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a  b  s  t  r  a  c  t

For  heat  exchanger  networks  with  stream  splits,  we  present  a  simple  way  of  controlling  the  split
ratio.  We  introduce  the “Jäschke  Temperature”,  which  for  a branch  with  one  exchanger  is defined  as
TJ = (T  −  T0)2/(Th −  T0),  where  T0 and  T are  the  inlet  and  outlet  temperatures  of  the  split  stream  (usu-
ally  cold),  and  Th is the  inlet  temperature  of  the  other  stream  (usually  hot).  Assuming  the  heat  transfer
driving  force  is given  by  the  arithmetic  mean  temperature  difference,  the  Jäschke  Temperatures  of all
eywords:
eat exchanger networks
arallel systems
elf-optimizing control
ptimal operation

branches  must  be  equal  to achieve  maximum  heat transfer.  The  optimal  controlled  variable  is  the  differ-
ence between  the  Jäschke  Temperatures  of  each  branch,  which  should  be controlled  to  zero.  Heat  capacity
or heat  transfer  parameters  are  not  needed,  and no  optimization  is required  to find  the  optimal  setpoints
for  the  controlled  variables.  Most  importantly,  our approach  gives  near-optimal  operation  for  systems
with  logarithmic  mean  temperature  difference  as  driving  force.

©  2014  Elsevier  Ltd. All  rights  reserved.
. Introduction

Global climate challenges and competition require efficient
nergy usage, and this typically implies re-using energy as much as
ossible. In the chemical and process industries, large amounts of
nergy can be saved by heat recovery in heat exchanger networks,
hich transfer energy in form of heat from a set of hot streams to a

et of cold streams. By optimizing layout and operation of these heat
xchanger networks, the overall consumption of natural resources
or heating and cooling can be reduced considerably. In addition,
his often results in significantly reduced operating costs.

The potential of heat exchanger networks for saving energy
nd costs has led to a large body of research, and most of the lit-
rature falls into one of two categories. The first category deals
ith the design and synthesis of heat exchanger networks (see e.g.

innhoff and Flower, 1978; Linnhoff and Hindmarsh, 1983; Saboo
nd Morari, 1984; Saboo et al., 1985; Colberg and Morari, 1990;
ee and Grossmann, 1990; Gundersen et al., 1997; Furman and
ahinidis, 2002; Laukkanen et al., 2010). Most literature contrib-
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

tions belong to this category, where some likely conditions and
cenarios are assumed, and the task is to find the optimal type,
ize, and structure of interconnections of the heat exchangers.

∗ Corresponding author. Tel.: +47 735 94154.
E-mail address: skoge@ntnu.no (S. Skogestad).

ttp://dx.doi.org/10.1016/j.compchemeng.2014.03.020
098-1354/© 2014 Elsevier Ltd. All rights reserved.
Generally this results in large mixed integer optimization prob-
lems, and much of the literature addresses the issue of finding
optimal solutions in an efficient way. Once the network structure
and the size of the heat exchangers are decided, they either can-
not be changed at all at a later point in time, or only at a high cost.
The design step is therefore very important for the efficiency of the
network.

The second category, where this work is placed in, deals
with optimal operation of heat exchanger networks (Aguilera and
Marchetti, 1998; Glemmestad et al., 1999; Rodera et al., 2003;
Lersbamrungsuk et al., 2008). This category is complementary to
the first one, as a good design does not imply good operation in
terms of the benefits being actually achieved. In particular, finding
optimal process operation strategies is important, because the con-
ditions in the real plant generally differ from those assumed during
the design stage. Even if the actual operating conditions are the
same as assumed during plant design, Jensen and Skogestad (2008)
showed that because of simplifying assumptions during design, like
fixing the minimum temperature difference �Tmin to 10 K, the opti-
mal  design point is often not the same as the optimal operating
point. The contributions from this second category study how the
available degrees of freedom, such as valves, bypasses and utility
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

heaters, can be used to optimally match the real operating con-
ditions and constraints. Although there has been some research
activity in this area, there is still a need for simple methods to
optimize operation of heat exchanger networks. The objective of

dx.doi.org/10.1016/j.compchemeng.2014.03.020
dx.doi.org/10.1016/j.compchemeng.2014.03.020
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:skoge@ntnu.no
dx.doi.org/10.1016/j.compchemeng.2014.03.020
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his paper is therefore to provide an approach which leads to near-
ptimal operation of certain heat exchanger networks.

When implementing optimal operation in a process, such as
eat exchanger networks, there are two fundamental model-based
pproaches which can be taken: Online optimization and offline
ptimization. In online optimization (Grötschel et al., 2001), the
odel is used to formulate an optimization problem, which is

epeatedly solved online in a fast optimization software. The opti-
al  input values obtained from the software are then applied to the

lant. In this approach, the plant measurements are primarily used
or adjusting model parameters, such that the model and the plant

atch. This approach may  be implemented using a steady state
odel (Marlin and Hrymak, 1997; Lid et al., 2001), or alternatively

 dynamic model (Grötschel et al., 2001). Implementing online opti-
ization is relatively expensive due to the high costs of obtaining

nd maintaining a good process model, which can be optimized in
eal-time. However, if a good model is available, this approach can
ield results which are very close to the true optimum. Due to the
igh costs, it is mainly implemented in cases where the immediate
conomic benefits are very high, such as refineries.

The alternative offline optimization approach exploits the struc-
ure of the optimal solution. This results in simple operating
chemes which do not require online solution of optimization prob-
ems. The basic idea was first conceived by Morari et al. (1980), who

rite that “we want to find a function c of the process variables
. . .]  which when held constant, leads automatically to the optimal
djustment of the manipulated variables, and with it, the optimal
perating conditions.” This idea has been followed in the paradigm
f self-optimizing control, where such variables are found in a sys-
ematic manner, and in NCO-tracking, where these variables are
he necessary optimality conditions (NCO) (Mathisen et al., 1992;
kogestad, 2000; Srinivasan and Bonvin, 2004; Lersbamrungsuk
t al., 2008; Jäschke and Skogestad, 2011, 2012a). Although typi-
ally some degree of sub-optimality will have to be tolerated, these
pproaches are attractive in practice, because they are simple and
asy to implement.

Considering the structure of the optimal solution, the steady
tate optimal operating point of heat exchanger networks without
tream splits and with only single bypasses and utilities as manip-
lated variables, is characterized by being at constraints (Aguilera
nd Marchetti, 1998; Lersbamrungsuk et al., 2008), and can be
escribed by a linear programming problem. In this case all degrees
f freedom are used to specify target temperatures or are kept at
onstraints (e.g. bypass valves are used to control a target tempera-
ure, or are either fully open or fully closed). The problem of optimal
peration is then reduced to finding and tracking the set of active
onstraints (Lersbamrungsuk et al., 2008), which often can be done
ithout online optimization.

In this paper we study heat exchanger networks with stream
plits, where the steady state optimal operating point is generally
nconstrained. A simple example for such a system is shown in
ig. 1, where a cold stream F0 is split into two branches, which each
re heated individually by hot streams.

The operational objective is to maximize the total heat transfer,
r equivalently to maximize the temperature after mixing, Tend.
ere, the split fraction must be continuously adapted to match
arying operating conditions such as changing inlet temperatures
T0, Th1,1, Th1,2), flow rates (F0, Fh1,1, Fh1,2), and heat transfer proper-
ies (UA1,1, UA1,2). In practice, these cases are either handled by an
nline optimization approach (Lid et al., 2001), when the potential
avings are very high, or simply operated in an open-loop fash-
on, where the split ratio is set to some constant. Other ad-hoc
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

olutions include isothermal mixing and controlling some outlet
emperatures to a setpoint. These solutions are suboptimal.

The contribution of this paper is to present a simple method
or optimizing operation of heat exchanger networks with stream
Fig. 1. Simple heat exchanger network with one split. The boxed variables are
needed for obtaining the Jäschke Temperatures.

splits. For each branch we  define a “Jäschke Temperature”, and
near-optimal operation is achieved by adjusting the split between
the branches in such a way  that the Jäschke Temperatures of all
branches are equal. The results have been submitted for patent-
ing (Jäschke and Skogestad, 2012c). Nevertheless, the derivation is
of interest for the scientific community and deserves the separate
discussion provided in this paper. Our paper also fits nicely into
this Morari special issue, because of his early important work on
heat exchanger networks (Saboo and Morari, 1984) and optimal
operation (Morari et al., 1980).

To obtain our results, we follow the general approach described
by Jäschke and Skogestad (2012b): We  set up a simple model,
formulate the optimality conditions, and then eliminate the
unmeasured variables from the optimality conditions. The obtained
expression is a function of measurements only, and controlling it is
equivalent to controlling the optimality conditions.

Note that the results in this paper also are applicable when a hot
stream is split into parallel streams which are cooled down individ-
ually. To simplify the presentation, however, we present only the
case, where the parallel streams are heated.

This paper is organized as follows: In Section 2 we provide rel-
evant background material on optimality conditions for parallel
systems, and Section 3 describes the network topology and heat
exchanger model used in this work. The main results are presented
in Section 4, and Section 5 contains some case studies to demon-
strate the applicability of our results. Finally, the paper is closed
with a discussion and conclusions in Sections 6 and 7.

2. Optimality conditions for parallel systems

Let us start by considering a smooth general optimization prob-
lem. After the active constraints are satisfied (e.g. by control) we
can describe optimal operation as an unconstrained optimization
problem,

min
u

J(u). (1)

Here u ∈ R
nu denotes the unconstrained degrees of freedom. To

fully specify operation, we need as many controlled variables c as
there are degrees of freedom u, nc = nu.

Consider now a system with the topology given in Fig. 2, with
N parallel streams Fj which are branched off a given common feed
stream F0. The total operating cost J of the system is assumed to be
the sum of the individual scalar costs Jj from each line j,
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

J =
N∑

j=1

Jj(Fj), (2)

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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exchangers.
oad-dependent operating cost Jj(Fj).

nd the operational objective is to distribute the streams Fj such
hat the total operating cost J is minimized. Since all streams Fj
re coming from one overall feed stream F0, conservation of mass
equires a common coupling constraint,

0 −
N∑

j=1

Fj = 0. (3)

ecause of this coupling constraint, only N − 1 streams can be
djusted independently. The N-th flow rate is given by the mass
alance, FN = F0 −∑N−1

j=1 Fj .
Now let

 = [F1, F2, . . .,  FN−1]T

enote the degrees of freedom. Adjusting one flow to decrease
he cost in one branch will eventually cause the cost of another
ranch to become unacceptably high. Therefore, this class of sys-
ems exhibits an unconstrained optimum, and under a suitable
econd order condition, the ideal controlled variable is the gradi-
nt, which must be controlled to zero for optimality, (Halvorsen
nd Skogestad, 1997; Bonvin et al., 2001)

 = Ju = ∂J

∂u
= 0. (4)

The result summarized in the following theorem is an important
omponent for obtaining simple controlled variables for parallel
ystems.

heorem 1 (e.g. Downs and Skogestad (2011)). For a parallel sys-
em as in Fig. 2, the optimality condition can be written as
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

∂J1
∂F1

= ∂J2
∂F2

= · · · ∂Jj

∂Fj

= · · · ∂JN
∂FN

, (5)
 PRESS
ical Engineering xxx (2014) xxx–xxx 3

which leads to the optimal controlled variable

c = Ju =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂J1
∂F1

− ∂JN
∂FN

∂J2
∂F2

− ∂JN
∂FN

...

∂Jj

∂Fj

− ∂JN
∂FN

...

∂JN−1

∂FN−1
− ∂JN

∂FN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

which must be controlled to zero.

Proof. Assume the N − 1 degrees of freedom are chosen as the
flows in branches 1 to N − 1. Then a flow change in any branch
j = 1 . . . N − 1 is compensated by a change of flow in branch N, so we
have

ıFN = −ıFj for j /= N. (7)

The change ıJ in the cost for a variation in ıFj is

ıJ

ıFj
= ı(J1 + J2 + . . . + Jj + JN)

ıFj
= ı(Jj + JN)

ıFj
,

using (7), this becomes

∂J

∂Fj

= ∂Jj

∂Fj

− ∂JN
∂FN

. (8)

The fact that this is required to hold for all degrees of freedom
j = 1 . . . N − 1, leads to (5), and the optimal controlled variable (6)
follows trivially. �

Theorem 1 states that the marginal costs ∂Jj/∂Fj must be equal
for all lines. Each marginal cost is associated with its own line j, and
contains only variables from line j. This structure can be exploited
for breaking down the large problem into smaller problems, where
unknown variables can be eliminated from the gradient expression.
Moreover, since the optimality condition can be written as a pair-
wise condition (6), we  can without loss of generality, consider a
system with only two  branches.

3. Parallel heat exchanger systems

In this section we present the heat exchanger network model,
together with the main assumptions used for deriving our results.
Moreover, we introduce the cost function that we  want to optimize.

3.1. Heat exchanger network model

We consider a heat exchanger network with N parallel lines. A
line j is assumed to have Mj heat exchangers, as illustrated in Fig. 3.
For heat exchanger i on line j, Ti,j, Thi,j, Tout

hi,j
denote the cold stream

temperature after heat exchanger, the hot inlet temperature, and
the outlet temperature of the hot stream, respectively.

Before we proceed with the model equations, we  present some
assumptions our model is based on.

Assumption 1 (Single phase).  There is no phase change in the heat
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

Assumption 2 (Constant heat capacity). The specific heat capacity
cp of the fluids is constant.

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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ig. 3. Detail of a heat exchanger network with N lines and with Mj heat exchanger

To simplify notation, we introduce the heat capacities w of the
old and hot streams,

wj = Fjcp0

whi,j = Fhi,jcphi,j.

An energy balance around the hot and cold stream of heat
xchanger i on line j yields

i,j = wi(Ti,j − Ti−1,j) (9)

i,j = whi,j(Thi,j − Tout
i−1,j), (10)

here Qi,j denotes the heat transferred in the heat exchanger i on
ine j. The amount of transferred heat is given by

i,j = UAi,j�TDi,j,

here UAi,j denotes the product of heat transfer area and over-
ll heat transfer coefficient, and �TDi,j denotes the driving force.
ypically, the driving force is modeled as the logarithmic mean
emperature

TDi,j = �Tlog,i,j =
(Thi,j − Ti,j) − (Tout

hi,j
− Ti−1,j)

log[(Thi,j − Ti,j)/(Tout
hi,j

− Ti−1,j)]
.  (11)

hen the heat capacity of the hot and the cold streams have similar
agnitude, the arithmetic mean temperature is a good approxima-

ion of the logarithmic mean temperature

TAi,j =
(Thi,j − Ti,j) + (Tout

hi,j
− Ti−1,j)

2
≈ �Tlog,i,j. (12)

This approximation has an error of less than 1% (Skogestad,
008) when the temperature difference between the streams on
he two sides of the heat exchanger are within ±40%, that is when

1√
2

≤
�T (1)

i,j

�T (2)
i,j

≤
√

2.

Here �T (1)
i,j

is the temperature difference between the hot and

old stream on one side of the heat exchanger, and �T (2)
i,j

is the tem-

erature difference on the other side.1 To be able to derive simple
esults, we make the following additional assumption:
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

ssumption 3 (Arithmetic mean temperature driving force). The
riving force for heat transfer is given by the arithmetic mean
emperature difference.

1 For example, for a counter current heat exchanger using the notation in Fig. 3,
e  have �T (1)

i,j
= Tout

hi,j
− Ti−1,j and �T (2)

i,j
= Thi,j − Ti,j .
ine j. The boxed temperatures are needed for obtaining the Jäschke Temperatures.

The stream splitter is described by a simple mass balance,

w0 −
N∑

j=1

wj = 0,

and the energy balance yields

T0,j = T0 for all j.

In the case of the cold streams being merged again after passing
through the heat exchangers, using the energy balance, the end
temperature out of the mixer can be calculated by the weighted
sum of the temperatures of the individual lines,

Tend = 1
w0

N∑
j=1

wjTMj
.

3.2. Objective function

Our goal is to adjust the splits between the lines of the heat
exchanger network such that the operating cost J is minimized. In
a general form we may  write the cost J as

J = −income + expenses.

We  denote the price that has to be paid for transferring heat in
heat exchanger i on line j as pcost

i,j
. Similarly, the price for the added

value is denoted prev
i,j

. The cost thus becomes

J = −
N∑

j=1

Mj∑
i=1

prev
i,j Qi,j +

N∑
j=1

Mj∑
i=1

pcost
i,j Qi,j = −

N∑
j=1

Mj∑
i=1

(prev
i,j − pcost

i,j )Qi,j.

(13)

In practice, the prices prev
i,j

will often be equal, prev
i,j

= prev, while

the prices for using different hot streams pcost
i,j

may  differ signifi-

cantly. By defining a new price pi,j = prev
i,j

− pcost
i,j

we may simplify
the cost function to

J = −
N∑

j=1

Mj∑
i=1

pi,jQi,j. (14)
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

When all prices for using the hot streams are equal, pcost
i,j

= pcost ,
and the prices for the heated streams are equal, prev

i,j
= prev, this is

equivalent to maximizing the total heat transfer. Furthermore, if

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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he branches are merged again, it corresponds to maximizing the
nd temperature Tend.

. Controlled variables for heat exchanger networks with
plits

When setting up the optimality conditions for a heat exchanger
etwork, the expressions will generally contain all variables. Some
ariables may  be easy to measure, such as temperatures, while oth-
rs are more difficult to measure or estimate, such as heat capacities
nd heat transfer coefficients. Our goal is to find controlled vari-
bles, which are functions of measurements that are easy to obtain,
nd are equivalent to controlling the gradient to zero.

We state the main results in this section, and present their
erivation in Appendix A. For convenience, we first introduce the
hifted temperature �, which is formed by subtracting the feed
emperature T0,

 = T − T0. (15)

heorem 2 (Maximize heat transfer). Under Assumptions 1–3, and
qual prices pi,j = 1 in the cost function (14), the marginal costs for each
ranch j = 1 . . . N can be expressed as

∂J

∂wj

= TJ,j (16)

here TJ,j is the Jäschke Temperature on branch j, defined as

J,j =
Mj∑
i=1

ai,j, (17)

ith the parameter ai,j defined recursively as

i,j =
(�i,j − �i−1,j)

(
�i,j + �i−1,j − ai−1,j

)
�hi,j − �i−1,j

, a0,j = 0. (18)

In Appendix A we provide a proof of Theorem 2 for Mj = 1 and
j = 2. Moreover, we prove the case Mj = 3 for heat exchangers with

onstant hot stream temperatures (this corresponds to very large
ot stream heat capacities). For Mj ≥ 4 we conjecture that the The-
rem is true.

Theorem 2 implies that the optimal split that maximizes the
otal heat transfer can be obtained by simply controlling the Jäschke
emperatures in all branches to equal values. Note that the Jäschke
emperature on branch j only depends on the temperatures on this
ranch (�i,j), and the hot inlet temperatures on this branch (�hi,j).

n Figs. 1 and 3 the temperatures required to calculate the Jäschke
emperatures are highlighted in boxes. In particular, we  do not
eed to know the heat capacities or the flow rates of the streams
F0, Fj, Fhi,j), nor do we require information about the heat transfer
roperties UAi,j to calculate the Jäschke Temperatures.

xample 1 (Maximize heat transfer, M1 = M2 = 1).  For the network
epicted in Fig. 1, the controlled variable is

 = TJ,1 − TJ,2 =
�2

1,1

�h1,1
−

�2
1,2

�h1,2
.

Adjusting the split between the branches such that c = 0 results
n optimal operation when the arithmetic mean temperature differ-
nce assumption is satisfied. Moreover, keeping c at zero is optimal
n spite of varying operating conditions, such as changing stream
emperatures or changing heat transfer properties due to fouling
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

n the heat exchangers.

We can extend Theorem 2 to the case where the hot sources
ave different prices pi,j, and where the objective is to minimize
he economic cost of operating the heat exchanger network.
 PRESS
ical Engineering xxx (2014) xxx–xxx 5

Theorem 3. Under Assumptions 1–3 and an economic objective (14)
with arbitrary prices pi,j, the marginal costs for each branch j = 1 . . . N
can be expressed as

∂J

∂wj

= Te
J,j (19)

where the Economic Jäschke Temperature Te
J,j

is defined as

Te
J,j =

Mj∑
i=1

pi,jai,j (20)

with the parameter ai,j defined as in Theorem 2.

Strictly speaking, Theorem 2 is a special case of Theorem 3. It
is obtained by setting all pi,j equal to 1. However, because of its
practical importance, we chose to write Theorem 2 as a separate
theorem.

In Appendix A we provide a proof of Theorem 3 for Mj = 1 and
Mj = 2. There we also prove the case Mj = 3 for heat exchangers with
constant hot stream temperatures (this corresponds to very large
hot stream heat capacities). For Mj ≥ 4 we  conjecture that the The-
orem is true.

Example 2 (Minimizing economic cost, M1 = 1, M2 = 2).  For a system
with 1 heat exchanger on the first line and 2 heat exchangers on
the second line, and with prices p1,1, p1,2 and p2,2 the controlled
variable becomes

c = Te
J,1 − Te

J,2 = p1,1
�2

1,1

�h1,1

−

⎛
⎜⎜⎝p1,2

�2
1,2

�h1,2
+ p2,2

(�2,2 − �1,2)

(
�2,2 + �1,2 − �2

1,2
�h1,2

)
�h2,2 − �1,2

⎞
⎟⎟⎠ .

(21)

Note that when there is no heat exchange in the second heat
exchanger of line 2, i.e. we have �1,2 = �2,2, Eq. (21) reduces to the
case where there is only one heat exchanger per line, and c becomes

c = p1,1
�2

1,1
�h1,1

− p1,2
�2

1,2
�h1,2

. Similarly, when there is no heat exchange

in the first heat exchanger on line 2 (�1,2 = 0), the expression sim-

plifies to c = p1,1
�2

1,1
�h1,1

− p2,2
�2

2,2
�h2,2

.

5. Simulation case studies

In this section, we apply our approach to heat exchangers
networks which are modelled using the logarithmic mean tem-
perature difference as driving force for the heat transfer. Although
the assumption of the arithmetic mean temperature difference is
no longer satisfied, the simulations show that our approach yields
good performance.

First we present two cases where the objective is simply to max-
imize the total heat transfer. Then we  show an example where the
operating cost is minimized when the hot stream prices differ. We
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

compare the results obtained from controlling the Jäschke Tem-
peratures with the true optimum, and we also present results for
the case when the end temperatures are controlled to equal values
(isothermal mixing).

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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Table 1
Data for Case Study 1.

Variable Value Unit Description

T0 60 ◦C Cold feed temperature
w0 100 kW/K Cold feed heat capacity
wh1,1 30 kW/K Hot stream 11 heat capacity
wh1,2 50 kW/K Hot stream 12 heat capacity
Th1,1 120 ◦C Hot stream 11 temperature
Th1,2 220 ◦C Hot stream 12 temperature
UA1,1 50 ◦C HX 11 area × heat transf. coeff.
UA1,2 80 ◦C HX 12 area × heat transf. coeff.

Table 2
Results for Case Study 1.

Optimized Equal Jäschke Temp. Isothermal mixing

5

w
m

u

a
b
p

(
f
t
i
a
w

i
F
l
a
t

F
i
s

Table 3
Data for Case Study 2.

Variable Value Unit Description

T0 60 ◦C Feed temperature
w0 100 kW/K Feed heat capacity
wh1,1 50 kW/K Hot stream 11 heat capacity
wh2,1 30 kW/K Hot stream 21 heat capacity
wh1,2 40 kW/K Hot stream 12 heat capacity
Th1,1 80 ◦C Hot stream 11 inlet temperature
Th2,1 140 ◦C Hot stream 21 inlet temperature
Th1,2 220 ◦C Hot stream 12 inlet temperature
UA1,1 80 kW/K HX11 area × heat transf. coeff.
End temp. 124.8917 ◦C 124.8045 ◦C 119.9388 ◦C
Split u = F1

F0
0.2704 0.2361 0.0600

.1. Case Study 1: one heat exchanger per branch

We  consider a simple case with one heat exchanger per line,
here the streams are merged after being heated, Fig. 1. Instead of
anipulating the flows directly, we select the split

 = F1

F0
= w1

w0

s manipulated variable. We  assume that the prices are equal on
oth lines, p1,1 = p1,2, so the objective is to maximize the end tem-
erature Tend. The stream parameters are given in Table 1.

Table 2 shows the end temperature Tend for the true optimum
maximally achievable end temperature), the end temperature
rom controlling the Jäschke Temperatures to equal values, and
he end temperature obtained from isothermal mixing, which
s obtained from controlling T1,1 = T1,2. The Jäschke Temperature
pproach gives an end temperature which is very close to optimal,
hile isothermal mixing results in a loss of almost 5 ◦C.

Fig. 4 shows how well the arithmetic mean temperature approx-
mates the logarithmic mean temperature in the exchangers.
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

urther, we included the bounds where the approximation of the
ogarithmic mean temperature is less than 1%. At the optimum the
pproximation error of heat exchanger 2 is larger than 1%. This is
he reason why the Jäschke Temperature approach deviates slightly

Split, u

E
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or
 [%

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

1% Error

HX1,1
HX1,2
Opt. spli t

TJ,1= TJ,2

ig. 4. Case Study 1: Error between the logarithmic mean temperature difference
n  the heat exchangers and the arithmetic mean temperature as a function of the
plit u = F1/F0.
UA2,1 50 kW/K HX21 area × heat transf. coeff.
UA1,2 65 kW/K HX12 area × heat transf. coeff.

from the optimal split. However, due to the flatness of the uncon-
strained optimum, our approach still gives a close to optimal Tend.

In Fig. 5 we plotted the split ratio against the final temperature
Tend and included the difference between Jäschke Temperatures

of the two lines, c = �2
1,1

�h1,1
− �2

1,2
�h1,2

. We  see that there is only one

point where c = 0, i.e. TJ,1 = TJ,2, and that c is a monotone function
of the input u. The monotonicity around the optimal point c = 0 is
important as it ensures controllability.

5.2. Case Study 2: Two exchangers on first branch, one exchanger
on second branch

Next, we give an example of a system with 2 heat exchangers in
series on the first line, and one heat exchanger on the second line.
Here too, the objective is to maximize the total heat transfer and to
maximize Tend. The stream data are listed in Table 3, and the sim-
ulation results are summarized in Table 4, where the optimal end
temperature is presented together with results that are obtained
when using the our new approach and when implementing isother-
mal  mixing. The difference between the optimal Tend and the Tend
using the Jäschke Temperatures is very small, while the isothermal
mixing strategy again results in a higher loss.

Fig. 6 shows the approximation errors in the three heat exchang-
ers as a function of the split u. Here, too, we find that even though
the approximation error is about 23% for the exchanger 11 and
larger than 2% for the other heat exchangers, the Jäschke Temper-
ature approach gives good results.

In Fig. 7 we  plotted the cost function versus split ratio together
with the controlled variable c = TJ,1 − TJ,2. We observe that here too,
we the controlled variable is zero very close to the optimum, and
crosses zero only once.

5.3. Case Study 3: One heat exchanger per branch – different
prices

We  consider the same heat exchanger network as in Case Study
1, but now with an economic objective involving different prices
associated with heat transfer from the two heat exchangers. The
stream temperatures and flow data are the same as before, given
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

in Table 1. The economic cost is then

J = (pcost
1,1 − prev

1,1)Q1,1 + (pcost
1,2 − prev

1,2)Q1,2. (22)

Table 4
Results for Case Study 2

Optimized Equal Jäschke Temp. Isothermal mixing

End Temp. 122.7726◦C 122.7549◦C 120.8782◦C
Split u = F1

F0
0.4326 0.4147 0.2559

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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Fig. 5. Case Study 1: End temperature and controlled variable c = TJ,1 − TJ,2.

Split, u

E
rr

or
 [%

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

1% Error

HX2,1

HX1,1

HX1,2

Opt. spli t

TJ,1= TJ,2

Fig. 6. Case Study 2: Error between the logarithmic mean temperature difference
i
s

p

J

a
1
s
T
o

c
i
v
v

Table 5
Results for Case Study 3.

Optimized Equal Jäschke Temp Isothermal mixing

Operating cost ($/s) −7.6256 −7.6250 −6.3536
F

n  the heat exchangers and the arithmetic mean temperature as a function of the
plit u = F1

F0
.

Assuming that prev
1,1 = prev

1,2 = 0.3 ¢ /kJ,  and pcost
1,1 = 0.1 ¢ /kJ,  and

cost
1,2 = 0.2 ¢ /kJ, the simplified cost (14) becomes

 = −0.2
¢
kJ

Q1,1 − 0.1
¢
kJ

Q1,2, (23)

nd this cost function encourages to prefer using heat exchanger
1 to heat exchanger 12. This will not result in the maximally pos-
ible end temperature, but it will optimize the process economics.
able 5 lists the optimal operating cost together with the cost from
ur approach and the isothermal mixing approach.

The optimal cost, and the cost found by our approach are very
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

lose. As expected isothermal mixing gives the highest cost. This
s further illustrated in Fig. 8, where the profit and the controlled
ariables are shown for all possible splits u. As above, the controlled
ariable is zero only once, and very close to the optimal split.
Split u = 1
F0

0.3452 0.3364 0.0600

6. Discussion

6.1. Relation to other work

An interesting interpretation of the Jäschke Temperatures can
be given in terms of the heat exchanger efficiency as used in the
NTU method (Mills, 1995). Consider the case of a network with one
heat exchanger per branch, as in Fig. 1. Using the heat exchanger
efficiency on the cold side εc, the cold outlet temperature on branch
j can be calculated by

T1,j = εcTh1,j + (1 − εc)T0, (24)

and solving for εc yields

εc = T1,j − T0

Th1,j − T0
. (25)

On the other hand, the Jäschke Temperature for this branch can
be expressed using εc as

TJ,j = (T1,j − T0)2

Th1,j − T0
= εc(T1,j − T0). (26)

This gives rise to a nice interpretation of our work: The Jäschke
Temperatures for this case may  be considered “corrected” or
“weighted” efficiencies, where the NTU-efficiency is weighted by
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

the actual temperature rise T1,j − T0, and optimal operation is
achieved when all branches are operated with the same weighted
efficiency.

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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Fig. 7. Case Study 2: End tempera

In case of more than one heat exchanger per line the Jäschke
emperatures are calculated according to (17) and (18). Defining
he efficiency of heat exchanger i on line j as

ci,j = �i,j − �i−1,j

�hi,j − �i−1,j
, (27)

nd the weighting as
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

�i,j + �i−1,j − ai−1,j), (28)

he components of the Jäschke Temperature can then be written as

i,j = εci,j(�i,j + �i−1,j − ai−1,j). (29)

C
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Fig. 8. Case Study 3: Economic cost and controlled variabl
d controlled variable c = TJ,1 − TJ,2.

Thus, the Jäschke Temperature of a line may  be considered as the
weighted sum of the efficiencies of the heat exchangers on that line.

6.2. Flow configurations and network topologies

6.2.1. Heat exchanger flow configuration
The assumption of the arithmetic mean temperature differ-

ence does not imply anything on the flow configuration within the
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

heat exchangers. However, the assumption will generally be better
satisfied in heat exchangers with counter-current flows than in co-
current flow heat exchangers, because the temperature profiles in
the hot and the cold medium are closer to parallel.
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dx.doi.org/10.1016/j.compchemeng.2014.03.020
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assumption may  be violated severely in real heat exchangers, which
J,j Thi,j − T 0 θhi,j

Fig. 9. Alternative topologies wit

.2.2. Alternative network topologies
Although the results in this paper were derived for a standard

eat exchanger configuration, as shown in Fig. 1 and 3, the results
re more widely applicable than it may  seem at first sight, because
hey can be applied to related, equivalent topologies. In our
pproach, the heat capacities w, the heat transfer properties UA,
nd the outlet temperatures of the hot streams can be considered
s disturbances, which have been eliminated from the optimality
onditions. It is therefore possible to use our controlled variables for
ystems, which can be modeled as standard systems, by adjusting
he heat transfer area and/or the heat capacities. For example, the
ystem in Fig. 9a may  be modelled as a single counter-current heat
xchanger, and the Jäschke Temperature can be calculated accord-
ngly. Similarly, when more than two heat exchangers on a branch
re connected to a single hot stream, they may  be modelled as a
ingle heat exchanger.

Also, the configuration in Fig. 9b can be modelled as a single heat
xchanger, because the effect of the reduced flow in the second heat
xchanger on the hot path is equivalent to the effect of a reduced
verall heat transfer coefficient. Of course, it is possible to combine
ll the above configurations, such that beside the examples given
bove, all parallel flow configurations which can be modelled as
ne or more heat exchangers on a line, may  be operated close to
ptimal by our approach.

Another interesting special case is the case where an exchanger
s split into two, such that both, the hot and the cold stream are
plit, see Fig. 10.
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

Here the hot stream temperatures are identical, so requiring

qual Jäschke Temperatures for the cold split
�2

1
�h0

= �2
2

�h0
is equiva-

ent to requiring T1 = T2. Similarly, for the hot stream split, requiring

T0

Th0

T1

T2

T out
h1 T out

h2

Tend
u

v

ig. 10. Configuration where the hot and the cold stream are split, the degrees of
reedom are the split fractions u and v.
J,j Thi,j − T 0 θhi,j

esponding Jäschke Temperature.

equal Jäschke Temperatures
(Tout

h1
−Th0)2

T0−Th0
= (Tout

h2
−Th0)2

T0−Th0
is equivalent to

Tout
h1 = Tout

h2 . This is indeed the optimal solution.
Our controlled variable may  also be used when the flow thor-

ough one or more branches is not available as a degree of freedom.
An example for this case is given in Fig. 11, where there is a temper-
ature constraint on the hot outflow of the first branch. In this case,
the fraction through the first branch u1 is not available as a degree
of freedom for optimization, as it must be used to maintain the
exit temperature of the hot stream. However, the second degree of
freedom u2 can be used control the difference between the Jäschke
Temperatures in the second and third branch. This maximizes the
heat transfer in the exchangers on these branches (and Tend).

6.3. Phase change in heat exchangers

A heat exchanger with condensing steam on the hot side (con-
stant hot side temperature) may  be modelled as a single phase
heat exchanger with a very large hot heat capacity (whi,j → ∞). As
long as the arithmetic mean temperature driving force assumption
is satisfied, controlling the Jäschke Temperatures of all branches
to equal values results in optimal operation, regardless of the
heat capacities in the hot and cold streams. Therefore one may
also use the Jäschke Temperature approach for controlling heat
exchanger networks with condensing steam as a heat source. How-
ever, in these cases the arithmetic mean temperature difference
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

may  or may  not impact the performance (in Fig. 6 we see that a
large approximation error does not necessarily imply poor perfor-
mance).

u1

u2

T0

TC

Th1,2

Th1,3

T1,2

T1,3

c = TJ,2 − TJ,3

Tend

Fig. 11. Control structure where one degree of freedom is used to control another
variable.

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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.4. General elimination

At first sight it may  be surprising that it is possible to obtain
ontrolled variables, which do not contain any heat capacities or
eat transfer properties. Alstad and Skogestad (2007) stated that
his requires that the number of independent measurements is
reater or equal to the sum of the number of degrees of freedom
nd the disturbances, ny ≥ nu + nd. However, this requirement may
e conservative sometimes, as we show in the simple following toy
xample. Consider the cost

in  J = 1
2

(u − d)2,

here u is the degree of freedom and d is an unmeasured disturb-
nce parameter. The optimal controlled variable is the gradient,

 = Ju = (u − d), (30)

nd the minimum number of measurements is nu = 1. To need
nly a single measurement, we must measure the gradient itself,

 = Ju = (u − d), or some locally monotone scalar valued function of
t.2 However, if the gradient is not measured directly, we need
wo independent measurements, one for eliminating u, and one
or eliminating d from the gradient expression (30).

Now consider another toy example, where the cost function is

 = 1
2

(u − 1)2 + d2. (31)

Here, the gradient J̃u = u − 1 contains only one variable, and only
ne measurement is required. That is, we can measure u and set

 = 1.
If however, new variables (disturbances) are present in the mea-

urement equations, then additional measurements are required.
onsider again (31). If the only measurement is y1 = G1u + G1dd,
hen it cannot be used to eliminate u, because a new variable d is
ntroduced. In this case, a second measurement y2 = G2u + G2dd nec-
ssary to eliminate d from the measurement equation for y1, such
hat d = 1/G2d(y2 − G2u). Inserting into the first measurement equa-
ion gives y1 = G1u + G1d/G2d(y2 − G2u). Thus, the optimal controlled
ariable J̃u = u − 1 can be expressed using the measurements as

 = J̃u = u − 1 = (y1 − G1d/G2dy2)/(G1 − G1d/G2dG2) − 1.
The minimum number of measurements depends thus on the

rocess structure, and for finding a controlled variable which is
quivalent to controlling the gradient, the minimum number of
easurements required is nu (when the gradient is measured) and

t most nu + nd.

.5. Strengths and limits of our approach

The big advantage of our method is that it is very simple, and
till gives close to optimal performance. Neither flow rates nor heat
apacities need to be measured. The main underlying assumptions
n the derivation of the Jäschke Temperatures are the arithmetic

ean temperature difference as driving force for the heat transfer,
nd constant specific heat capacity.

Even when the arithmetic mean temperature difference
ssumption is violated, we have shown that our controlled vari-
bles give good performance. However, for very poorly designed
eat exchanger networks, which are operated with very unequal
eat capacities on the hot and the cold side, the performance
an deteriorate. For very extreme cases, that is when one of the
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

ot streams has a much higher heat capacity than the cold feed
tream, and a much lower temperature than the other hot streams,
he approximation by the arithmetic temperature difference may

2 The monotonicity around its optimal value is necessary for controllability.
 PRESS
mical Engineering xxx (2014) xxx–xxx

become very poor, and it may  not be possible to control the differ-
ences between the Jäschke Temperatures to zero. However, when
such a case is implemented using PI controllers with anti-windup,
the controller will attempt to control the difference to zero, and
this will result in fully opening the dominating branch and closing
others. This will not be optimal, but the loss will be relatively small,
because most of the heat is transferred in the dominating branch,
and the other branches contribute only little to the total transferred
heat. If truly optimal performance is required for such extreme
cases, a different approach has to be chosen, which essentially
is based on a more accurate model. Such a method will typically
require more effort in implementing and maintaining.

In well designed real heat exchanger networks, however, the
hot and the cold heat capacities will be similar, and this will make
the approximation error of the arithmetic mean temperature dif-
ference small. Another factor which mitigates the effect of the
approximation error is that the objective function in such systems
tends to be very flat near the optimum, such that a split which is
only close to optimal will give a good performance. This flat nature
of the optimum will generally also give near-optimal operation
when the heat capacities are temperature dependent.

One of the limitations of this method is that it requires the
marginal costs to be decoupled, i.e. it is not possible to have
crossovers between the lines. If there are crossovers, it is not pos-
sible to find optimality conditions of the form c = c1 − c2, where
cj contains only variables from branch j, and we must use other
approaches, such as described in e.g. Alstad et al. (2009).

6.6. Practical implementation issues

6.6.1. Handling singularities
The formulas for the Jäschke Temperatures derived in this paper

contain temperature differences in the denominators, �hi,j − �i−1,j
which under practical operation may  cross zero and become nega-
tive. When this temperature difference becomes negative, the cold
stream is cooled down (rather than heated) in the particular heat
exchanger. This results in a negative contribution to the Jäschke
Temperature.

When the temperatures of the hot inlet stream and the cold inlet
stream of a heat exchanger are equal, �hi,j = �i−1,j, there is no heat
transfer in that particular heat exchanger. Operation at such this
point is unlikely in practice, as this is a zero-measure set. How-
ever during transients this may  well happen, and then the Jäschke
Temperatures become singular, which can result in unpredictable
controller behavior.

To avoid this undesirable behavior, there are two possible
approaches. The first one is to implement the controlled vari-
able denominator-free by multiplying the controlled variable with
the greatest common denominator. For a system with one heat
exchanger per line, as in Example 1, the controlled variable becomes

c = �2
1,1�h1,2 − �2

1,2�h1,1.

In this case the controlled variable never becomes singular.
Topologies with more than one heat exchanger on a line can be
treated similarly.

An alternative approach is to use a piecewise defined Jäschke
Temperatures to patch the singular point. Here, we define the vari-
able ai,j in (18) as⎧⎨ (�i,j − �i−1,j)[�i,j + �i−1,j − ai−1,j] for |�hi,j − �i−1,j| > �
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

aij =⎩ �hi,j − �i−1,j

0 for |�hi,j − �i−1,j| ≤ �

where � is a small tunable parameter, e.g. � = 10−3.

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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.6.2. Controlling the Jäschke Temperatures
In Section 2 we have shown that a system with N parallel lines

as N − 1 degrees of freedom. To fully specify the system, we need
o control N − 1 controlled variables such that all the Jäschke Tem-
eratures are equal. The simplest way to achieve this is to select
he controlled variables as

c1 = JT,1 − JT,N

c2 = JT,2 − JT,N

...

cN−1 = JT,N−1 − JT,N

(32)

We recommend to number the streams j = 1, . . .,  N such that
tream N has the largest heat capacity, because the Jäschke Tem-
erature of the largest stream will not vary very much compared
o the Jäschke Temperatures of the other streams. Alternatively,
ne could use the mean Jäschke Temperature over all branches as

 reference and control the variables

j = JT,j − 1
N

N∑
k=1

JT,k. (33)

The controlled variables may  either be controlled by decentral-
zed controllers such as PID controllers, or by centralized controllers
uch as model predictive controllers. In both cases, the controller
ay  act directly on valves or pumps, or give setpoint values to flow

ontrollers in the branches.
When controlling differences between Jäschke Temperatures,

t is important to note that disturbances in the incoming tem-
eratures T0 and Thi,j have an immediate effect on the controlled
ariables and can lead to an undesirable response. This may  be
itigated by filtering the incoming temperatures such that all

esponses are on a similar time-scale.
Of the N degrees of freedom in such a parallel system, only N − 1

re independent. The Nth degree of freedom cannot be used to opti-
ize the split. However, it can be used to minimize the pressure

rop over the system (Leruth, 2012).

. Conclusions and future work

We  have presented an approach for optimizing the split
etween the lines of a parallel heat exchanger system. Although
he Jäschke Temperatures are developed for the arithmetic temper-
ture difference, they give good results for the realistic case with
ogarithmic temperature difference. In particular, our approach
ives good performance for well-designed heat exchangers, where
he heat capacities on the hot and the cold side are approximately
he same.

For the case with 1–3 heat exchangers per line, we  have proven
nder the assumption of the arithmetic mean temperature dif-
erence as driving force for the heat transfer, that the Jäschke
emperatures are equal to the marginal costs. The more general
ase with more than 3 heat exchangers is conjectured.

We would like to mention again that the Jäschke Temperatures
an be used also in the case where the hot stream is split into
arallel streams, which are cooled down.

Controlling the Jäschke Temperatures for optimizing the split
as an additional practical advantage. If one of the flows Fi is set to
anual (or is used to control some thing else) the rest of the control

tructure remains unaffected.
A limitation is that we cannot handle systems with crossovers,
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

ecause the optimality conditions are no longer decoupled. Future
ork will consider possibilities to handle coupled optimality con-
itions, and to integrate our approach into a larger setting, where
ot only the heat transferred in the heat exchangers is maximized,
 PRESS
ical Engineering xxx (2014) xxx–xxx 11

but rather the economics of the whole plant. Another direction for
future work is to investigate possible connections to established
methods for heat exchanger network design, such as pinch analysis.
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Appendix A. Proofs and derivations

In this section we  show how we obtained the results pre-
sented this paper. The procedure is based on Jäschke and Skogestad
(2012b), where we  use a model to formulate the optimality condi-
tions, and then use the model to eliminate unmeasured variables
from the optimality conditions. We  present only the proof for the
economic case (Theorem 3), because the case of maximizing heat
transfer (Theorem 2) is obtained as a special case by setting pi,j = 1
for all i, j.

For Theorem 3, we present in this section:

• an analytical proof derived in equations for Mj = 1,
• an algebraic proof using maple for Mj = 2,
• an algebraic proof using maple, and in addition assuming infinite

heat capacity on the hot side (corresponds to condensing steam
on the hot side) for Mj = 3.

The case Mj > 3 is conjectured.

A.1. Analytical proof of Theorem 3 for Mj = 1

An example of this case is shown in Fig. 1. In this section,
for simplicity of notation, since every line contains only one heat
exchanger, we  omit the index i denoting the heat exchanger, such
that e.g. Ti,2 is denoted T2. Expressed in shifted temperatures �, the
energy balance (9) and (10) around the heat exchanger on line j
becomes

Qj = wj�j (A.1)

Qj = whj(�hj − �out
hj ) (A.2)

Combining (A.1) and (A.2), and solving for �out
hj

yields

�out
hj = whj�hj − wj�j

whj
. (A.3)

Under Assumption 3 (arithmetic mean temperature difference),
the transferred heat is

Qj = UAj

2

(
�hj − �j + �out

hj

)
. (A.4)

Equating with (A.1) we have

UAj

2
(�hj − �j + �out

hj ) = wj�j,

and inserting (A.3) yields

UAj

2

(
�hj − �j + whj�hj − wj�j

whj

)
= wj�j.
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

Upon solving for �j, we obtain

�j = �hj

1 − wj(1/whj + 2/UAj)
. (A.5)

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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 �h2,1

= 1,1

�h1,1
, (A.9)
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This expression for �i can be used in the objective function. For
 system with N lines, we have

 =
N∑

j=1

Ji = −
N∑

j=1

pjQj = −
N∑

j=1

pjwj�j.

And the corresponding marginal cost for each branch is

∂J

∂wj

= pj
∂Qj

∂wj

= pj
∂

∂wj

wj�j = pj
∂

∂wj

(
wj�hj

1 − wj

(
1/whj + 2/UAj

)
)

= pj
�hj(1 − wj(1/whj + 2/UAj)) + wj�hj(1/whj + 2/UAj)

(1 − wj(1/whn + 2/UAj))
2

= pj
�hj

(1 − wj(1/whj + 2/UAj))
2

. (A.6)

By noting that (A.5) implies

�j

�hj
= 1

1 − wj(1/whj + 2/UAj)

e can write (A.6) as

∂Jj

∂wj

= pj

�2
j

�hj
, (A.7)

hich completes the proof for Mj = 1. �
The Jäschke Temperatures for the case Mj = 1 were originally

ound using the approach described in Jäschke and Skogestad
2012b), where a computer algebra program is used to perform the
limination. This computer algebra approach is also used to prove
he case Mj = 2 and Mj = 3 in the next section. The analytical proof
resented above was only found afterwards, after the structure of
he Jäschke Temperatures was known.

Note that the arithmetic mean temperature difference assump-
ion made it possible to eliminate the heat capacity wj and the heat

ransfer properties UAj in such a simple manner.

.2. Proof of Theorem 3 for Mj = 2

The situation becomes more complicated when there are more
han one heat exchangers on a line, because the marginal cost con-
ains variables from all heat exchangers on this line, and represents
he accumulated effect of a change in the flow rate. For proving
heorem 3 for Mj > 1, we applied the method described in Jäschke
nd Skogestad (2012b), which is based on three main steps:

. Model the system and formulate the optimality conditions.

. Calculate the reduced gradient Ju.

. Symbolically eliminate unmeasured parameters and states from
the reduced gradient Ju using the sparse resultant (Cox et al.,
2005).

c =
(−�2

1,1�2,1�h2,1 + �3
1,1�2,1 + �2

1,1�h2,1�h3,1 − �3
1,1

�h1,1(−�2,1�h2,1 + �h2,1�h3,1 + �1,1�2,1 − �1,1�

+
(

�2
1,1�2,1�h1,1 + �2

1,1�2
2,1 − �3

1,1�2,1 − �2
1,1�2,1�

�h1,1(−�2,1�h2,1 +

−
(

�2
1,2

�h1,2

)
p1,2. 
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
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We  consider a heat exchanger network with 2 branches j = 1, 2
Fig. A.12), which was modelled in Step 1. Here M1 = 2 and M2 = 1.
he fact that M2 = 1 implies no limitation on the generality of the
Fig. A.12. Heat exchanger network with two heat exchangers on the first line and
one exchanger on the second line.

proof, since the marginal costs for each line are independent of each
other, see Theorem 1.

The cost function for this case is

J = −(p1,1Q1,1 + p2,1Q2,1 + p1,2Q1,2),

and the reduced gradient in Step 2 was  calculated in Maple (TM).3

It contains the temperatures, flow rates and heat transfer variables
from all heat exchangers. Finally the elimination of UAij and the
heat capacities wj, whi,j from the reduced gradient in Step 3 was
performed using the Maple package multires (Busé and Mourrain,
2003).

The procedure above leads to a large algebraic expression c,
which is zero whenever the gradient is zero (c = 0 ⇔ Ju = 0). Col-
lecting the coefficients of the prices p1,1, p2,1, and p1,2 leads to

)
p1,1

 �3
1,1�h3,1 − �2

1,1�h1,1�h3,1 − �3
2,1�h1,1 + �2

2,1�h1,1�h3,1

�h3,1 + �1,1�2,1 − �1,1�h3,1)

)
p2,1

(A.8)

Already now we see Economic Jäschke Temperature for the sec-

ond branch with only one heat exchanger, Te
J,2 = p1,2

�2
1,2

�h1,2
in the last

line. The two  terms corresponding to p1,1 and p2,1 correspond to the
Economic Jäschke Temperature of the first line. The coefficient of
p1,1 can be written as

a1,1 =
−�2

1,1�2,1�h2,1 + �3
1,1�2,1 + �2

1,1�h2,1�h3,1 − �3
1,1�h3,1

�h1,1(−�2,1�h2,1 + �h2,1�h3,1 + �1,1�2,1 − �1,1�h3,1)

=
�2

1,1(�h21 − �1,1)(�h3,1 − �2,1)

�h1,1(�h21 − �1,1)(�h3,1 − �2,1)

�2
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

and the coefficient of p21 can be written as

3 Maple is a trademark of Waterloo Maple Inc.

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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2,1�h1,1 + �2
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�2
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(
g
A

a
,1�h2,1 + �1,1�2

2,1�h1,1 − �2
2,1�h1,1�h2,1 − �1,1�2

3,1�h1,1 + �2
1,1�2,1�3,1 − �2

2,1�3,1�h1,1 + �3
2,1�h1,1

 �h2,1�h3,1 + �1,1�2,1 − �1,1�h3,1)

o

t
e

and

a0,j = 0. (A.16)
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2,1 =
�2

1,1�2,1�h1,1 + �2
1,1�2

2,1 − �3
1,1�2,1 − �2

1,1�2,1�h3,1 + �3
1,1�h3,1

�h1,1(�h2,1 − �1,1)(�h3,1

=
(�h3,1 − �2,1)[�h1,1(�2

2,1 − �2
1,1) − �2

1,1(�2,1 − �1,1)]

�h1,1(�h2,1 − �1,1)(�h3,1 − �2,1)
=

�2
2,1 − 

=
(�2,1 − �1,1)(�2,1 + �1,1 − �2

1,1
�h1,1

)

�h2,1 − �1,1

= (�2,1 − �1,1)(�2,1 + �1,1 − a1,1)
�h2,1 − �1,1

.

Thus, the Economic Jäschke Temperature for a line j with Mj = 2
eat exchangers becomes

e
J,j = p1,j

�2
1,j

�h1,j
+ p2,j

(�2,j − �1,j)(�2,j + �1,j −
�2

1,j

�h1,j
)

�h2,j − �1,j
. (A.11)

This is exactly the structure proposed in Theorem 2 and 3, which
ompletes the proof for Mj = 2. �

.3. Proof of Theorem 3 for Mj = 3

To derive the Economic Jäschke Temperature for Mj = 3, we  con-
ider the system shown in Fig. A.13, where the objective is to
inimize the cost

 = −(p1,1Q1,1 + p2,1Q2,1 + p3,1Q3,1 + p1,2Q1,2).

The symbolic elimination using the sparse resultant is compu-
ationally very expensive, and for this case with M1 = 3, M2 = 1, it
as not possible to perform the symbolic elimination using Maple

nd multires due to memory limitations.
However, since controlling the Jäschke Temperatures to equal

alues gives optimal operation independent of the magnitude of
he heat capacity, we may  hypothetically let the hot heat capacity
o to infinity (or to a very large value). This will cause the hot inlet
emperature and the hot outlet temperature to be equal, �hi,j = �out

hi,j
,

hile the form of the Jäschke Temperatures are not affected.4

Therefore, to reduce the number of variables in the symbolic
limination, the case with M1 = 3 was modelled with constant hot
tream temperatures (this corresponds to a very large (infinite)
eat capacity of the hot streams, or condensing steam), and the
ame procedure as in the previous section was applied.5

Now it is possible to obtain perform the symbolic elimination
esults for the case with Mj = 3, which leads to a large alge-
raic expression c, which is zero whenever the gradient is zero
c = 0 ⇔ Ju = 0). Collecting the coefficients of the prices p1,1 and p2,1
ives the same expressions as given in Eqs. (A.9) and (A.10) in
ppendix A.2. The coefficient of the price p3,1 is

3,1 =
−�2

1,1�2,1�h1,1 + �2
1,1�2,1�h2,1 + �2

1,1�3,1�h1,1 − �2
1,1�3,1�h2,1 − �2

1,1�2
2,1 + �2

3,1�h1

�h1,1(−�2,1�h2,1 +

=
(�3,1 − �2,1)(�3,1 + �2,1 − [(�2,1 − �1,1)(�2,1 + �1,1 −

�2
1,1

�h1,1
)/(�h2,1 − �1,1)])

[�h3,1 − �2,1]
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
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= (�3,1 − �2,1)(�3,1 + �2,1 − a2,1)
�h3,1 − �2,1

. 

4 This can also be seen in the derivation of the Jäschke Temperatures for the case
f  one heat exchanger per line in A.1 by setting Th,j = Tout

hj
and letting whj → ∞.

5 The decision to assume a constant hot stream temperature and whi,j → ∞ means
hat the variables Tout

h1,1
, Tout

h2,1
, Tout

h3,1
, Tout

h1,2
, wh1,1, wh2,1, wh3,1, wh1,2 do not need to be

liminated.
(A.10)

Just as in the case with Mj = 2, the term involving the price for
the single heat exchanger on the second line is Te

J,2 = p1,2�2
1,2/�h1,2.

The Economic Jäschke Temperature for a general line j with
Mj = 3 heat exchangers thus becomes

Te
J,j

= p1,j

�2
1,j

�h1,j
+ p2,j

(�2,j − �1,j)(�2,j + �1,j −
�2

1,j

�h1,j
)

�h2,j − �1,j

+ p3,j

(�3,j − �2,j)(�3,j + �2,j − [(�2,j − �1,j)(�2,j + �1,j −
�2

1,j

�h1,j
)]/(�h2,j − �1,j))

�h3,j − �2,j
.

(A.13)

Although this expression was derived under the assumption of
a constant hot stream temperature Thi,j = Tout

hi,j
, we  conjecture that

it is true for the case with a finite heat capacity (non-constant hot
streams).

A.4. Conjecture for the general case (M ≥ 4)

Unfortunately it was  computationally not feasible to perform
the elimination for the case with Mj > 3. From the recurring pattern,
that coefficients of the previous prices appear in a fixed structure in
the coefficients of the next price, we conjecture the general formula
for the case with more than three heat exchangers on a line as:

Te
J,j =

Mj∑
i=1

pi,jai,j (A.14)

where the ai,j is defined as

ai,j = (�i,j − �i−1,j)[�i,j + �i−1,j − ai−1,j]
�hi,j − �i−1,j

(A.15)
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

(A.12)

dx.doi.org/10.1016/j.compchemeng.2014.03.020


ARTICLE IN PRESSG Model
CACE-4933; No. of Pages 15

14 J. Jäschke, S. Skogestad / Computers and Chemical Engineering xxx (2014) xxx–xxx

Table B.6
Stream and price data for validation case study, M1 = 4, M2 = 1.

Variable Value Unit Description

w0 100 kW/◦C Heat capacity cold stream
wh1,1 50 kW/◦C Heat capacity hot stream 11
wh2,1 30 kW/◦C Heat capacity hot stream 21
wh3,1 15 kW/◦C Heat capacity hot stream 31
wh4,1 25 kW/◦C Heat capacity hot stream 41
wh1,2 70 kW/◦C Heat capacity hot stream 12
T0 130 ◦C Cold stream temperature
Th1,1 190 ◦C Hot stream 11 temperature
Th2,1 203 ◦C Hot stream 21 temperature
Th3,1 220 ◦C Hot stream 31 temperature
Th4,1 235 ◦C Hot stream 41 temperature
Th1,2 225 ◦C Hot stream 12 temperature
UA1,1 5 kW/◦C Heat transfer coefficient times area of Exchanger 11
UA2,1 7 kW/◦C Heat transfer coefficient times area of Exchanger 21
UA3,1 10 kW/◦C Heat transfer coefficient times area of Exchanger 31
UA4,1 12 kW/◦C Heat transfer coefficient times area of Exchanger 41
UA1,2 11 kW/◦C Heat transfer coefficient times area of Exchanger 12
p1,1 1 USD/kW Price for using heat from stream 11
p2,1 1.2 USD/kW Price for using heat from stream 21
p3,1 1.3 USD/kW Price for using heat from stream 31
p4,1 1.5 USD/kW Price for using heat from stream 41
p1,2 1.5 USD/kW Price for using heat from stream 12

Table B.7
Results for validation case study, M1 = 4, M2 = 1

Optimized Equal Jäschke Temp.

Cost J −3.9388 −3.9388
End Temp. Tend 158.7738 158.7741
Split u = F1 0.7141 0.7152
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ppendix B. Numerical validation of the case with more
han 3 exchangers on a line (M1 = 4, M2 = 1)

In this section we give some numerical evidence that the gen-
ral formula for the Jäschke Temperature is true for Mj > 3. We
xpect that the results when controlling the Jäschke Temperatures
o equal values, will be the same as when we optimize a model
hich uses the arithmetic mean temperature as driving force. This
ill be the case when, as we conjecture, the controlled variable is

quivalent to the gradient. Consider the heat exchanger network
iven in Fig. B.14, with the corresponding stream and price data
iven in Table B.6. The controlled variable is

 = p1,1

�2
h1,1

�h1,1
+ p2,1

(�2,1 − �1,1)

(
�2,1 + �1,1 − �2

1,1
�h1,1

)
�h2,1 − �1,1

+ p3,1

(�3,1 −

+ p4,1

(�4,1 − �3,1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�4,1 + �3,1 −

(�3,1−�2,1)

⎛
⎜⎜⎝�3,1+�2,1−

(�2,1−�1,1)

(
�

�h3,1−�2,1

� − �
Please cite this article in press as: Jäschke J, Skogestad S. Optimal opera
ture measurements are required. Computers and Chemical Engineerin

h4,1 3,1

The values from optimizing the split with fmincon (Matlab) and
rom using our approach are compared in Table B.7.
)

⎛
⎜⎜⎝�3,1 + �2,1 −

(�2,1−�1,1)

(
�2,1+�1,1−

�2
1,1

�h1,1

)
�h3,1−�2,1

⎞
⎟⎟⎠

�h3,1 − �2,1

�1,1−
�2
h1,1

�h1,1

)
1,1

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− p1,2
�2

1,2 (B.1)

Fig. A.13. Heat exchanger network with 3 heat exchangers on the first line and one
exchanger on the second line.

The cost function for the optimized case and the case using
the Jäschke Temperature approach give the same values of the
cost function. However, the end temperatures are not exactly
tion of heat exchanger networks with stream split: Only tempera-
g (2014), http://dx.doi.org/10.1016/j.compchemeng.2014.03.020

h1,2

the same. The reasons for this discrepancy are the flatness of
the optimum and numerical round-off errors, which occur due

dx.doi.org/10.1016/j.compchemeng.2014.03.020
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Fig. B.14. Heat exchanger network with M1 = 4 and M2 = 1.

o the temperature difference terms in the controlled variable.
n conclusion, the numerical results for this case study strongly
uggest that the conjecture is true.
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