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Abstract

For heat exchanger networks with stream splits, we present a simple way of
controlling the split ratio. We introduce the ”Jäschke Temperature”, which

for a branch with one exchanger is defined as TJ = (T−T0)2

Th−T0
, where T0 and

T are the inlet and outlet temperatures of the split stream (usually cold),
and Th is the inlet temperature of the other stream (usually hot). Assuming
the heat transfer driving force is given by the arithmetic mean temperature
difference, the Jäschke Temperatures of all branches must be equal to achieve
maximum heat transfer. The optimal controlled variable is the difference
between the Jäschke Temperatures of each branch, which should be controlled
to zero. Heat capacity or heat transfer parameters are not needed, and
no optimization is required to find the optimal setpoints for the controlled
variables. Most importantly, our approach gives near-optimal operation for
systems with logarithmic mean temperature difference as driving force.

Keywords: Heat exchanger networks, Parallel systems, Self-optimizing
control, Optimal operation

1. Introduction

Global climate challenges and competition require efficient energy usage,
and this typically implies re-using energy as much as possible. In the chemical
and process industries, large amounts of energy can be saved by using heat
recovery in heat exchanger networks, which transfer energy in form of heat
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from one set of (hot) streams to another set of (cold) streams. By optimizing
layout and operation of these heat exchangers, the overall consumption of
natural resources for heating and cooling can be reduced considerably. In
addition, this often results in significantly reduced operating costs.

The potential of heat exchanger networks for saving energy and costs has
led to a large body of research, and most of the literature falls into one of two
categories. The first category is the design and synthesis of heat exchanger
networks (see e.g. Saboo & Morari (1984); Saboo et al. (1985); D.Colberg &
Morari (1990); Yee & Grossmann (1990); Gundersen et al. (1997); Furman &
Sahinidis (2002); Laukkanen et al. (2010)). Most contributions fall into this
category, where some likely conditions and scenarios are assumed, and the
task is to find the optimal type, size and structure of interconnections of the
heat exchangers. Generally this results in large mixed integer optimization
problems, and most of the literature addresses the issue of finding optimal
solutions in an efficient way.

The second category deals with optimal operation of heat exchanger net-
works (Aguilera & Marchetti, 1998; Glemmestad et al., 1999; Rodera et al.,
2003; Lersbamrungsuk et al., 2008). Generally, the conditions in the real
plant differ from those assumed during design, and the contributions from
this category study how the available degrees of freedom, such as valves, by-
passes and utility heaters, can be used to optimally match the real operating
conditions. Even if the actual operating conditions are the same as assumed
during plant design, Jensen & Skogestad (2008) showed that because of sim-
plifying assumptions during design, like fixing ∆Tmin to 10 K, the optimal
design point is often not the same as the optimal operating point. Although
there has been some research activity in this area, there is still a need to
find methods for optimizing operation of heat exchanger networks, which are
easy to implement in real plants.

When implementing optimal operation in a process, such as heat ex-
changer networks, there are two fundamental model-based approaches which
can be taken: Online optimization and offline optimization. In online opti-
mization (Grötschel et al., 2001), the model is used to formulate an optimiza-
tion problem, which is repeatedly solved online in a fast optimization soft-
ware. The optimal input values obtained from the software are then applied
to the plant. In this approach, the plant measurements are primarily used
for adjusting model parameters, such that the model and the plant match.
This approach may be implemented using a steady state model (Marlin &
Hrymak, 1997; Lid et al., 2001), or alternatively a dynamic model (Grötschel
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et al., 2001). Implementing online optimization is relatively expensive due
to the high costs for obtaining and maintaining a good process model, which
can be optimized in real-time. However, if a good model is available, this
approach can yield results which are very close to the true optimum. Due
to the high costs, it is mainly implemented in cases where the immediate
economic benefits are very high, such as refineries.

The alternative offline optimization approach exploits the structure of
the optimal solution. This results in simple operating schemes which do
not require online solution of optimization problems. The basic idea was
first conceived by Morari et al. (1980), who write that ”we want to find
a function c of the process variables [...] which when held constant, leads
automatically to the optimal adjustment of the manipulated variables, and
with it, the optimal operating conditions.” This idea has been followed in
the paradigm of self-optimizing control, where such variables are found in
a systematic manner, and in NCO-tracking, where these variables are the
necessary optimality conditions (NCO) (Mathisen et al., 1992; Skogestad,
2000; Srinivasan & Bonvin, 2004; Lersbamrungsuk et al., 2008; Jäschke &
Skogestad, 2012a). Although typically some degree of sub-optimality will
have to be tolerated, these approaches are attractive in practice, because
they are simple and easy to implement.

Considering the structure of the optimal solution, the steady state optimal
operating point of heat exchanger networks without stream splits and with
only single bypasses and utilities as manipulated variables, is characterized
by being at constraints (Aguilera & Marchetti, 1998; Lersbamrungsuk et al.,
2008), and can be described by a linear programming problem. In this case
all degrees of freedom are used to specify target temperatures or are kept at
constraints (e.g. bypass valves are used to control a target temperature, or are
either fully open or fully closed). The problem of optimal operation is then
reduced to finding and tracking the set of active constraints (Lersbamrungsuk
et al., 2008), which often can be done without online optimization.

In this paper we study heat exchanger networks with stream splits where
the steady state optimal operating point is generally unconstrained. A simple
example for such a system is shown in Figure 1. Here, the split fraction
must be continuously adapted to match varying operating conditions such as
changing inlet temperatures (T0, Th1,1, Th1,2), flow rates (F0, Fh1,1, Fh1,2), and
heat transfer properties (UA1,1, UA1,2). In practice, these cases are either
handled by an online optimization approach (Lid et al., 2001), when the
potential savings are very high, or simply operated in an open-loop fashion,
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Figure 1: Simple heat exchanger network with one split. The boxed variables are needed
for obtaining the Jäschke Temperatures.

where the split ratio is set to some constant. Other ad-hoc solutions include
isothermal mixing and controlling some outlet temperatures to a setpoint.
These solutions are suboptimal.

The contribution of this paper is to present a simple method for opti-
mizing heat exchanger networks with stream splits. The results have been
submitted for patenting (Jäschke & Skogestad, 2012c). Nevertheless, the
derivation is of interest for the scientific community and deserves the sepa-
rate discussion provided in this paper. To obtain our results, we follow the
general approach described by Jäschke & Skogestad (2012b): We set up a
simple model, formulate the optimality conditions, and then eliminate the
unmeasured variables from the optimality conditions. The obtained expres-
sion is a function of measurements only, and controlling it is equivalent to
controlling the optimality conditions.

Note that the results in this paper also are applicable when a hot stream
is split into parallel streams which are cooled down individually. To simplify
notation, however, we chose to present only the case, where the parallel
streams are heated.

This paper is organized as follows: In the next section, we give a short
motivation for eliminating unknown variables from the optimality conditions,
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while Section 3 presents some preliminary material on parallel systems. In
Section 4 we describe the heat exchanger model used for obtaining the main
results presented in Section 5. The derivation of the results is given in Section
6, and Section 7 contains some case to demonstrate the applicability of the
results. Finally, the paper is closed with a discussion and conclusions in
Sections 8 and 9.

2. General elimination

The necessary condition of optimality for an unconstrained optimum is
that the gradient is zero (Ju = ∂J

∂u
= 0). However, the gradient generally

depends on unknown variables (u, d). We include this motivational section
here to demonstrate on a toy example, how this condition can be reformulated
to derive an optimality condition where the unknown parameters are replaced
by measured variables y. A similar approach will be applied later to the heat
exchanger process. Let us start with a general smooth optimization problem.
After the active constraints are satisfied (e.g. by control) we can describe
optimal operation as an unconstrained optimization problem,

min
u

J(u, d).

Here u ∈ R
nu denotes the unconstrained degrees of freedom, and d ∈ R

nd

denotes the vector of disturbances. To fully specify operation, we need as
many controlled variables c as there are degrees of freedom u, nc = nu.

Under a suitable second order condition, the ideal controlled variable
is the reduced gradient, which must be controlled to zero for optimality,
(Halvorsen & Skogestad, 1997; Bonvin et al., 2001)

c = Ju(u, d) =
∂J(u, d)

∂u
.

However, this gradient is rarely known in practice, because of unmeasured
disturbances (d) and measurement noise.

If the measurement noise is negligible, one approach is to use a model
to formulate the optimality conditions and use a measurement model to
eliminate all unmeasured variables. Alstad & Skogestad (2007) stated that
this requires that the number of independent measurements is greater or
equal to the sum of the number of degrees of freedom and the disturbances,
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ny ≥ nu + nd. However, this requirement may be conservative sometimes.
Consider the following toy example,

min J =
1

2
(u− d)2.

The optimal controlled variable is the gradient,

c = Ju = (u− d), (1)

and the minimum number of measurements is nu = 1. To need only a single
measurement, we must measure the gradient itself, y = Ju = (u − d), or
some locally monotone scalar valued function of it.1 However, if the gradient
is not measured directly, we need two independent measurements, one for
eliminating u, and one for eliminating d from the gradient expression (1).

Now consider another toy example, where the cost function is

J̃ =
1

2
(u− 1)2 + d2. (2)

Here, the gradient J̃u = u − 1 contains only one variable, and only one
measurement is required. That is, we can measure u and set u = 1.

If however, new variables (disturbances) are present in the measurement
equations, then additional measurements are required. Consider again (2). If
the only measurement is y1 = G1u+G1dd, then it cannot be used to eliminate
u, because a new variable d is introduced. In this case, a second measurement
y2 = G2u + G2dd necessary to eliminate d from the measurement equation
for y1, such that d = 1

G2d
(y2 − G2u). Inserting into the first measurement

equation gives y1 = G1u + G1d
1

G2d
(y2 − G2u). Thus, the optimal controlled

variable J̃u = u − 1 can be expressed using the measurements as c = J̃u =

u− 1 =
y1−

G1d
G2d

y2

G1−
G1d
G2s

G2

− 1.

In conclusion, the minimum number of measurements depends on the
process structure, and for finding a controlled variable which is equivalent
to controlling the gradient, the minimum number of measurements required
is nu (when the gradient is measured) and at most nu + nd. This assumes
that the measurements are independent, and nd denotes all disturbances (un-
known variables) which are present in the model and the objective function.

1The monotonicity around its optimal value is necessary for controllability.
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J1(F1)

J2(F2)

Jj(Fj)

JN(FN )

F1 = u1

F2 = u2

Fj = uj

FN=F0−
N−1
∑

j=1

Fj

F0

Unit 1

Unit 2

Unit j

Unit N

Figure 2: Parallel units connected to a common stream. Each unit j has an associated
load-dependent operating cost Jj(Fj).

As an alternative to directly eliminating the unknowns, one may also
attempt to find linear approximations of the gradient, which do not contain
any of the unmeasured variables. This approach is followed in Alstad et al.
(2009).

3. Parallel systems

Consider a system with the topology given in Figure 2, with N parallel
streams Fi which are branched off a given common feed stream F0. The total
operating cost J of the system is assumed to be the sum of the individual
scalar costs Jj from each line j,

J =
N
∑

j=1

Jj(Fj),
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and the operational objective is to distribute the streams Fj such that the
total operating cost J is minimized. Since all streams Fj are coming from
one overall feed stream F0, conservation of mass requires a common coupling
constraint,

F0 −
N
∑

j=1

Fj = 0.

Because of this coupling constraint, only N − 1 streams can be adjusted
independently. The N -th flow rate is given by the mass balance, FN =
F0 −

∑N−1
j=1 Fj .

We denote the adjustable degrees of freedom by the vector u. The degrees
of freedom u may be difficult to set to a given constant value, e.g. u = 5,
unless they are measured. For example, consider fixing the flow rate in a
shower to 5l/m.

Now let
u = [F1 F2 . . . , FN−1]

T

denote the degrees of freedom. Adjusting one flow to decrease the cost in
one branch will eventually cause the cost of another branch to become un-
acceptably high. Therefore, this class of systems exhibits an unconstrained
optimum, where the necessary condition for optimality is that the gradient
is zero:

Ju =
∂J

∂u
= 0.

The result summarized in the following theorem is an important component
for obtaining simple controlled variables for parallel systems.

Theorem 1 (Downs & Skogestad (2011)). For a parallel system as in Figure
2, the optimality condition can be written as

∂J1

∂F1
=

∂J2

∂F2
= . . .

∂Jj

∂Fj

= . . .
∂JN

∂FN

, (3)
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which leads to the optimal controlled variable

c = Ju =























∂J1
∂F1

− ∂JN
∂FN

∂J2
∂F2

− ∂JN
∂FN

...
∂Jj
∂Fj

− ∂JN
∂FN

...
∂JN−1

∂FN−1
− ∂JN

∂FN























. (4)

Proof. Assume the N − 1 degrees of freedom are chosen as the flows in
branches 1 to N − 1. Then a flow change in any branch j = 1 . . .N − 1
is compensated by a change of flow in branch N , so we have

dFN = −dFj for j 6= N. (5)

The change δJ in the cost for a variation in δFj is

δJ

δFj

=
δ(J1 + J2 + · · ·+ Jj + JN)

δFj

=
δ(Jj + JN)

δFj

,

using (5), this becomes
∂J

∂Fj

=
∂Jj

∂Fj

− ∂JN

∂FN

.

The fact that this is required to hold for all units j = 1 . . . N , leads to (3),
and the second statement of the theorem follows trivially.

Theorem 1 states that the marginal costs
∂Jj
∂Fj

must be equal for all lines.

Each marginal cost is associated with its own line j, and contains only vari-
ables from line j. This structure can be exploited for breaking down the large
problem into smaller problems, where unknown variables can be eliminated
from the gradient expression. Moreover, since the optimality condition can
be written as a pair-wise condition (4), we can without loss of generality,
consider a system with only two branches.

4. Parallel heat exchanger systems

4.1. Heat exchanger network model

We consider a heat exchanger network with N parallel lines. A line j is
assumed to have Mj heat exchangers, as illustrated in Figure 3. For heat
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F0

F1, T0

Fj−1, T0

Fj

FN , T0

Fj+1, T0

T0

T0

T out
h1,j T out

hi,j T out
hN,jTh1,j Thi,j ThMj ,j

T1,j Ti,j TMj
Ti−1,j TMj−1,j

Fh1,j Fhi,j FhMj ,j

Figure 3: Detail of a heat exchanger network with N lines and with Mj heat exchangers
on line j. The boxed temperatures are needed for obtaining the Jäschke Temperatures

exchanger i on line j, Ti,j , Thi,j, T
out
hi,j denote the cold stream temperature

after heat exchanger, the hot inlet temperature, and the outlet temperature
of the hot stream, respectively. Before we proceed with the model equations,
we present some assumptions our model is based on.

Assumption 1 (Single phase). There is no phase change in the heat ex-
changers.

Assumption 2 (Constant heat capacity). The specific heat capacity cp of
the fluids is constant.

To simplify notation, we introduce the heat capacities w of the cold and
hot streams,

wj = Fjcp0

whi,j = Fhi,jcphi,j.

An energy balance around the hot and cold stream of heat exchanger i on
line j yields

Qi,j = wi(Ti,j − Ti−1,j) (6)

Qi,j = whi,j(Thi,j − T out
i−1,j). (7)
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where Qi,j denotes the heat transferred in the heat exchanger i on line j.
The amount of transferred heat is given by

Qi,j = UAi,j∆TDi,j ,

where UAi,j denotes the product of heat transfer area and overall heat trans-
fer coefficient, and ∆TDi,j denotes the driving force. Typically, the driving
force is modeled as the logarithmic mean temperature

∆TDi,j = ∆Tlog,i,j =
(Thi,j − Ti,j)− (T out

hi,j − Ti−1,j)

log
Thi,j−Ti,j

T out
hi,j

−Ti−1,j

.

When the heat capacity of the hot and the cold streams have similar mag-
nitude, the arithmetic mean temperature is a good approximation of the
logarithmic mean temperature

∆TAi,j =
(Thi,j − Ti,j) + (T out

hi,j − Ti−1,j)

2
≈ ∆Tlog,i,j.

This approximation has an error of less than 1 % (Skogestad, 2008) when
the temperature changes of the hot and cold side are within ±40%, that is
when

1√
2
≤ Ti,j − Thi,j

T in
hi,j − Ti−1,j

≤
√
2.

To be able to derive simple results, we make the following additional assump-
tion:

Assumption 3 (Arithmetic mean temperature driving force). The driving
force for heat transfer is given by the arithmetic mean temperature difference.

The stream splitter is described by a simple mass balance,

w0 −
N
∑

j=1

wj = 0,

and the energy balance yields

T0,j = T0 for all j.

In the case that the streams are merged again, using the energy balance, the
end temperature out of the mixer can be calculated by the weighted sum of
the temperatures of the individual lines,

Tend =
1

w0

N
∑

j=1

wjTMj
.

11



4.2. Objective function

Our goal is to adjust the splits between the lines of the heat exchanger
network such that the operating cost J is minimized. In a general form we
may write the cost J as

J = −income + expenses.

We denote the price that has to be paid for transferring heat in heat ex-
changer i on line j as pcosti,j . Similarly, the price for the added value is denoted
previ,j . The cost thus becomes

J = −
N
∑

j=1

Mj
∑

i=1

previ,j Qi,j +
N
∑

j=1

Mj
∑

i=1

pcosti,j Qi,j = −
N
∑

j=1

Mj
∑

i=1

(previ,j − pcosti,j )Qi,j .

In practice, the prices previ,j will often be equal, previ,j = prev, while the prices
for using different hot streams pcosti,j may differ significantly. By defining a
new price pi,j = previ,j − pcosti,j we may simplify the cost function to

J = −
N
∑

j=1

Mj
∑

i=1

pi,jQi,j. (8)

When all prices for using the hot streams are equal, pcosti,j = pcost, and the
prices for the heated streams are equal, previ,j = prev, this is equivalent to
maximizing the total heat transfer. Furthermore, if the branches are merged
again, it corresponds to maximizing the end temperature Tend.

5. Main Results

When setting up the optimality conditions for a heat exchanger network,
the expressions will generally contain all variables. Some variables may be
easy to measure, such as temperatures, while others are more difficult to
measure or estimate, such as heat capacities and heat transfer coefficients.
As motivated in Section 2, our goal is to find controlled variables, which are
functions of measurements that are easy to obtain, and are equivalent to
controlling the gradient to zero.

We state the main results in this section, and prove them in Section 6.
For convenience, we introduce the shifted temperature θ, which is formed by
subtracting the feed temperature T0,

θ = T − T0.
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Theorem 2 (Maximize heat transfer). Under Assumptions 1-3, and equal
prices pi,j = 1 the marginal costs for each branch j = 1 . . .N can be expressed
as

∂J

∂Fj

= TJ,j (9)

where TJ,j is the Jäschke Temperature on branch j, defined as

TJ,j =

Mj
∑

i=1

ai,j , (10)

with the parameter ai,j defined recursively as

ai,j =
(θi,j − θi−1,j) (θi,j + θi−1,j − ai−1,j)

θhi,j − θi−1,j
, a0,j = 0. (11)

Theorem 2 is proved for Mj = 1, 2, 3 (see Section 6), and conjectured
for Mj ≥ 4. It implies that the optimal split that maximizes the total heat
transfer can be obtained by simply controlling the Jäschke Temperatures in
all branches to equal values. Note that the Jäschke Temperature on branch
j only depends on the temperatures on this branch (θi,j), and the hot inlet
temperatures on this branch (θhi,j). In Figures 1 and 3 the temperatures
required to calculate the Jäschke Temperatures are highlighted in boxes. In
particular, we do not need to know the heat capacities or the flow rates of the
streams (F0, Fj, Fhi,j), nor do we require information about the heat transfer
properties UAi,j to calculate the Jäschke Temperatures.

Example 1 (Maximize heat transfer, M1 = M2 = 1). For the network
depicted in Figure 1, the controlled variable is

c = TJ,1 − TJ,2

=
θ21,1

θh1,1
−

θ21,2

θh1,2
.

Adjusting the split between the branches such that c = 0 results in optimal
operation when the arithmetic mean temperature difference assumption is
satisfied. Moreover, keeping c at zero is optimal in spite of varying operating
conditions, such as changing stream temperatures or changing heat transfer
properties due to fouling in the heat exchangers.
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We can extend Theorem 2 to the case where the hot sources have differ-
ent prices pi,j, and where the objective is to minimize the economic cost of
operating the heat exchanger network.

Theorem 3. Under Assumptions 1-3, the marginal costs for each branch
j = 1 . . .N can be expressed as

∂J

∂Fj

= T e
J,j (12)

where the Economic Jäschke Temperature T e
J,j is defined as

T e
J,j =

Mj
∑

i=1

pi,jai,j (13)

with the parameter ai,j defined as in Theorem 2.

Theorem 3 is proved for Mj = 1, 2, 3 (see Section 6), and conjectured for
M ≥ 4. Strictly speaking, Theorem 2 is a special case of Theorem 3. It
is obtained by setting all pi,j equal to 1. However, because of its practical
importance, we chose to write Theorem 2 as a separate theorem.

Example 2 (Minimizing economic cost, M1 = 1,M2 = 2). For a system
with 1 heat exchanger on the first line and 2 heat exchangers on the second
line, and with prices p1,1, p12 and p22 the controlled variable becomes

c = T e
J,1 − T e

J,2

= p1,1
θ211
θh11

−



p1,2
θ212
θh12

+ p2,2

(θ2,2 − θ1,2)
(

θ2,2 + θ1,2 − θ212
θh12

)

θh2,2 − θ1,2



 .
(14)

Note that when there is no heat exchange in the second heat exchanger of
line 2, i.e we have θ12 = θ22, Equation (14) reduces to the case where there

there is only one heat exchanger per line, and c becomes c = p11
θ211
θh11

−p12
θ212
θh12

.
Similarly, when there is no heat exchange in the first heat exchanger on line

2 (θ12 = 0), the expression simplifies to c = p11
θ211
θh11

− p22
θ222
θh22

.
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6. Derivation of main results

In this section we show how we obtained the results presented in the
previous section. The procedure is based on Jäschke & Skogestad (2012b),
where we use a model to formulate the optimality conditions, and then use
the model to eliminate unmeasured variables from the optimality conditions.
We present the proof for the economic case (Theorem 3), because the case of
maximizing heat transfer (Theorem 2) is obtained as a special case by setting
pi,j = 1 for all i, j.

6.1. Proof of Theorem 3 for Mj = 1

An example of this case is shown in Figure 1. In this section, for simplic-
ity of notation, since every line contains only one heat exchanger, we omit
the index i denoting the heat exchanger, such that e.g. T1,2 is denoted T2.
Expressed in shifted temperatures θ, the energy balance (6)-(7) around the
heat exchanger on line j becomes

Qj = wjθj (15)

Qj = whj(θhj − θouthj ) (16)

Combining (15) and (16), and solving for θouthj yields

θouthj =
whjθhj − wjθj

whj

. (17)

Under Assumption 3, the transfered heat is

Qj =
UAj

2

(

θhj − θj + θouthj

)

.

Equating with (15) we have

UAj

2

(

θhj − θj + θouthj

)

= wjθj ,

and inserting (17) yields

UAj

2

(

θhj − θj +
whjθhj − wjθj

whj

)

= wjθj .
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Upon solving for θj , we obtain

θj =
θhj

1− wj

(

1
whj

+ 2
UAj

) . (18)

This expression for θi can be used in the objective function. For a system
with N lines, we have

J =
N
∑

j=1

Ji = −
N
∑

j=1

pjQj = −
N
∑

j=1

pjwjθj .

And the corresponding marginal cost for each branch is

∂J

∂wj

= pj
∂Qj

∂wj

= pj
∂

∂wj

wjθj

= pj
∂

∂wj





wjθhj

1− wj

(

1
whj

+ 2
UAj

)





= pj

θhj

(

1− wj

(

1
whj

+ 2
UAj

))

+ wjθhj

(

1
whj

+ 2
UAj

)

(

1− wj

(

1
whn

+ 2
UAj

))2

= pj
θhj

(

1− wj

(

1
whj

+ 2
UAj

))2 . (19)

By noting that (18) implies

θj

θhj
=

1

1− wj

(

1
whj

+ 2
UAj

)

we can write (19) as
∂Jj

∂wj

= pj
θ2j

θhj
,

which completes the proof for Mj = 1.
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6.2. Proof of Theorem 3 for Mj = 2, 3 (see also Appendix A)

The situation becomes more complicated when there are more than one
heat exchangers on a line, because the marginal cost contains variables from
all heat exchangers on this line, and represents the accumulated effect of a
change in the flow rate. For proving Theorem 3 for Mj > 1, we applied the
method described in Jäschke & Skogestad (2012b), which is based on three
main steps:

1. Model the system and formulate the optimality conditions.

2. Calculate the reduced gradient Ju.

3. Symbolically eliminate unmeasured parameters and states from the re-
duced gradient Ju using the sparse resultant (Cox et al., 2005).

We considered two cases, each with 2 branches j = 1, 2, which were modelled
in Step 1. In the first case we considered a model with M1 = 3 and M2 = 1,
and in the second case we set M1 = 2 and M2 = 1. The fact that M2 = 1
implies no limitation on the generality of the proof, since the marginal costs
for each line are independent of each other, see Theorem 1.

To reduce the number of variables, the first case with M1 = 3 was mod-
elled with constant hot stream temperatures (this corresponds to a very large
heat capacity of the hot streams, or condensing steam). Since a constant tem-
perature in the hot stream can be modelled as a very large heat capacity, a
disturbance which is eliminated, we expect to get the same result as when
we have a finite heat capacity.

The reduced gradient in Step 2 was calculated in Maple(TM)2, and con-
tains the temperatures, flow rates and heat transfer variables from all heat
exchangers. Finally the elimination of UAij and the heat capacities wj, whi,j

from the reduced gradient in Step 3 was performed using the Maple package
multires (Busé & Mourrain, 2003).

The symbolic elimination is computationally very expensive. For the case
with finite hot stream heat capacity (i.e. non-constant hot stream tempera-
ture), it was not possible to perform the elimination for Mj > 2. When using
a constant hot temperature (corresponding to infinite hot heat capacity), it
was possible to obtain results for the case with Mj = 3. However we were
not able to obtain results for Mj > 3.

2Maple is a trademark of Waterloo Maple Inc.
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The procedure above leads to a large algebraic expression, which is zero
whenever the gradient is zero. For the heat exchanger network with M1 = 3
and M2 = 1, factoring out the prices p1,1,p2,1,p3,1, and p1,2 leads to the
expression (A.1) in Appendix A. Re-writing the marginal costs as shown in
Appendix A gives for a general line j with Mj = 3

T e
J,j =

∂Jj

∂wj

= p1,j
θ21,j

θh1,j

+ p2,j
(θ2,j − θ1,j)(θ2,j + θ1,j −

θ21,j
θh1,j

)

θh2,j − θ1,j

+ p3,j
(θ3,j − θ2,j)(θ3,j + θ2,j −

(θ2,j−θ1,j)(θ2,j+θ1,j−
θ21,j
θh1,j

)

θh2,j−θ1,j
)

θh3,j − θ2,j
.

(20)

For the second case with finite hot heat capacity (non-constant hot stream
temperature) with M1 = 2 and M2 = 1, we obtain for Mj = 2 exactly
the same expression as in (20), with the only difference being that the term
corresponding to p3,j is zero.

6.3. Conjecture for the general case (M ≥ 4)

From the recurring pattern, that coefficients of the previous prices appear
in a fixed structure in the coefficients of the next price, we conjecture the
general formula for the case with more than three heat exchangers on a line
as:

T e
J,j =

Mj
∑

i=1

pi,jai,j

where the ai,j is defined as

ai,j =
(θi,j − θi−1,j) [θi,j + θi−1,j − ai−1,j]

θhi,j − θi−1,j

and

a0,j = 0.
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In Appendix B we provide numerical evidence to support our conjecture.
There, we set up a network with four heat exchangers on a line (M1 = 4), and
one on the second line (M2 = 1). The heat exchangers are modelled with the
arithmetic mean temperature difference as driving force for the heat transfer.
Then we compare the results obtained from numerical optimization with the
results obtained by controlling the Jäschke Temperatures to equal values.
Since controlling the Jäschke Temperatures to equal values is conjectured to
be equivalent to controlling the gradient, we expect to see the same results
in both cases. Indeed, the numerical results for the case study in Appendix
B strongly suggest that the conjecture is true.

7. Simulation case studies

In this section, we apply our approach to heat exchangers networks which
are modelled using the logarithmic mean temperature difference as driving
force for the heat transfer. Although the assumption of the arithmetic mean
temperature difference is no longer satisfied, the simulations show that our
approach yields good performance.

First we present two cases where the objective is simply to maximize
the total heat transfer. Then we show an example where the operating cost
is minimized when the hot stream prices differ. We compare the results
obtained from controlling the Jäschke Temperatures with the true optimum,
and we also also present results for the case when the end temperatures are
controlled to equal values (isothermal mixing).

7.1. Case Study 1: One heat exchanger per branch

We consider a simple case with one heat exchanger per line, where the
streams are merged after being heated, Figure 1. Instead of manipulating
the flows directly, we select the split

u =
F1

F0
=

w1

w0

as manipulated variable. We assume that the prices are equal on both lines,
p11 = p12, so the objective is to maximize the end temperature Tend. The
stream parameters are given in Table 1.

Table 2 shows the end temperature Tend for the true optimum (maxi-
mally achievable end temperature), the end temperature from controlling
the Jäschke Temperatures to equal values, and the end temperature obtained
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Table 1: Data for Case Study 1

Variable value unit Description

T0 60 ◦C Cold feed temperature
w0 100 kW/K Cold feed heat capacity
wh1,1 30 kW/K Hot stream 11 heat capacity
wh1,2 50 kW/K Hot stream 12 heat capacity
Th1,1 120 ◦C Hot stream 11 temperature
Th1,2 220 ◦C Hot stream 12 temperature
UA1,1 50 ◦C Heat exchanger 11 area× overall heat transfer coefficient
UA1,2 80 ◦C Heat exchanger 12 area× overall heat transfer coefficient

Table 2: Results for Case Study 1

Optimized Equal Jäschke Temp. Isothermal mixing

End Temp 124.8917◦C 124.8045◦C 119.9388◦C
Split u = F1

F0
0.2704 0.2361 0.0600

from isothermal mixing, which is obtained from controlling T11 = T12. The
Jäschke Temperature approach gives an end temperature which is very close
to optimal, while isothermal mixing results in a loss of almost 5◦C.

Figure 4 shows how well the arithmetic mean temperature approximates
the logarithmic mean temperature in the exchangers. Further, we included
the bounds where the approximation of the logarithmic mean temperature is
less than 1%. At the optimum the approximation error of heat exchanger 2
is larger than 1%. This is the reason why the Jäschke Temperature approach
deviates slightly from the optimal split. However, due to the flatness of the
unconstrained optimum, our approach still gives a close to optimal Tend

In Figure 5 we plotted the split ratio against the final temperature Tend

and included the difference between Jäschke Temperatures of the two lines,

c =
θ211
θh11

− θ212
θh12

. We see that there is only one point where c = 0, i.e. TJ,11 =
TJ,12, and that c is a monotone function of the input u. The monotonicity
around the optimal point c = 0 is important as it ensures controllability.
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Figure 5: Case Study 1: End temperature and controlled variable c = TJ,1 − TJ,2

7.2. Case Study 2: Two exchangers on first branch, one exchanger on second
branch

Next, we give an example of a system with 2 heat exchangers in series
on the first line, and one heat exchanger on the second line. Here too, the
objective is to maximize the total heat transfer and to maximize Tend. The
stream data are listed in Table 3, and the simulation results are summarized
in Table 4, where the optimal end temperature is presented together with
results that are obtained when using the our new approach and when im-
plementing isothermal mixing. The difference between the optimal Tend and
the Tend using the Jäschke Temperatures is very small, while the isothermal
mixing strategy again results in a higher loss.

Figure 6 shows the approximation errors in the three heat exchangers as a
function of the split u. Here, too, we find that even though the approximation
error is about 23% for the exchanger 11 and larger than 2% for the other
heat exchangers, the Jäschke Temperature approach gives good results.

In Figure 7 we plotted the cost function versus split ratio together with
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Table 3: Data for Case Study 2

Variable Value Unit Description

T0 60 ◦C Feed temperature
w0 100 kW/K Feed heat capacity
wh11 50 kW/K Hot stream 11 heat capacity
wh21 30 kW/K Hot stream 21 heat capacity
wh12 40 kW/K Hot stream 12 heat capacity
Th11in 80 ◦C Hot stream 11 inlet temperature
Th21in 140 ◦C Hot stream 21 inlet temperature
Th12in 220 ◦C Hot stream 12 inlet temperature
UA11 80 kW/K HX11 area × heat transf. coeff.
UA21 50 kW/K HX21 area × heat transf. coeff.
UA12 65 kW/K HX12 area × heat transf. coeff.

Table 4: Results for Case Study 2

Optimized Equal Jäschke Temp. Isothermal mixing

End Temp. 122.7726◦C 122.7549◦C 120.8782◦C
Split u = F1

F0
0.4326 0.4147 0.2559
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Figure 7: Case Study 2: End temperature and controlled variable c = TJ,1 − TJ,2

the controlled variable

c = (TJ,1,1 + TJ,2,1)− TJ,1,2. (21)

We observe that here too, we the controlled variable is zero very close to the
optimum, and crosses zero only once.

7.3. Case Study 3: One heat exchanger per branch – different prices

We consider the same heat exchanger network as in Case Study 1, but
now with an economic objective involving different prices associated with
heat transfer from the two heat exchangers. The stream temperatures and
flow data are the same as before, given in Table 1. The economic cost is then

J = (pcost11 − prev11 )Q11 + (pcost12 − prev12 )Q12. (22)

Assuming that prev11 = prev12 = 0.3 cent
kJ

, and pcost11 = 0.1 ct
kJ
, and pcost12 = 0.2 ct

kJ
,

the simplified cost (8) becomes

J = −0.2Q11 − 0.1Q12, (23)
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Table 5: Results for Case Study 3

Optimized Equal Jäschke Temp Isothermal mixing

Operating cost ($/s) -7.6256 -7.6250 -6.3536
Split u = F1

F0
0.3452$ 0.3364$ 0.0600$

and this cost function encourages to prefer using heat exchanger 11 to heat
exchanger 12. This will not result in the maximally possible end temperature,
but it will optimize the process economics. Table 5 lists the optimal operating
cost together with the cost from our approach and the isothermal mixing
approach. The optimal cost, and the cost found by our approach are very
close. As expected isothermal mixing gives the highest cost. This is further
illustrated in Figure 8, where the profit and the controlled variables are shown
for all possible splits u. As above, the controlled variable is zero only once,
and very close to the optimal split.

8. Discussion

8.1. Flow configurations and network topologies

The assumption of the arithmetic mean temperature difference does not
imply anything on the flow configuration directly. However, the assumption
will generally be better satisfied in heat exchangers with counter-current
flows, because the temperature profiles in the hot and the cold medium are
closer to parallel.

Although the results in this paper were derived for a standard heat ex-
changer configuration, as shown in Figure 1 and 3, the results are more widely
applicable than it may seem at first sight, because thy can be applied to re-
lated, equivalent topologies. In our approach, the heat capacities w, the heat
transfer properties UA, and the outlet temperatures of the hot streams can
be considered as disturbances, which have been eliminated from the opti-
mality conditions. It is therefore possible to use our controlled variables for
systems, which can be modeled as standard systems, by adjusting the heat
transfer area and/or the heat capacities. For example, the system in Fig-
ure 9a may be modelled as a single counter-current heat exchanger, and the
Jäschke Temperature can be calculated accordingly. Similarly, when more
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Figure 9: Examples of Topologies with corresponding Jäschke Temperature

than two heat exchangers on a branch are connected to a single hot stream,
they may be modelled as a single heat exchanger. Also, the configuration in
Figure 9b can be modelled as a single heat exchanger, because the effect of
the reduced flow in the second heat exchanger on the hot path is equivalent
to the effect of a reduced overall heat transfer coefficient. Of course, it is
possible to combine all the above configurations, such that beside the exam-
ples given above, all parallel flow configurations which can be modelled as
one or more heat exchangers on a line, may be operated close to optimal by
our approach.

Our controlled variable may also be be used when the flow thorough one
or more branches is not available as a degree of freedom. An example for
this case is given in Figure 10, where there is a temperature constraint on
the hot outflow of the first branch. In this case, the fraction through the first
branch u1 is not available as a degree of freedom for optimization, as it must
be used to maintain the exit temperature of the hot stream. However, the
second degree of freedom u2 can be used control the difference between the
Jäschke Temperatures in the second and third branch. This maximizes the
heat transfer in the exchangers on these branches (and Tend).

8.2. Strengths and limits of our approach

The big advantage of our method is that it is very simple, and still gives
close to optimal performance. Neither flow rates nor heat capacities need
to be measured. The main underlying assumption in the derivation of the
Jäschke Temperatures is the arithmetic mean temperature difference as the
driving force for heat transfer. Even if this assumption is violated, we have
shown that our controlled variables give good performance. However, for
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Figure 10: Control structure where one degree of freedom is used to control another
variable

very poorly designed heat exchanger networks, which are operated with very
unequal heat capacities on the hot and the cold side, the performance can
deteriorate. For very extreme cases, that is when one of the hot streams has
a much higher heat capacity than the cold stream, and a very much higher
temperature than the other hot streams, the approximation by the arithmetic
temperature difference may become very poor, and it may not be possible to
control the differences between the Jäschke Temperatures to zero. However,
when such a case is implemented using PI controllers with anti-windup, the
controller will attempt to control the difference to zero, and this will result
in fully opening the dominating branch and closing the others. This will not
be optimal, but the loss will be relatively small, because most of the heat
is transfered in the dominating branch, and the other branches contribute
only marginally to the total transferred heat. If truly optimal performance is
required for such extreme cases, a different approach has to be chosen, which
essentially is based on a more accurate model. Such a method will, however,
typically require more effort in implementing and maintaining.

In well designed heat exchanger networks, however, the hot and the cold
heat capacities will be approximately equal, and this will make the approxi-
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mation error small. Another factor which mitigates the effect of the approx-
imation error is that the optima in such systems tend to be very flat, such
that a split which is only close to optimal will give a good performance.

One of the limitations of this method is that it requires the marginal costs
to be decoupled, i.e. it is not possible to have crossovers between the lines.
If there are crossovers, it is not possible to find optimality conditions of the
form c = c1 − c2, where cj contains only variables from branch j, and we
must use other approaches, such as described in e.g. Alstad et al. (2009).

8.3. Implementation issues

The formulas for the Jäschke Temperatures derived in this paper con-
tain temperature differences in the denominators, θhi,j − θi−1,j which under
practical operation may cross zero and become negative. When this temper-
ature difference becomes negative, the cold stream is cooled down (rather
than heated) in the particular heat exchanger. This results in a negative
contribution to the Jäschke Temperature.

When the temperatures of the hot inlet stream and the cold inlet stream
of a heat exchanger are equal, θhi,j = θi−1,j , there is no heat transfer in
that particular heat exchanger. Operation at such this point is unlikely in
practice, as this is a zero-measure set. However during transients this may
well happen, and then the Jäschke Temperatures become singular, which can
result in unpredictable controller behavior.

To avoid this undesirable behavior, there are two possible approaches.
The first one is to implement the controlled variable denominator-free by
multiplying the controlled variable with the greatest common denominator.
For a system with one heat exchanger per line, as in Example 1, the controlled
variable would become

c = p1,1θ
2
1,1θh1,2 − p12θ

2
1,2θh1,1.

In this case the controlled variable does never become singular. The topolo-
gies with more than one heat exchanger on a line can be treated similarly.

An alternative approach is to use a piecewise defined Jäschke Tempera-
tures to patch the singular point. Here, we define the variable ai,j in (11)
as

aij =

{

(θi,j−θi−1,j)[θi,j+θi−1,j−ai−1,j ]

θhi,j−θi−1,j
for |θhi,j − θi−1,j | > ǫ

0 for |θhi,j − θi−1,j | ≤ ǫ

where ǫ is a small tunable parameter, e.g. ǫ = 10−3.
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9. Conclusions and future work

We have presented an approach for optimizing the split between the lines
of a parallel heat exchanger system. Although the Jäschke Temperatures are
developed for the arithmetic temperature difference, they give good results
for the realistic case with logarithmic temperature difference. In particu-
lar, our approach gives good performance for well-designed heat exchangers,
where the heat capacities flows on the hot and the cold side are approximately
the same.

For the case with 1-3 heat exchangers per line, we have proven under
the assumption of the arithmetic mean temperature difference as driving
force for the heat transfer, that the Jäschke Temperatures are equal to the
marginal costs. The more general case with more than 3 heat exchangers is
conjectured.

We would like to mention again that the Jäschke Temperatures can be
used also in the case where the hot stream is split into parallel streams, which
are cooled down.

Controlling the Jäschke Temperatures for optimization has an additional
practical advantage. If one of the flows Fi is set to manual (or is used to
control some thing else) the rest of the control structure remains unaffected.

A limitation is that we cannot handle systems with crossovers, because
the optimality conditions are no longer decoupled. Future work will consider
possibilities to handle coupled optimality conditions, and to integrate our
approach into a larger setting, where not only the heat transferred in the
heat exchangers is maximized, but rather the economics of the whole plant.
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Appendix A. Derivation for 3 HX on a line

To derive the general expression, we consider the system shown in Figure
A.11, where the objective is to minimize the cost

J = p1,1Q1,1 + p2,1Q2,1 + p3,1Q3,1 + p1,2Q1,2
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Figure A.11: HEN with 6 HX on the first line and one HX on the second line

where we assume whi,j → ∞, or equivalently that T out
hi,j = Thi,j. Using Maple,

the optimality conditions are calculated for the model described in Section 4,
and all unknown variables are eliminated using the sparse resultant to give
the controlled variable c, which is equivalent to the gradient. Upon collecting
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the coefficients of the different prices, we obtain

c =

(−θ21,1θ2,1θh2,1 + θ31,1θ2,1 + θ21,1θh2,1θh3,1 − θ31,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

)

p1,1

+









θ21,1θ2,1θh1,1 + θ21,1θ
2
2,1 − θ31,1θ2,1 − θ21,1θ2,1θh3,1 + θ31,1θh3,1
− θ21,1θh1,1θh3,1 − θ32,1θh1,1 + θ22,1θh1,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)









p2,1

+



















−θ21,1θ2,1θh1,1 + θ21,1θ2,1θh2,1 + θ21,1θ3,1θh1,1 − θ21,1θ3,1θh2,1
− θ21,1θ

2
2,1 + θ23,1θh1,1θh2,1 + θ1,1θ

2
2,1θh1,1 − θ22,1θh1,1θh2,1

− θ1,1θ
2
3,1θh1,1 + θ21,1θ2,1θ3,1 − θ22,1θ3,1θh1,1 + θ32,1θh1,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)



















p3,1

−
(

θ21,2

θh1,2

)

p1,2.

(A.1)

Already now we see Economic Jäschke Temperature TJ,2 = p1,2
θ21,2
θh1,2

for second

line with heat exchanger 12. The three terms corresponding to p1,1, p2,1, p3,1
correspond to the Economic Jäschke Temperature for the first line.

The coefficient of p1,1 in (A.1) can be written as

a1,1 =
−θ21,1θ2,1θh2,1 + θ31,1θ2,1 + θ21,1θh2,1θh3,1 − θ31,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

=
θ21,1 (θh21 − θ1,1) (θh3,1 − θ2,1)

θh1,1 (θh21 − θ1,1) (θh3,1 − θ2,1)

=
θ21,1

θh1,1
,
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the second term can be written as

a2,1 =

θ21,1θ2,1θh1,1 + θ21,1θ
2
2,1 − θ31,1θ2,1 − θ21,1θ2,1θh3,1 + θ31,1θh3,1
− θ21,1θh1,1θh3,1 − θ32,1θh1,1 + θ22,1θh1,1θh3,1

θh1,1 (θh2,1 − θ1,1) (θh3,1 − θ2,1)

=
(θh3,1 − θ2,1)

[

θh1,1(θ
2
2,1 − θ21,1)− θ21,1(θ2,1 − θ1,1)

]

θh1,1 (θh2,1 − θ1,1) (θh3,1 − θ2,1)

=
θ22,1 − θ21,1 −

θ21,1
θh1,1

(θ2,1 − θ1,1)

θh2,1 − θ1,1

=
(θ2,1 − θ1,1)

(

θ2,1 + θ1,1 −
θ21,1
θh1,1

)

θh2,1 − θ1,1

=
(θ2,1 − θ1,1) (θ2,1 + θ1,1 − a1,1)

θh2,1 − θ1,1
,

and finally, factorizing and simplifying the coefficient of p3,1 gives

a3,1 =

−θ21,1θ2,1θh1,1 + θ21,1θ2,1θh2,1 + θ21,1θ3,1θh1,1 − θ21,1θ3,1θh2,1
− θ21,1θ

2
2,1 + θ23,1θh1,1θh2,1 + θ1,1θ

2
2,1θh1,1 − θ22,1θh1,1θh2,1

− θ1,1θ
2
3,1θh1,1 + θ21,1θ2,1θ3,1 − θ22,1θ3,1θh1,1 + θ32,1θh1,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

=

(θ3,1 − θ2,1)



θ3,1 + θ2,1 −
(θ2,1−θ1,1)

(

θ2,1+θ1,1−
θ21,1
θh1,1

)

θh2,1−θ1,1





θh3,1 − θ2,1

=
(θ3,1 − θ2,1) (θ3,1 + θ2,1 − a2,1)

θh3,1 − θ2,1
.

(A.2)

Due to computational limitations the elimination procedure failed for systems
with more than 3 heat exchangers on a line. However, the structure of the
solutions for the case with 1-3 heat exchangers lets us conjecture that it is
true for N heat exchangers.
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Appendix B. Numerical validation of the case with more than 3
exchangers on a line (Validation Case Study, M1 =
4,M2 = 1)

In this section we give some numerical evidence that the general formula
for the Jäschke Temperature is true for Mj > 3. We expect that the results
when controlling the Jäschke Temperatures to equal values, will be the same
as when we optimize a model which uses the arithmetic mean temperature
as driving force. This will be the case when, as we conjecture, the controlled
variable is equivalent to the gradient.

Consider the heat exchanger network given in Figure B.12, with the cor-
responding stream and price data given in Table B.6. The controlled variable
is

c = p1,1
θ21,1

θh1,1
+ p2,1

(θ2,1 − θ1,1)(θ2,1 + θ1,1 −
θ21,1
θh1,1

)

θh2,1 − θ1,1

+ p3,1
(θ3,1 − θ2,1)(θ3,1 + θ2,1 −

(θ2,1−θ1,1)(θ2,1+θ1,1−
θ21,1
θh1,1

)

θh2,1−θ1,1
)

θh3,1 − θ2,1

+ p4,1
(θ4,1 − θ3,1)(θ4,1 + θ3,1 −

(θ3,1−θ2,1)(θ3,1+θ2,1−
(θ2,1−θ1,1)(θ2,1+θ1,1−

θ21,1
θh1,1

)

θh2,1−θ1,1
)

θh3,1−θ2,1
)

θh4,1 − θ3,1

− p1,2
θ21,2

θh1,2
.

(B.1)

The values from optimizing the split with fmincon (Matlab) and from using
our approach are compared in Table B.7. The cost function for the optimized
and the case using the Jäschke Temperature approach give the same values
of the cost function. However, the end temperatures are not exactly the
same. The reasons for this discrepancy are the flatness of the optimum and
numerical round-off errors, which occur due to the temperature difference
terms in the controlled variable.
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Figure B.12: Heat exchanger network with M1 = 4 and M2 = 1
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