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Abstract 
This paper describes a procedure to find the best economically controlled variables for 
the activated sludge process in a wastewater treatment plant despite the load 
disturbances. A further controllability analysis of those variables including a nonlinear 
model predictive controller (NMPC) has been performed. The self-optimizing 
methodology has been applied, considering the most important measurements of the 
process. A first pre-screening of those measurements has been done based on the 
nonlinear model of the process and typical disturbances, in order to avoid non feasible 
operation.  The NMPC performance has been compared with a distributed NMPC-PI 
structure. 
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1. Introduction 
The efficiency of most wastewater treatment plants (WWTP) is an important issue that 
must be improved. In order to fulfil the effluent legal requirements for all weather 
conditions, which generate large variations of the influent, the operating costs are 
usually higher than the actually needed. Therefore, the optimization of the WWTP 
operation can provide a significant cost reduction. In the existing literature, most works 
only consider the problem from a heuristic viewpoint or stating a particular optimization 
problem. Only Araujo et al. (2013) provides a comprehensive approach, performing a 
sensitivity analysis of optimal operation. In Francisco et al. (2011) the process is 
optimized offline but including also plant design.  
 
In order to minimize the economic loss when disturbances occur, one approach is the re-
optimization of the plant by applying Real Time Optimization techniques which can be 
very demanding computationally, or perform some set point optimization off-line. In 
this work, a different approach is considered, called self-optimizing control (SOC) 
(Skogestad, 2000), which consists of determining some primary controlled variables 
(CVs), also called self-optimized variables, and their corresponding set points, that 
when kept constant, the economic loss is small with respect to costs if the operation is 
re-optimized. Although there are many successful works of SOC (see e.g. Umar et al., 
2012) the dynamic validation of the results is usually performed by means of 
decentralized PI controllers (Araujo and Skogestad, 2008). 
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The first objective of this work is to find the self-optimized variables in a WWTP as a 
combination of measurements, and the second objective is to evaluate the dynamic 
behavior of those variables by implementing two control structures: a centralized 
nonlinear multivariable model predictive controller (NMPC) and a distributed control 
structure with an NMPC and local PI controllers. The methodology explained has been 
applied to the activated sludge process using the Benchmark Simulation Model No. 1 
(BSM1) (Alex et al., 2008). 

2. Local methods for self-optimizing control 
The controlled variables selection, particularly for SOC, is a fundamental issue within 
the plant-wide design. The first step of the methodology is the determination of the 
optimal operation, assuming here that the economics of the plant are primarily 
determined by steady state behavior. The following problem is solved, considering 
nominal disturbances: 

( )
0

0 0min , ,J
u

x u d  (1) 

subject to:  

( )1 0, , 0=g x u d ; ( )2 0, , 0≤g x u d   

where x is the state vector, u0 is the manipulated variables vector (degrees of freedom), 
d is the disturbances vector, g1 is a vector function representing the process model 
equations and g2 the process constraints. The active constraints found when solving 
problem (1) must be controlled tightly for optimal operation (active constraints control), 
and in this work it is assumed that the set of active constraints does not change for all 
typical disturbances. 
 
Then, the identification of as many economic controlled variables as the number of 
remaining degrees of freedom is performed, by using the SOC methodology explained 
below. The selection is based on the Taylor expansion of the loss function around the 
equilibrium nominal point uopt(d): 

( ) ( ) ( ) 1, , ( ), ( ) ( )
2

T

c opt opt opt uu optL J J    = − = − −   u d u d u d d u u d J u u d  (2) 

where Jc is the cost value when the set point is kept constant, and Jopt is the optimum 
cost re-optimizing for the corresponding d, uopt is the optimum value for u and Juu is the 
Hessian of the cost function.  
 
In order to achieve near-optimal operation without the need to re-optimize the process 
when disturbances occur, the loss must be minimized. Although CV can be selected as a 
subset of the available measurements, lower loss is achieved by selecting CV as linear 
combinations of measurements. For that reason, a combination matrix H with real 
coefficients is defined as  c H y= ⋅ , where c is the vector of controlled variables and y 
is the vector of available independent measurements, that can include manipulated 
variables (e.g. flow rate measurements) or measured disturbances. The matrix H can be 
found through minimization of the following expression (Halvorsen et al., 2003; Alstad 
et al., 2009): 
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matrices for disturbances and implementation errors, yG and y
dG are the process 

transfer matrices (linearized model) , and Juu, Jud are the hessians.   

 
For problem (3), explicit solutions have been developed, where Q is any nonsingular 
matrix of nc x nc (nc = No. of controlled variables) (Yelchuru and Skogestad, 2011) 

( ) 1T T y−
=H YY G Q  (4) 

3. Methodology applied to the BSM1 
3.1. Description of the process 
The benchmark simulation model nº 1 (BSM1) (Alex et al., 2008) has been used as a 
standard activated sludge process model in a WWTP for performance assessment of 
control strategies and optimization. It consists of five biological reactors connected in 
series and one secondary settler. The reactors are modeled according to mass balances 
described in the Activated Sludge Model nº 1 (ASM1), developed by the IWAQ 
(International Association on Water Quality). An internal recycle (Qa) from the last 
tank to the first one is used to supply the denitrification step with nitrate. In order to 
maintain the microbiological population, sludge from the settler is recirculated into the 
reactors by means of an external recycle (Qr), and sludge excess is purged from the 
bottom of the settler (Qw). Note that in this benchmark no pH control is considered. 
More details are given in Alex et al. (2008). 
 
3.2. Operational objectives and constraints 
The operational objectives of the WWTP include operational costs and other process 
and regulations constraints. The cost defined in Alex et al. (2008) has been considered: 

( )E DJ k AE PE ME k SP= + + +  (5) 

where PE is the pumping energy, AE is the aeration energy, ME is the mixing energy, 
SP is the sludge production, and kE, kD are the weights representing prices. The 
constraints needed for process operability are listed in table 1, where CODe is the 
chemical oxygen demand, BOD5,e is the 5 day biological oxygen demand, TSSe  is the 
total suspended solids concentration, and TNe is the total nitrogen concentration, all 
measured in the effluent. 
 
For the BSM1 there are eight manipulated variables that correspond to eight degrees of 
freedom (u): Qa, Qr, Qw, KLa(1-5). The disturbances selected are some of the most 
important inputs to the plant: Q(in), COD(in), TSS(in).  TN(in) is not considered in the 
methodology in order to simplify the results, but it is inclusion is straightforward. The 
weather profile events specified in the BSM1 derive the following disturbance vectors: 
d0 corresponds to the nominal load conditions, d1 are the average load values during the 
rainy weather, d2 are the average values only for a rain event (extracted from the rain 
BSM1 disturbances), d3 are the average during the whole period for storms, d42 are the 



4  M. Francisco et al. 

average values during a storm, d5 are the average values for one year with average 
temperature. 
 
Table 1: Process constraints 

Effluent constraints and constraints on manipulated variables 

100eCOD ≤ (gCOD/m3) 30eTSS ≤ (gSS/m3) 1844.6wQ ≤  (m3/d) 

5, 10eBOD ≤ (gBOD/m3) 4NH eS ≤ (gN/m3) 92230aQ ≤  (m3/d) 

18eTN ≤ (gN/m3) 1 50 360KLa −≤ ≤  (1/d) 36892rQ ≤  (m3/d) 

 
The nominal optimal operating point has been obtained solving problem (1) for the 
WWTP, considering cost function (5) and constraints of table 1. This optimization has 
also been performed for different disturbances, always showing the same three active 
constraints Qa (m3/d)=0, SNH_e (g/m3)=4, TSSe (g/m3)=30. Two of them are output 
active constraints, so they will be linked to two degrees of freedom, remaining 5 
available degrees of freedom. 
 
For the selection of the five self-optimized variables, the Eq. (4) with matrix Q selected 
as the identity has been considered to obtain the corresponding matrix H. The initial set 
of measurements selected has been taken out of Alex et al. (2008), adding also the 
inputs and disturbances as measurements. In this work, a previous selection of 
measurements has been performed, very useful to avoid infeasibilities for the CV 
variables selected later (Larsson et al., 2001). The economic losses have been calculated 
with Eq. (2) for different weather conditions using the nonlinear model of the process, 
considering individual measurements. The primary CV candidate variables that make 
the process infeasible for some load disturbances have been removed, which are in this 
case NHS for all reactors. Then, based on this study, several sets of measurements have 
been considered, giving different combination matrices H. In order to select the most 
suitable, as SOC procedure is local, nonlinear losses have been obtained for each set 
(Table 2) and only H3 gives feasible solutions for all disturbances.  
 
Set 1 (H1): 1 1 5 5 5in in in

O NO O NO L rS S S S Q COD TSS K a Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,  

Set 2 (H2): 1 5 1 5 5in in in
O O NO NO L rS S S S Q COD TSS MLSS K a Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ..., , , ..., , , , , , ,  

Set 3 (H3): 1 5 1 5 5in in in
O O NO NO L rS S S S Q COD TSS K a Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ..., , , ..., , , , , ,  

 
Table 2: Nonlinear losses for different combination matrices and disturbances 

 d1 d2 d3 d42 d43 d5 

H1 Infeas Infeas Infeas Infeas Infeas Infeas 

H2 0.223 Infeas 0.127 Infeas Infeas 1.229 

H3 0.038 0.627 0.069 1.182 0.821 0.300 

4. Process controllability analysis 
In this section, the dynamic behavior of the selected CV as combination of 
measurements defined by H3 is evaluated. This study is important in order to validate 
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the possible implementation of a controller which keeps the selected CV at optimal set 
points in spite of influent disturbances. The first control structure considered is a 
centralized multivariable nonlinear constrained MPC for controlling the active 
constraints and the self-optimized variables, with the full BSM1 as internal prediction 
model, and the following objective function: 

1
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( ) ( | ) ( | ) ( | ) ( | ) ( | )
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H H

p p
i H i

V k k i k k i k k i k k H k k H k
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where y are the controlled outputs, u the manipulated variables and r the reference, k 
denotes the current sampling point, ( | )y k i k+  is the predicted output at time k+i, 
depending of measurements up to time k, ∆u  are the changes in the manipulated 
variables, Hc is the control horizon, Hw and Hp are the initial and final prediction 
horizons respectively, R and Q are positive definite constant matrices, and P is the 
terminal weight. A second control structure with two PI controllers for the active 
constraints and the NMPC to control the self-optimized variables has been considered. 
This control structure has the advantage that if the MPC fails, the PI controllers still 
keep set points for the active constraints. For selecting a good pairing for the PIs, the 
RGA matrix has been studied; TSSe is controlled with Qw and SNH,e  is controlled with  
KLa(5). 
 

 

 
Figure 1: Control performance comparison of NMPC-PI control structure (solid line) and 
centralized NMPC (dashed line) for rain event disturbance (d2) at t=0. Active constraints control 
(top left), self-optimized variables (top right) and manipulated variables (bottom). 
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In Fig. 1 the dynamic responses are presented, comparing the performance of the 
control structures when a d2 step disturbance is applied. They show a good set point 
tracking both for active constraints and selfoptimized variables, with reasonable control 
actions. The selfoptimized variable c1 is not presented because its significance in costs 
is negligible. The tuning of the NMPC has been performed by trial and error procedure, 
choosing Q = diag(0.1 1 0.001 2 2 2 2) and R = diag(0.1 0.014 0.014 0.014 0.014 0.014 
0.005) for the centralized NMPC; and Q = diag(0.001 2 2 2 2), R = diag(0.05 0.01 0.01 
0.01 0.01) for the distributed NMPC-PI control. The horizons for both control structures 
are 1wH = , 20pH =  and 1cH = .The tuning parameters for the PI control No.1 are Kp= 
-54.8,Ti= -27.4 and Kp= -12,Ti= -0.2 for No. 2, the first one selected by SIMC 
guidelines (Skogestad, 2003). For simplicity in the comparative dynamic analysis, the 
manipulated variables have not been considered in the linear combinations determined 
by H3. 

5. Conclusions 
In this work, the SOC methodology has been applied to find the optimum controlled 
variables as a combination of measurements in a WWTP. A previous prescreening of 
measurements to avoid unfeasibilites for large load disturbances has been performed. 
The dynamic controllability of these variables has also been studied, by implementing 
two control structures. The results show that both control structures give good set point 
tracking, despite of a long transient due to the slow process dynamics, particularly for 
the most severe disturbances. The distributed MPC-PI control shows better transient, 
particularly for large disturbances, because of the separate treatment of the different 
time scales of the process and the easier tuning compared to the centralized NMPC. 
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