
input; red line: optimal solution; green line: proposed
approach. Note that the input trajectory in our ap-
proach stays near the optimal solution without the
need for re-optimization.
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Fig. 6. Case 2: Measurements. Blue lines: open-loop nom-
inal input; red lines: optimal solution; green lines:
proposed approach.

NE(θ) give very good results for all cases. Both methods
are based on linearized conditions of optimality and should
theoretically yield the same economic performance. How-
ever, the implementation philosophies of both cases are
fundamentally different. In the NE approach the feedback
law is derived directly from the linearized optimization
problem and we have no control over important closed-
loop dynamic properties, such as stability margins. In
the proposed approach, the optimization and the control
objectives are decoupled, that is, the design of feedback
controller is an independent decision that can be made
after the optimal invariant trajectories are obtained.

Table 3. Results for different disturbances on
k1 and k2. Jopt is the optimal cost with the
perturbed system, Jsoc is the cost with the
proposed approach, JOL is the cost of the
open-loop strategy, JθNE is the cost of the
NE controller proposed in Gros et al. (2009)
considering the parametric uncertainty and
JNE is the NE controller proposed in Gros

et al. (2009) ignoring the uncertainty.

Case −Jopt −Jsoc −JOL −JθNE −JNE

Case 1 0.2435 0.2434 0.2431 0.2435 0.2433

Case 2 0.1957 0.1957 0.1904 0.1956 0.1857

Case 3 0.3476 0.3474 0.3437 0.3475 0.3398

Case 4 0.2952 0.2952 0.2950 0.2952 0.2950

4. DISCUSSION

A drawback of this approach is that it cannot explicitly
handle constraints. Therefore, for a realistic implemen-
tation the proposed method should be combined with

a periodic solution of the dynamic optimization where
a new reference solution is obtained, and new invariant
trajectories c(t) are computed. The idea is to recompute
the optimal sensitivities F (t) online after solving the cur-
rent NLP and then apply the approach shown in Fig 1
in between two successive optimizations. Similar idea has
been published in (Würth et al., 2009) where the authors
proposed to use sensitivity based neighbouring-extremal
updates combined with real-time optimization. In this way,
the frequency of optimizations can be greatly reduced.

For simplicity, in this paper we have assumed a fixed final
time in the dynamic optimization problem formulation.
However, it is often necessary to consider a variable final
time to handle uncertainties. In fact, many practical ap-
plications can be formulated as minimum time problems.
The main complication here is the fact that nominal and
disturbed trajectories may be misaligned in time. Thus, in
order to apply our method in such cases we would need
to synchronize the different trajectories using a new time
variable (a ’warped-time’ variable) that is comparable in
all cases. An example of a typical candidate could be the
distance between the current measured state and an end-
point state active constraint.

5. CONCLUSION

In this paper we extend the concept of self-optimizing
control to the dynamic optimization of batch processes.
The main idea is to find a function of the measurements
whose trajectory is optimally invariant to disturbances
and then track the trajectory using standard feedback
controllers. The invariant trajectory is computed as a time-
varying linear combination of the measurements and the
optimal combination is obtained from optimal sensitivities
that are easily computed. The proposed method was tested
in a semi-batch reactor case study, where near-optimal
performance was achieved for various disturbances.
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