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1 Abstract

The process industries try to operate the plant close to the optimal point to achieve economic

benefits. Though it is profitable to operate at the constrained optimal point, it might lead to

infeasible operation for some of the disturbances. Therefore, the primary focus of this paper is to

propose an optimization formulation for solving the dynamic back-off problem based on an economic

cost function. In this work, we reduce the amount of back-off by designing a suitable multi-variable

controller to compensate for the disturbances. Since the resulting formulation is non-linear and

non-convex, a novel two-stage iterative solution procedure has been proposed such that a convex

problem is solved at each step in the iteration. Several case studies are presented to demonstrate

the proposed approach.

2 Background

Profitability is the major concern of a chemical plant and one approach is to operate the plant

at the optimal point obtained from a non-linear steady state optimizer. The optimizer minimizes

a suitable cost function subject to equality and inequality constraints. Often, the solution of the

optimizer is constrained at some of the inequalities, that is, there are several active constraints.

Typically, it is assumed that these active constraints should be controlled at their limiting values

to achieve economic benefits. However, the presence of uncertainties in the form of measurement

noise, modeling error, parametric uncertainties and disturbances may cause dynamic violation of

the constraints. Hence, to ensure feasible operation under these uncertain conditions, it may be

necessary to “back-off” from the constraints which however results in loss of achievable profit.
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Therefore, it is important to find an operating point close to the active constraints such that the

plant remains feasible for the expected range of uncertainties. Thus, the focus of our work is

to propose an optimization formulation that obtains the best trading-off between feasibility and

profitability. The optimizer minimizes the loss function for backing - off from the active constraints.

The term “back - off” is defined as,

Back − off = |Actual steady state operating point

−Nominally optimal steady state operating point| (1)

Based on the notion of back-off, Narraway et al. [13] presented a method to assess the economic

performance of the plant in the presence of disturbances. Thus, the economic value of control is

obtained using the maximum amplitude of the disturbance for a certain range of frequency and

alternate designs are evaluated. They assume the set of measurements are perfectly controlled and

controllability is tested after obtaining the solution. Though the set of design variables cannot be

altered for the commissioned plant, the controllability could be achieved by pulling the set point

into the feasible region. Nevertheless, it is important to recommend the design requirements in

terms of controllability which might be used by the new plants in future.

Later, Narraway et al. [14] extended their frequency response based method of estimating the closed

loop constraint back off on the assumption of perfect control hypothesis to select the optimal set

of measurements and manipulated inputs. This is accomplished by introducing the binary decision

variable into the bounds of all possible measurements and manipulations. Also, the method is ex-

tended for the case of realistic PI controllers. Although the formulation is an Mixed Integer Linear

Program (MILP), the dimension of the problem is very high owing to the number of frequencies

considered for each of the constraints. To solve this, a solution algorithm is presented where the

obtained solution is compared with the open loop (without control) solution to quantify the prof-

itability that would achieved by the controller and the controller with less benefits are eliminated[7].

All of the above methods were developed to handle single disturbance only.

To address the case of multiple disturbances, Bahri et al. [1] addressed the back off problem for

control of active constraints in the regulatory layer by solving the open loop problem. Figueroa et

al. [5] extended the above approach to the closed-loop case where the figure of merit “maximum

percentage recovery” is defined to choose between alternative control configurations. In summary,

disturbance is the only source of uncertainty considered in evaluating the different control struc-

tures. However, in some cases measurement noise and control error also play a significant role.
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Disturbances are typically categorized based on the time scale or frequency of occurrence as fast

or high-frequency disturbance and slow or low-frequency disturbance. The lower regulatory layer

generally handles the fast disturbances whereas the slow disturbances are handled by the steady

state optimizer. The objective of the optimization layer is to provide set points to the control layer.

These set points depend on the set of design variables and measurements selected for estimating

the model parameters. And, the choice of measurements have a profound impact in the steady

state economics. In this regard, de Hennin et al. [4] presented a method for estimating the likely

economic benefit that could be achieved by implementing a steady state optimizer. The cost of

instrumentation is also included in addition to the operational cost to determine the best optimal

measurements.

Loeblein et al.[9] proposed a measure of average deviation from optimum that allows the estimation

of economic value of different online optimization structure. In addition to measurement selection,

their work addressed the impact of model uncertainty on the economics of the optimizer. To

analyse this issue, the authors considered a simple model, approximate model and rigorous model

and concluded that approximate model is appropriate for on-line optimization. Later, Loeblein

et al. [10, 11] extended their method of average deviation from optimum to analyse the dynamic

economics of regulatory layer which is assumed to be implemented using Model Predictive Control

(MPC) system. Thus, this method could transform the variance from the economically important

variables to economically unimportant variables. However, fixed control structures are assumed to

rank between the alternatives.

Peng et al. [17] proposed a stochastic formulation for the determination of back-off points based on

the notion of expected dynamic operating region. The basic idea in their approach is that the simul-

taneous selection of controller and back off point will find a optimal controller that minimizes the

variability of the active constrained variables. Since the disturbances are assumed to be stochastic,

the dynamic operation is defined in terms of variance. Extensions of the method to discrete time

and partial state information case do not alter the formulation. Despite this, the final form of the

optimization problem contains a set of reverse convex constraints which make the problem difficult

to solve. Therefore, a branch and bound type algorithm was proposed. Further, Peng et al. [16]

extended the formulation to select sensors for control. Chmielewski et al.[3] found that the optimal

multivariable feedback controller obtained can be used to tune the objective function weights of

the MPC controller.

In this work, we propose a stochastic formulation of the dynamic back-off problem that ensures
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feasible operation for the prescribed confidence limit. Following Peng et al. [17], the dynamic

operating region is defined for the given disturbances which follow from the closed loop covariance

analysis of the state space model of the process. Controller selection also plays a crucial role in

shaping the dynamic operating region while the size of the region is characterized by the prescribed

confidence limit and variance of the disturbance considered. Thus, consideration of the controller

gain as a decision variable is important in determining the optimal operating point which minimizes

the loss in profit. Therefore, the focus of our work is to propose an optimization formulation that

determines the economic backed-off operating point by finding at the same time a suitable controller

gain.

The current formulation contains an explicit representation of the ellipsoid to describe the system

dynamics and can handle partially constrained cases. Unlike our previous work [12], the formulation

presents a back-off term as slack variable in terms of the respective variances. Furthermore, a novel

solution methodology has been presented to solve the non-linear non-convex problem.

This paper is organized as follows. In the next section, we define the problem and present a

development of stochastic formulation and convex relaxations of the constraints. Next, a solution

algorithm has been developed. Finally, illustrations are provided to demonstrate the approach.

3 Formulation of dynamic back-off problem

The objective of this section is to present an optimization formulation that determines the most

profitable steady state operating point give that the plant has to remain feasible for the expected

set of disturbances affecting the process. Hence, the optimization formulation should also include

differential constraints that characterize the dynamic operating region of the plant. The feasibility

becomes an important issue while operating the plant at the constrained optimal point. Therefore,

we need to solve a dynamic back-off problem.

3.1 Optimization formulation

We start by determining the Optimal steady state Operating Point (OOP) by minimizing the

economic cost (the negative of the operating profit) J(x0, u0, d0) where x0,u0 and d0 denote the

states, manipulated inputs and nominal value of disturbances. Thus, the steady state optimizer
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solves the nonlinear steady state optimization problem of the form,

min
x0,u0

J(x0, u0, d0) (2a)

s.t. g(x0, u0, d0) = 0 (2b)

h(x0, u0, d0) ≤ 0 (2c)

At OOP, the states and manipulated inputs are denoted as x∗0 and u∗0 respectively. At OOP, there

are three possible cases: unconstrained optimum (no active constraints), partially constrained (the

number of active constraints is less than the number of manipulated inputs) and fully constrained

(the number of active constraints equals the number of manipulated inputs). Peng et al. [17]

has addressed the problem for fully constrained case and the back-off from the linearized optimal

solution is determined. In the present work, the focus is on the more general partially constrained

case. In contrast to the fully constrained case where a linear approximation of the cost function

around the optimal point is valid, the partially constrained case requires one to include a quadratic

penalty for the inputs to account for the unconstrained degrees of freedom.

As mentioned previously, operating at OOP is usually not possible because of disturbances which

may cause infeasibility. Therefore it is necessary to back off from the OOP. We introduce the

𝑢  
(𝑥 𝐵𝑂𝑃, 𝑢 𝐵𝑂𝑃) 

𝑥  

𝑢 𝑚𝑎𝑥 𝑢 𝑚𝑖𝑛 

𝑥 𝑚𝑎𝑥 

𝑥 𝑚𝑖𝑛 

OOP 

BOP 

Figure 1: Feasible region: Dynamic (box) and steady state (dashed line)

deviation variables with respect to the nominally optimal point: x̃ = x0 − x∗0, ũ = u0 − u∗0 and d̃ =

d0 − d∗0. In the deviation variable space, the optimal operating point is the origin as shown in Fig.

1. Now, linearizing the steady state process models (2b) yield,

Ax̃ss +Bũss = 0 (3)

where A and B are the partial derivative of g evaluated at (x∗0, u
∗
0, d0). Eq (3) defines the set of
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feasible back-off operating points (x̃ss, ũss). This is shown as the dashed line in Fig.2 for a single

input and single output system. Now, the inequality performance limits (2c) are linearized around

(x∗0, u
∗
0, d0) and writing in bounded form by defining a new variable z0 as:

z0 = Zxx0 + Zuu0 + Zdd0 (4a)

zmin ≤ z0 ≤ zmax (4b)

where Zx, Zu and Zd are the partial derivative of h evaluated at (x∗0, u
∗
0, d0). And, re-writing in

terms of deviation variables, we get

z̃ = Zxx̃+ Zuũ+ Zdd̃ (5a)

z̃min ≤ z̃ ≤ z̃max (5b)

where z̃min = zmin−Zxx∗0−Zuu∗0−Zdd and z̃max = zmax−Zxx∗0−Zuu∗0−Zdd. In order to formulate

the dynamic back-off problem, we need to define the system dynamics around the back-off point

which has to be determined such that the economic loss is minimum. We address the problem in

stochastic framework as we have assumed random disturbances. Also, we assume that disturbances

are rejected by the linear multivariable controller and full information about the state is available.

Now, the dynamic model is rewritten in terms of the new deviation variables around the BOP

(x̃ss,ũss,d) and is given by

ẋ = Ax+Bu+Gd (6)

z = Zxx+ Zuu+ Zdd (7)

z̃min − z̃ss ≤ z ≤ z̃max − z̃ss (8)

where x = x̃ − x̃ss,u = ũ − ũss and d = d0 − d0. The above set of equations define the dynamic

operating region around the BOP. Now, we can pose the dynamic back-off problem for linear

systems as

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (9)

s.t. 0 = Ax̃ss +Bũss (10)

ẋ = Ax+Bu+Gd (11)

z = Zxx+ Zuu+ Zdd (12)

z̃min − z̃ss ≤ z ≤ z̃max − z̃ss (13)

u = Lx (14)
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The formulation is still semi-infinite dimensional and non-linear. Therefore, in the next section, we

present a stochastic framework for addressing the dynamic back-off problem.

3.2 Stochastic framework

In this section, we develop a stochastic formulation that ensures feasible operation modulo, a

prescribed confidence limit i.e., the probability that the constraints are satisfied is greater than or

equal to the confidence limit [17]. We make the following assumptions in formulating the problem

• Disturbances are the only source of uncertainty considered and they are characterized by

Gaussian white noise process with zero mean and known variances.

• A linear multi-variable controller with full state information (u = Lx) is available for feedback.

• A linear state space model to describe the dynamic operation of the system is given.

The differential equations that define the dynamic operating region can be expressed using the

closed loop covariance analysis of the state space model of the process. Under the above men-

tioned assumptions and covariance description of dynamics, the dynamic operating region could be

expressed as ellipsoids. Therefore, the current objective is to formulate the optimization problem

that aims at determining the center of the ellipsoid (Back-off operating point) and also orient the

ellipsoid (i.e., finding a suitable controller) such that the dynamic operating region remains feasible

for the given confidence limit while minimizing the loss in profit.

Following Peng et al.[17], we develop closed loop covariance expressions that describe the expected

dynamic operating region (EDOR). In this framework, the EDOR is a region such that the prob-

ability that the system is confined to the EDOR is greater than the prescribed confidence limits.

This covariance matrix depends on the process dynamics, controller and also on the set of measure-

ment. Assuming full state information and linear feedback, u = Lx, the closed-loop steady state

covariance matrix of the state vector (Σx := lim
t→∞

E[x(t)Tx(t)]) is given by the Lyapunov equation

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (15)

where Σx is the symmetric positive semi-definite solution to the Lyapunov equation. Correspond-

ingly, the covariance of the output signal z is given by

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (16)
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When the model is linear and uncertainties are Gaussian, the EDOR is usually described as an

ellipsoid and can be computed given the covariance and the prescribed confidence limits. Hence,

we use the following description of the ellipsoid

E95% = {z̃ss + αPz | ‖z‖2 ≤ 1} (17)

where P is the positive square root of Σz and α depends on the confidence limit, e.g., for a limit

of 95%, α = 2. It is important to note that z̃ = z̃ss + αPz. Therefore, we describe the dynamic

feasibility as finding the ellipsoid within the performance bounds which is given by

E95% = {(z̃min ≤ z̃ss + αPz ≤ z̃max) | ‖z‖2 ≤ 1} (18)

This expression tells that the whole ellipsoid should lie within the performance bounds. Thus, the

problem can restated as finding the center of the ellipsoid close to the optimal operating point such

that the ellipsoid is contained within performance bounds. Thus, we write the EBOP selection

problem as

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (19a)

s.t. 0 = Ax̃ss +Bũss (19b)

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (19c)

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (19d)

P = Σ1/2
z (19e)

z̃ := z̃ss + αPz ∀ ‖z‖2 ≤ 1 (19f)

z̃min ≤ z̃ ≤ z̃max (19g)

where x̃ss, ũss, z̃ss , L, Σx � 0, Σz � 0 and P � 0 are the decision variables. There are especially

two factors that make the above optimization problem challenging. First, equations (19c) - (19e)

are non-linear in the decision variables. Second, the formulation is infinite-dimensional due to the

explicit description of the ellipsoid (19f). In other words, we need to find the ellipsoid centered at

the BOP for an infinite set of z. Hence, we present convex relaxations of the constraints in the

next section.

3.3 Convex relaxations

Convex optimization tools are highly useful in transforming “difficult-to-solve” non linear con-

straints into solvable Linear Matrix Inequality (LMI) forms[2]. First, we present a list of facts from
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convex optimization and control theory used in this work.

Fact 01 Schur complement[2]. If C is positive-definite, i.e., C � 0, then the matrix S =

A − BC−1BT is called the Schur complement of C in the matrix X =

 A B

BT C

. Then

the condition for positive semi-definiteness of block X is: If C � 0, then X � 0 if and only if

S � 0.

Fact 02 S - procedure:[2] The implication

xTF1x+ 2g1
Tx+ h1 ≤ 0⇒ xTF2x+ 2g2

Tx+ h2 ≤ 0,

where Fi ∈ Sn,gi ∈ Rn,hi ∈ R, holds if and only if there exists a τ such that

τ ≥ 0;

 F2 g2

g2
T h2

 � τ
 F1 g1

g1
T h1

 ,
provided there exists a point x̂ with x̂TF1x̂+ 2g1

T x̂+ h1 < 0.

Theorem 1[17] ∃ stabilizing L, Σx � 0 s.t. (A + BL)Σx + Σx(A + BL)T + GΣdG
T = 0 and

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T if and only if ∃ Y ,X � 0 and Z � 0 s.t.

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 Z − ZdΣdZd

T ZxX + ZuY

(ZxX + ZuY )T X

 � 0

where Y = LX and X = Σx � 0 (� 0) denotes that X is positive definite (respectively positive

semi-definite). For proof of the above theorem, the reader is referred to Chmielewski et al.[17].

Theorem 2[2] The ellipsoid E = {z̃ := αPz+ z̃ss | ‖z‖2 ≤ 1} contained inside a polytope described

by a set of linear equalities hTi z̃+ ti ≤ 0; i = 1, . . . ,m is given by the second order cone constraints

of the form ‖αPhi‖2 + hTi z̃ss + ti ≤ 0

Proof. Let C is a polytope given by C = {z̃| hTi z̃ + ti ≤ 0, i = 1, . . . ,m} where hi’s, ti’s are the

respective rows and elements of the matrix H = [Zx|Zu;−Zx| − Zu] and vector t = [z̃max;−z̃min].

The ellipsoid contained within the polytope can be expressed as

sup
‖z‖2≤1

hTi (αPz + z̃ss) + ti ≤ 0, i = 1, . . . ,m (20)

⇐⇒ sup
‖z‖2≤1

(hTi αPz) + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m (21)

⇐⇒ ‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m (22)
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Let us consider the covariance constraint (19d) of the output z

Σz = (Zx + ZuL)ΣxΣ−1x Σx(Zx + ZuL)T + ZdΣdZd
T (23)

Now we can write the equation as

Σz = (ZxΣx + ZuLΣx)Σ−1x (ZxΣx + ZuLΣx)T + ZdΣdZd
T (24)

This form allows one to write it as an LMI using change of variables and Schur complement (see

Fact 01). Next, let us consider the ellipsoidal constraint (19f) and the output bounds defined by

the polytopic constraint (19g). As mentioned previously, these two constraints make the EBOP

selection problem as an infinite dimensional one. However, we can represent them using finite

number of second order cone constraints using Theorem 2

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m (25)

Now the EBOP selection problem is reformulated in terms of LMI constraints as :

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (26a)

s.t. 0 = Ax̃ss +Bũss (26b)

z̃ss = Zxx̃ss + Zuũss (26c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (26d) Z − ZdΣdZd

T ZxX + ZuY

(ZxX + ZuY )T X

 � 0 (26e)

P = Z1/2 (26f)

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . , 2nz (26g)

where x̃ss, ũss, z̃ss, Y , X � 0, Z � 0 and P � 0 are the decision variables. The objective function

and all the constraints in the above formulation (26) except (26f) are convex. Thus, the formulated

minimum back off operating point selection problem is a non linear non convex program. However,

this problem could be solved using the solution methodology developed in Section 4.

Remarks

• The formulation presented by [17] differs from our formulation in many ways: (1) There is no

explicit ellipsoidal constraints, (2) The dynamic feasibility of the ellipsoid is ensured by the

reverse convex constraints and, (3) a branch and bound type of algorithm was proposed [17].
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• Note that this cost function considers only the steady state effect on economics. Since the

disturbances are assumed to be Gaussian and zero mean, this implies that the cost accounts

only for the nominal steady state value of disturbances. However, the restriction is less severe

as long as the optimal constraints remain the same.

• The linear terms in the cost function could be interpreted as the sum of the product of back-off

variables and their Lagrange multipliers.

• The term ‖αPhi‖2 denotes the amount of required back-off. Hence, given the controller

design, we can directly compute the back-off from the covariance estimates.

• An equivalent LMI representation of the second order cone constraints (26g) is given by

S-procedure (see Fact 02)[12], −τi − hiT z̃ss − ti α
2hi

TP

(α2hi
TP )T τiI

 � 0; τi > 0; i = 1 · · · 2nz (27)

• Hard and soft constraints could be handled within the proposed formulation by selecting

different values α for each of the constraints. Higher value of α is chosen for a hard constraint

which represents that probability of violating that constraint should be less. On the other

hand, lower values of α are chosen for soft constraints to achieve the appropriate tolerance

level.

4 Solution Methodology

The main challenge in the obtaining solution to the proposed formulation is the non-linearity in

Z. In our formulation, the objective was to orient the ellipsoid (i.e, controller gain, L) such that

the center of the ellipsoid is close to optimal operating point (i.e, EBOP, z̃ss). In this section,

we present a solution technique to solve the proposed formulation using the geometrical inference

of the solution space. In this regard, we develop a two-stage iterative procedure where a convex

problem is solved in each stage.

The basic idea of the solution strategy is illustrated in Fig.2 where we first determine a feasible

covariance ellipsoid Z1 that describe the dynamic operating region for the given confidence limit

(say 95 %). Next, we determine the backed-off operating point for the computed Z1. However,

the solution obtained may not be economically optimal as no cost information is included in stage
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Figure 2: Non-optimal controller design (Solution from Stage 1)

1. In other words, the backed-off operating point depends critically on the computed Z1 (solution

from stage 1). It can be seen from Fig.3 that choosing a different covariance ellipsoid Z2 leads

to a better economically backed-off operating point. It should also be noted that at the economic

back-off point, the dynamic operating region touches the manipulated input constraint and the

active constraint (controlled variable). This illustrates the fact that the dynamic back-off required

is due to imperfect control caused by the input constraints. Hence, the covariance ellipsoid Z1

is approached towards Z2 on subsequent iterations by creating lower bounds on the individual

variances based on the available manipulated inputs.

4.1 Stage 1

In the first stage, we find the smallest (in terms of trace) feasible ellipsoid Z that describes the

dynamic operating region for the considered disturbance magnitude. In other words, we have

designed a controller (L = Y X−1) that result in a minimum variance. At the first stage, we impose

the following constraints on the individual variances to determine the Z (and hence L) that ensures

feasibility in the second stage,

σ2z,i <
1

4α2
(z̃max,i − z̃min,i)2; i = 1 · · ·nz (28)

where σ2z,i is the variance of the ith component of z, viz., zi. For the given confidence interval (

assume 95% ), 2σi should be within the performance bounds. This enables us to determine the

12



Δu2 

Δu1 

Δx1 

Δx2 

OOP 

BOP 

L1 

L2 
EBOP 

𝑥  

𝑢  

𝑧 𝑚𝑎𝑥,2 𝑧 𝑚𝑖𝑛,2 

𝑧 𝑚𝑎𝑥,1 

𝑧 𝑚𝑖𝑛,1 

Figure 3: Optimal controller design (After convergence)

feasible ellipsoid. Additionally, we define the following constraints with respect to variance of the

jth variable σ2z,j ,

σ2z,i >
δ2i,j
α2

σ2z,j ; i = 1, j − 1, j + 1, nz (29)

where the iterative parameters δ2i,j are chosen such that the BOP selected in stage 2 is used to

select the new minimum variance ellipsoid that forces the BOP close to OOP. The parameter δi,j

is defined as

δi,j =
distance of variable i from its closest bound

distance of variable j from its closest bound
(30)

The δ for the case shown in Fig. 2 is given by

δi,j =
min(∆u1,∆u2)

min(∆x1,∆x2)
(31)

Physically, the solution tries to exploit the available manipulated input space to be utilized to find

the economic back-off point and the optimal multi-variable controller. Hence, we solve the following

problem to find the dynamic operating region:

min
X�0,Z�0,Y

Tr(Z) (32a)

s.t. (AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (32b) Z − ZdΣdZd

T ZxX + ZuY

(ZxX + ZuY )T X

 � 0 (32c)

σ2z,i <
1

4α2
(z̃max,i − z̃min,i)2; i = 1 · · ·nz (32d)

σ2z,i >
δ2i,j
α2

σ2z,j ; i = 1, j − 1, j + 1, nz (32e)
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The solution of Stage 1 results in a feasible covariance ellipsoid Z1. The upper bound on the

individual variances ensure that Z1 is feasible in the second stage. If the solution from stage 1 is

infeasible, then the solution to the original problem is infeasible. The parameter δ is used to create

lower bound on the individual variances such that the economically optimal ellipsoid is approached

on subsequent iterations. The parameter δ is intialized to zero during the start of the algorithm

which defines that the individual variances should be non-negative. Let us compute P = Z1/2 and

input P to the second stage. This is used to find the approximation to the economic back-off point.

4.2 Stage 2

min
x̃ss,ũss,z̃ss

Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (33a)

s.t. Ax̃ss +Bũss = 0 (33b)

z̃ss = Zxx̃ss + Zuũss (33c)

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . , 2nz (33d)

In the second stage, we determine a backed-off operating point (z̃ss) that is close to the optimal

point for the predetermined ellipsoid (solution from the first stage). However, the closeness to

the economically optimal point depends on the orientation of the covariance ellipsoid. As we have

written the inequalities as box constraints, the surface of the ellipsoid should touch the box at

optimality. Hence, we need to re-orient the ellipsoid such that dynamic operating region touches

the box constraint. This is accomplished by creating lower bounds for the individual variances

using the parameter δ. The δ’s are updated based on the newly found backed-off point. This

information is used to recompute Z (and hence L) in the first stage. This process is iterated until

convergence. And, the recomputed solution approaches the economically optimal operating point.

It should be noted that P is not a decision variable since Z is known from the first stage. Now, it

can be easily recognized that both stages contains only convex constraints, which could be easily

solved using CVX, a package for specifying and solving convex programs ([6]). Initializing δi,j to

zero and given two successive iterates, z̃iter−1ss and z̃iterss this process is iterated until the convergence

criteria ‖z̃iterss − z̃iter-1ss ‖2 ≤ ε is satisfied where ε being the prescribed tolerance limit. The solution

algorithm is presented in Table 1.
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Table 1: Algorithm for selecting economic back-off operating point

1 Initialize the parameter δi,j = 0.

2 Find Z by solving the Stage 1 convex problem (32). If no Z can be found, exit.

The problem is infeasible.

3 Compute P = Z1/2. Find the BOP (z̃ss) by solving the Stage 2 convex problem (33).

4 Terminate on convergence. Otherwise, update δi,j using (30) and proceed to Step 2.

5 Examples

5.1 Mass spring damper system

The purpose of this example is to illustrate the proposed backed-off operating point selection

algorithm in a single-input two-output system.

Description. Consider the mass-spring-damper system depicted in Fig. 4. Let r denote the

Mass

f w

r

rmax

rmin

Figure 4: Mass spring damper system

mass position, v the velocity, g the gravitational force, f the manipulated input force, and w a

disturbance force. The system dynamics are described by linear differential equations[17]:

dr

dt
= v (34)

dv

dt
= −3r − 2v − g + f + w (35)

We will further assume that the system is constrained by the following inequalities rmin ≤ r ≤ rmax

and fmin ≤ f ≤ fmax. Hence, the signal matrices are given by Zx =

 1 0

0 0

; Zu =

 0

1

 ;

Zd =

 0

0
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BOPs. The economic objective is to bring the mass as close as possible to the upper bound on

position. Thus, it can be easily realized that the Optimal Operating Point (OOP) is constrained at

the mass position, r∗ = rmax, v∗ = 0 and f∗ = 3rmax + g (assuming fmax ≥ 3rmax + g). Rewriting

in deviation form, the system matrices are A =

 0 1

−3 −2

; B =

 0

1

 ; G =

 0

1

 and the

corresponding BOPs which define the steady state feasible points are ṽss = 0, f̃ss = 3r̃ss. The

dynamic feasible region is defined by box constraints: r̃min ≤ r̃ ≤ r̃max and f̃min ≤ f̃ ≤ f̃max.

Results. If rmin = −1, rmax = 1, fmin = 0, fmax = 15, g = 9.8 and Σw = 10, the OOP is

r∗ = 1,v∗ = 0 and f∗ = 12.8 ( since fmax = 15 ≥ 3rmax+g = 12.8). The data presented here are the

base case values (Case A). For the current system, we have assumed a confidence level of 63% (i.e.

α = 1). The economic backed-off operating point determined is (rEBOP = 0.64, fEBOP = 11.72)

which results in a loss of 0.36. The multi-variable controller (u = Lx) designed to operated feasibly

at the economic backed-off operating point is L = [−6.4319−2.1066]. The results obtained here are

in agreement with the results presented in [17]. The impact of change in the constraint polytope is

shown in Fig.5 by increasing the fmax to 18N (Case B) and fmin to 9.5N (Case C). The results are

tabulated in Table 2. We see that increasing the upper limit in input force reduces the necessary

back-off because this extra input force is used to compensate for the disturbances and hence pushes

the mass position close to the optimal point. Whereas increasing the lower bound requires more

back-off as it reduces the available dynamic feasible region. Hence, increasing the dynamic feasible

region on the input will result in keeping the mass close to the true optimal point.
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Figure 5: Impact of change in constraint for mass spring damper system

16



Table 2: MBOP values for change in constraint polytope

Case constraint (r∗, f∗) L

A fmax = 15 (0.64,11.72) [-6.4319 -2.1066]

B fmax = 18 (0.83,12.30) [-22.883 -5.0544]

C fmin = 9.5 (0.36,10.90) [-1.6327 -0.6952]

5.2 Preheating furnace reactor system

This example illustrates the proposed back-off approach in a multi-input multi-output system which

is fully constrained at the nominal optimal point.

Description. Consider the preheating furnace reactor system shown in the Fig. 6. The system

Reactor Furnace 

CO, O2, Out 

Fuel feed rate  

F, T0   TF   TR 

Vent position 

Manipulated Variables 
Reactant Feed Rate 
Fuel Feed Rate 
Vent Position 

State Variables 
Reactor Temperature 
Furnace Temperature 
Furnace O2 

Furnace CO 

Disturbance Variable 
Feed Temperature 

Figure 6: Preheating furnace reactor system

matrices are given by [17]

A =


−8000 0 0 0

2000 −1500 0 0

0 0 −5000 0

0 0 0 −5000

 ;B =


−75 75000 0

−25 0 0

0 −8500 8.5 ∗ 105

0 0 −5 ∗ 107

 and G =


10000

0

0

0


where states 1 and 2 correspond to the temperature of the reactor and furnace, TR and TF , respec-

tively, and states 3 and 4 correspond to the O2 and CO concentrations in the furnace, respectively.

The manipulated inputs are the changes in the feed flow rate (FR), fuel flow rate (FF ) and furnace

vent position (VP ). Feed temperature, T0 is assumed as the disturbance input with mean zero and
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variance Σd = (0.13975)2. Feasibility is defined by the following state constraints
355

495

3

70

 ≤


TF

TR

CO2

CCO

 ≤


395

505

5

130


and input constraints 

9900

8

0.09

 ≤

FR

FF

VP

 ≤


10100

12

0.11


Nominal point. The nominally optimal operating point (OOP) obtained [17] is x∗ = [372 495 4.79 70]

and u∗ = [10100 9.83 0.103]. At this point, the active constraints are at the lower limit of

CO concentration and furnace temperature and at the upper limit of feed flow rate. In this

case, the number of active constraints equal the number of manipulated inputs. Therefore, the

system is fully constrained at the optimal point. Hence, the first order approximation of the

cost would be suffice for further analysis. The linearized negative profit function (in $/h) is

Jx = [0 0 0 0.01]T ; Ju = [−10 30 0]T . Next, the performance signal z is defined by the ma-

trices, Zx = [I4×4|04×3]T ; Zu = [04×3|I3×3]T ; Zd = [0] and the bound constraints written in

the form of hi
T z̃ss + ti ≤ 0 are obtained from the rows of the matrix H and elements of vector t,

H = [I7×7|−I7×7]T ; t = [−23 −10 −0.21 −60 0 −2.17 −0.007 −17 0 −1.79 0 −200 −1.83 −0.013]T .

Results. The economically optimal operation of the preheating furnace reactor system can be

achieved if we control the active constraints (i.e., furnace temperature and CO concentration) and

keep the feed flow rate at its upper limit. For the assumed disturbance variances, there is no feasible

backed off operating point in the open loop case (without the controller). However, with the help of

controller design as a part of the formulation, we find the economic backed off operating point for

the system as tabulated in Table 3. At the economic backed off point, the input constraint on feed

flow rate is still at its bound which means that the economic value of this input is very high relative

to other inputs and hence other inputs are used to achieve profitability. The dynamic operating

region along with the economic back-off point for the assumed confidence level is shown in the

Figures 7 - 12. We can see that, in order to ensure dynamic feasibility, the furnace temperature

and CO concentration are backed-off from the active constraints whereas feed flow rate requires

no back-off. However, increasing the disturbance magnitude may demand the feed flow rate to be
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Table 3: Nominal values and EBOP solution

Variables Description Units Nominal value EBOP (closed loop)

States (x)

TR Reactor temperature ◦C 495 496.45

TF Furnace temperature ◦C 372 373.09

CO2 O2 concentration ppm 4.79 4.2517

CCO CO concentration ppm 70 90.083

Inputs (u)

FR feed flow rate bbl/day 10100 10100

FF fuel flow rate bbl/day 9.83 9.9458

VP furnace vent position % 0.103 0.10099

backed-off. The optimal multivariable controller gain L designed using our approach is given by

L =


0.001 0.008 0.010 0.000

−0.538 −4.038 5.608 0.099

−0.001 −0.013 −33.498 1.249


It is important to note from the first row of the L matrix that the feed flow rate is hardly adjusted

under dynamic conditions. In other words, the feed flow rate should be kept at its limiting value

to achieve optimality. Therefore, other inputs (fuel flow rate and vent position) are manipulated to

ensure feasible operation under dynamic conditions. We incur a loss of $3.93 per day by operating

the system at the backed-off operating point. Whereas the loss reported by [17] was $2.25 per day.

However, their approach cannot handle partially constrained case which is discussed next.
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Figure 7: Furnace temperature vs Reactor temperature
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Figure 8: Furnace temperature vs Feed flow rate
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Figure 9: Furnace temperature vs Fuel flow rate

5.3 Evaporation Process

In this example, we illustrate the backed-off operating point selection problem in a partially con-

strained system, that is, when there exists some unconstrained degrees of freedom at the nominal

optimal point. Further, the economic impact of controller design is addressed.

Description. The forced-circulation evaporator system is depicted in Fig. 13, where the concen-

tration of the feed stream is increased by evaporating the solvent through a vertical heat exchanger

with circulated liquor [15]. The overhead vapor is condensed by the use of process heat exchanger.

The details of the mathematical model can be found in the original reference. The separator level

is assumed to be perfectly controlled using the exit product flow rate F2 which also eliminates the

integrating nature of the state. The economic objective is to maximize the operational profit [$/h],

formulated as a minimization problem of the negative profit ([8]). The first three terms of (36)

are utility costs relating to steam, coolant and pumping respectively. The fourth term is the raw
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Figure 10: Furnace temperature vs O2 concetration
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Figure 11: Furnace temperature vs CO concentration

material cost, whereas the last term is the product value.

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (36)

The process has the following constraints related to product specification, safety, and design limits:

X2 ≥ 35% (37)

40 kPa ≤ P2 ≤ 80 kPa (38)

P100 ≤ 400 kPa (39)

0 kg/min ≤ F200 ≤ 400 kg/min (40)

0 kg/min ≤ F1 ≤ 20 kg/min (41)

0 kg/min ≤ F3 ≤ 100 kg/min (42)

Nominal operating point. The nominal steady state values are obtained by solving a nonlinear

optimization problem for the nominal values of disturbances and the profit is found to be J =

$693.41/h and the nominal values are shown in Table 4. At the nominal optimal point, there are
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Figure 12: Furnace temperature vs Vent position

Figure 13: Evaporator system

two active constraints: product composition, X2 = 35% and steam pressure, P100 = 400 kPa.

The corresponding Lagrange multipliers are 229.36 $/% h and -0.096685 $/kPa h, respectively.

Degree of freedom analysis. The process model has seven degrees of freedom. Inlet condi-

tions of the feed (flow rate, composition, temperature) and inlet temperature of the condenser

are considered as disturbances (i.e., d = [F1 X1 T1 T200]
T ). There are three manipulated inputs,

u = [F3 P100 F200]
T . The disturbance range is assumed to be 10% variation of the nominal value

(i.e., Σd = diag([1 0.25 16 6.25])2 ) and the set of active constraints do not change in the whole

range of disturbances . It is important to note that there is one unconstrained degrees of freedom.

Linearized steady state model. A linear approximation of the process model at the nominal

optimum yields,

A =

 −0.16709 −0.17185

−0.013665 −0.043132

 ;
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Table 4: Variables and Nominal optimal values

Variables Description Nominal value

States (x)

X2 product composition 35.00 %

P2 operating pressure 56.15 kPa

Inputs (u)

F3 recirculating flow rate 27.70 kg/min

P100 steam pressure 400 kPa

F200 cooling water flow rate 230.57 kg/min

Disturbances (d)

F1 feed flow rate 10.00 kg/min

X1 feed composition 5.00 %

Dependent variables

F2 product flow rate 1.43 kg/min

F4 vapor flow rate 8.57 kg/min

F5 condensate flow rate 8.57 kg/min

F100 steam flow rate 9.99 kg/min

Q100 heat duty 365.63 kW

Q200 condenser duty 330.00 kW
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Figure 14: Product composition vs operating pressure. a) Open loop case: F3 and F200 are constant.

b) Closed loop case: F3 and F200 are used for control of X2

B =

 0.44083 0.04217 0

0.062976 0.0060243 −0.0016249

 ;

G =

 −1.2211 0.5 0.031818 0

0.039837 0 0.0045455 0.03665


The output z are defined by the matrices,

Zx = [I2×2|02×3]T ;Zu = [03×2|I3×3]T ;Zd = [04×5]
T

and the bound constraints written in the form of hi
T z̃ss + ti ≤ 0 are obtained from the rows of the

matrix H and elements of vector t, H = [I5×5|− I5×5]T ; t = [−5 −23.849 −72.299 0 −169.43 0 −

16.151 − 27.701 − 200 − 230.57]T . The linearized negative profit function is

Jx = [−293.23 − 526.8]T ; Ju = [1368.9 130.85 0.6]T

As the input P100 is constrained, the quadratic penalty is included only for the other inputs and

the numerical perturbation of inputs F3 and F200 yield,

Juu =

 4.4953 0.00010226

0.00010226 0.0052699



Results. For the case of full state information, the amount of back off required to remain feasible

for a 10% variation in the nominal disturbances is tabulated in Table 5. It is to be noted that the

amount of back-off for steam pressure (P100) is zero as expected as it is a input variable. However,
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Figure 15: Product composition vs recirculation flow rate
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Figure 16: Product composition vs steam pressure
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Figure 17: Product composition vs coolant flow rate
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Table 5: Nominal and Back-off operation

Variables Units Nominal value EBOP solution

closed loop open loop

(proposed) (u = 0)

States

X2 % 35.00 35.26 39.75

P2 kPa 56.15 56.10 55.16

Inputs

F3 kg/min 27.70 27.78 29.12

P100 kPa 400.00 400 400

F200 kg/min 230.57 232.71 271.65

Profit $/h 693.41 634.76 -414.92

the assumed disturbances have significant effect on product exit composition, X2. The EBOP

solution and EDOR for the open loop and closed loop case are shown as ellipses in Figures 14-

17. The loss obtained for operating the evaporator at this backed off operating point is $58.65/h

which corresponds to the achievable profit of $634.76/h. In other words, the loss we incur to

ensure feasible operation with 95% confidence interval is $58.65/h. Indeed, the back-off estimated

is the best possible lower bound for the product composition to ensure feasibility because of the

simultaneous consideration of controller in the formulation. This could be inferred from Table 5

by comparing the closed loop solution with the open loop solution. The multivariable feedback

controller (u = Lx) to be implemented to operate the system profitably is

L =


−108.5643 0.3868

−0.0606 0.0002

−123.2216 97.3625


Without the controller (open loop case), the amount of back off required is higher and the process

would incur a loss of $414.92/h. Note that the optimal controller is using both F3 and F200 to

control the product composition with the aim of minimizing the overall cost. The corresponding

state feedback gain could be used to determine the appropriate objective function weights using the

inverse optimality results of [3] and could then be implemented using Model Predictive Control. The

back off operating point determined above is given as set point to the control system. It is important

to note that without the quadratic term, the EBOP solution obtained by solving formulation (26)

is [xTuT ] = [35.41 76.53 35.80 399.99 0.01]. Note that for instance, F200 is changed from 230.57
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to 0.01 kg/min, which is unrealistic. This corresponds to the lower left corner in Fig. 17. Hence,

the quadratic term in the cost function is important in the partially constrained case to get a

meaningful solution.

6 Conclusion

A stochastic formulation to compute the most profitable and feasible operating point for Gaussian

white noise type disturbances has been presented. A two-stage iterative algorithm has been pro-

posed to solve the dynamic back-off problem. Several case studies here demonstrate the generality

of the formulation (i.e, applicability to both fully constrained and partially constrained cases). In

particular, the evaporator system demonstrated the need for quadratic cost function in partially

constrained systems to achieve meaningful economic backed-off point. Since the controller is a

decision variable in the formulation, the most economical operating point is determined which, in

fact, gives the best possible lower bound of the achievable profit. The formulation can be extended

to include measurement noise as an additional source of uncertainty.
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