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The paper includes the following contributions:

• We present new PIDF and PI tuning rules for anti-slug control at offshore oilfields.

• We propose to identify a second-order unstable model from a closed-loop step test.

• Model identification and tuning rules are tested experimentally.

• Agreement between identified and mechanistic models is surprisingly good.

• Performance and robustness of PIDF controller is comparable with H∞ controllers.
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Abstract

A anti-slug control requires operation around an open-loop unstable operating point. One solution

is to design a robust controller based on a mechanistic model. An alternative and more robust

approach is to identify an unstable model of the system based on input-output data. We used a

closed-loop step test to identify an unstable linear model. From this, we obtained a second order

IMC (Internal Model Control) controller that can be implemented as a PIDF controller. From the

asymptotes of the proposed IMC controller, we also derive a simple tuning for PI-controller. Next,

we considered two types of robust H∞ controller (mixed-sensitivity and loop-shaping). The pro-

posed model identification and control solutions were verified experimentally on two different test

rigs. We found that the robustness and performance of the IMC (PIDF) controller is comparable

with the H∞ controllers. However, the prosed IMC (PIDF) controller is easier to tune compared

to H∞ control.
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1. Introduction

Severe slugging flow regimes usually occur in pipeline-riser systems that transport oil and gas

mixture from the seabed to the surface (Yocum (1973)). Such flow regimes, also referred to as

“riser slugging”, are characterised by severe flow and pressure oscillations. Slugging problems have

also been observed in gas-lifted oil wells where two types of instabilities, casing heading and density5

wave instability, have been reported (e.g. Hu and Golan (2003)). See Aamo et al. (2005) for more

references on gas-lift instability.
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Figure 1: Preventing slug flow by control of riser base pressure (MV = Z, CV = Prb)

Slugging has been recognised as a serious problem in offshore oilfields, because the irregular

flow caused by slugging can cause serious operational problems for the downstream surface facilities

(e.g. overflow of inlet separators). Therefore, effective ways to handle or remove riser slugging are10

needed, and many efforts have been made in order to prevent such occurrences (Courbot (1996),

Havre et al. (2000)). The conventional solution is to reduce the opening of the top-side choke valve

(choking), but this may reduce the production rate especially for fields where the reservoir pressure

is relatively low. Therefore, a solution that guarantees stable flow together with the maximum

possible production rate is desirable.15

Fortunately, automatic feedback control has been shown to be an effective strategy to eliminate

the slugging problem (Havre et al. (2000), Godhavn et al. (2005)). As shown in Figure 1, the

top-side choke valve is usually used as the manipulated variable to regulate (control) the riser base

pressure (Prb) at a given pressure set-point (Pset). Such a system is referred to as ‘anti-slug control’

and it aims at stabilising the flow in the pipeline at operating conditions that, without control,20

would lead to riser slugging.

However, existing anti-slug control systems are not robust and tend to become unstable after

some time, because of inflow disturbances or plant changes. The main objective of our research is to

design robust anti-slug control systems. The nonlinearity of the system is one problem for a linear

controller, because the gain of the system changes drastically at different operating conditions. In25

addition, the effective time delay is another problematic factor for stabilization.

One solution is to use nonlinear model-based controllers to counteract the nonlinearity (e.g.
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Di Meglio et al. (2010)). However, we have found that these solutions are less robust against time

delays or plant/model mismatch (Jahanshahi and Skogestad (2013b)).

An alternative approach is to identify an unstable model of the system, for example, using a

closed-loop step test. We use the identified model for an IMC (Internal Model Control) design,

which in our case can be realized as a PIDF controller. We define a PIDF controller as

KPIDF (s) = Kc

(

1 +
1

sTi

+
Tds

Tfs+ 1

)

(1)

where Kp is the proportional gain, Ti is the integral time, Td is the derivative time and Tf is the30

time constant of the derivative action filter. We differentiate this from a PID controller (with a

filter), because the low-pass filter a crucial part of the controller for our application, not just to

reduce the noise effect. That is we cannot set Tf to a small value and obtain the same or better

performance.

As the simpler alternative solution, we consider PI-control, which is the preferred choice in the35

industry. However, appropriate settings are required for robustness, and we obtain the PI-controller

settings from the asymptotes of the proposed IMC controller.

Finally, we consider two different robust H∞ controllers. First, we use an H∞ mixed-sensitivity

design which minimizes σ(S) for performance, σ(T ) for robustness and low sensitivity to noise, and

σ(KS) to penalize large inputs. Next, we use H∞ loop-shaping design where we specify an initial40

controller (plant loop shape), and apply a loop-shaping procedure that improves the robustness by

maximizing the stability margin (Skogestad and Postlethwaite (2005)). The PIDF controller was

used to form the initial loop shape. The results provided in this paper have been partially presented

by Jahanshahi and Skogestad (2013a), and Jahanshahi et al. (2014).

This paper is organized as follows. Section 2 describes the pipeline-riser system. The closed-loop45

model identification is introduced in Section 3, the new PIDF tuning is presented in Section 4, and

the simple PI-tuning is introduced in Section 5. Mixed-sensitivity and loop-shaping designs are

presented in Section 6 and Section 7, respectively. Small-scale and Medium-scale experiments are

presented in Section 8 and Section 9. Finally, we summarize the main conclusions and remarks in

Section 10 and Section 11.50

3



wg ,inwl,in wPs
' Lr

Prt Z
PrbwgwlPin

Figure 2: Schematic presentation of pipeline-riser system

2. Systems description

Figure 2 shows a schematic presentation of the system. The inflow rates of gas and liquid to

the system, wg,in and wl,in, are assumed to be independent disturbances and the top-side choke

valve opening (0 < Z < 100%) is the manipulated variable. A fourth-order dynamic model for this

system was presented by Jahanshahi and Skogestad (2011). The state variables of this model are55

as:

• mgp: mass of gas in pipeline [kg]

• mlp: mass of liquid in pipeline [kg]

• mgr: mass of gas in riser [kg]

• mlr: mass of liquid in riser [kg]60

The four state equations of the model are

ṁgp = wg,in − wg (2)

ṁlp = wl,in − wl (3)

ṁgr = wg − αw (4)

ṁlr = wl − (1− α)w (5)

The flow rates of gas and liquid from the pipeline to the riser, wg and wl, are determined by virtual

valve equations from the pressure drop across the riser-base. The outlet mixture flow rate, w, is

determined by the relative opening (Z [%]) of the top-side choke valve. The flow rates mentioned
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Figure 3: Block diagram for Hammerstein model

above and the gas mass fraction, α, in the equations (2)-(5) are calculated by additional model

equations given by Jahanshahi and Skogestad (2011).65

However, Jahanshahi and Skogestad (2013a) found that a second-order linear model with two

unstable poles and one stable zero is enough for the control design purposes. Such a model can be

identified by a closed-loop step test, and this method is explained in the following.

3. Model identification

To include nonlinear effects, we use a Hammerstein model structure (Figure 3) to describe70

the desired unstable operating point (flow regime). The Hammerstein model consists of a series

connection of a static nonlinearity (gain K) and a linear time-invariant dynamic system, G′(s).

For identification of the unstable dynamics, we need to assume a structure. We first considered

a simple unstable first-order plus delay model:

G(s) =
Ke−θs

τs− 1
=

be−θs

s− a
(6)

where a > 0 and K = b/a represents the static nonlinearity. If we control this system with a

proportional controller with gain Kc0 (Figure 4), the closed-loop transfer function from the set-

point (ys) to the output (y) becomes

y(s)

ys(s)
=

Kc0G(s)

1 +Kc0G(s)
=

Kc0be
−θs

s− a+Kc0be−θs
. (7)

In order to get a stable closed-loop system, we need Kc0b > a. The steady-state gain of the

closed-loop transfer function is always larger than 1,

∆y∞
∆ys

=
Kc0b

Kc0b− a
> 1. (8)
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However, the closed-loop experimental step response (see Figure 5) shows that the closed-loop

steady-state gain is smaller than one. Therefore, the model form in (6) is not correct.

To get the correct model form, we linearize the four-state mechanistic model in Section 2 around

the desired unstable operating point, and we get a fourth-order linear model in the form

G(s) =
θ1(s+ θ2)(s+ θ3)

(s2 − θ4s+ θ5)(s2 + θ6s+ θ7)
. (9)

This model contains two unstable poles, two stable poles and two zeros. Seven parameters (θi)

must be estimated to identify this model. However, if we look at the Hankel Singular Values of

the fourth-order model (Figure 6), we find that the stable part of the system has little dynamic

contribution. This suggests that a model with two unstable poles is sufficient for control design.

Using model truncation (square root method), we obtained a reduced-order model in the form

G(s) =
b1s+ b0

s2 − a1s+ a0
, (10)

where a0 > 0 and a1 > 0. The model has two unstable poles and four parameters, b1, b0, a1 and

a0, need to be estimated. If we control the unstable process in (10) using a proportional controller

with gain Kc0, the closed-loop transfer function from set-point (ys) to output (y) becomes

y(s)

ys(s)
=

Kc0(b1s+ b0)

s2 + (−a1 +Kc0b1)s+ (a0 +Kc0b0)
. (11)

This can be rewritten to the model used by Yuwana and Seborg (1982):

y(s)

ys(s)
=

K2(1 + τzs)

τ2s2 + 2ζτs+ 1
, (12)

where K2 must be less than one as found experimentally. To estimate the four parameters (K2, τz ,75

τ and ζ) in (12), we use a very simple approach where we read six key parameters (∆yp, ∆yu, ∆y∞,

∆ys, tp and tu) from the experimental closed-loop response (see Figure 5). Having the closed-loop

stable model in (12), we can back-calculate the parameters of the open-loop unstable model in (10).

Details are given in Appendix A.

4. New PIDF tuning based on IMC design80

4.1. IMC design for unstable systems

The Internal Model Control (IMC) design procedure is summarized by Morari and Zafiriou

(1989). The block diagram of the IMC structure is shown in Figure 7. Here, G(s) is the nominal
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model which in general has some mismatch with the real plant Gp(s). Q̃(s) is the inverse of the

minimum phase part of G(s) and f(s) is a low-pass filter for robustness of the closed-loop system.85

The IMC configuration in Figure 7 cannot be used directly for unstable systems; instead we use

the conventional feedback structure with the stabilizing controller

C(s) =
Q̃(s)f(s)

1−G(s)Q̃(s)f(s)
. (13)

For internal stability, Q̃f and (1 −GQ̃f) have to be stable. We use the identified model with two

unstable poles and one stable zero in (10) as the plant model:

G(s) =
b̂1s+ b̂0

s2 − â1s+ â0
=

k′(s+ ϕ)

(s− π1)(s− π2)
(14)

and we get

Q̃(s) =
(1/k′)(s− π1)(s− π2)

s+ ϕ
(15)

We design the filter f(s) as explained by Morari and Zafiriou (1989):

k = number of RHP poles + 1 = 3

m = max(number of zeros of Q̃(s) - number of pole of Q̃(s) ,1) = 1 (to make Q = Q̃f proper)

n = m + k -1 = 3 (filter order)

With n = 3, the filter is in the following from:

f(s) =
α2s

2 + α1s+ α0

(λs+ 1)3
, (16)

where λ is the adjustable closed-loop time-constant. We choose α0 = 1 to get integral action and

the coefficients α1 and α2 are calculated by solving the following system of linear equations:





π1
2 π1 1

π2
2 π2 1















α2

α1

α0











=





(λπ1 + 1)
3

(λπ2 + 1)3



 (17)

Finally, from (13) the feedback version of the IMC controller becomes

C(s) =
[ 1

k′λ3 ](α2s
2 + α1s+ 1)

s(s+ ϕ)
. (18)

90

8



Plant 
ye

+ _
( )f s ( )Q s

u

( )G s _
+

Figure 7: Block diagram of Internal Model Control system

4.2. PIDF implementation of IMC controller

Here, we obtain PIDF settings from the proposed IMC controller. The IMC controller in (18) is

a second order transfer function which can be written in form of a PID controller with a low-pass

filter.

KPIDF (s) = Kc

(

1 +
1

sTi

+
Tds

Tfs+ 1

)

(19)

where

Tf = 1/ϕ (20)

Ti = α1 − Tf (21)

Kc =
TiTf

k′λ3
(22)

Td =
α2

Ti

− Tf (23)

For the controller work in practice, we require that Kc < 0 and Td > 0; and we must choose λ such

that these two conditions are satisfied. This was observed in the experiments.

5. PI-controller tuning

Next, we consider PI control. There are many approaches to get tuning values for PI control.

For example, relay-feedback auto-tuning has been used by Ogazi et al. (2009) for PI tuning based

on a first-order unstable model. Here, we obtain the PI tuning based on the IMC controller from

the previous Section. We consider a PI controller in the following form

KPI(s) = Kc

(

1 +
1

τIs

)

, (24)

The PIDF controller in (19) can be approximated by a PI-controller by considering the high- and

low-frequency asymptotes of C(s) in (18).

Kc = lim
s→∞

C(s) =
α2

k′λ3
(25)
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τI =
Kc

lim
s→0

sC(s)
= α2ϕ (26)

6. H∞ mixed-sensitivity design95

We consider an H∞ problem where we want to bound σ(S) for performance, σ(T ) for robustness

and low sensitivity to noise, and σ(KS) to penalize large inputs. These requirements may be

combined into a stacked H∞ problem (Skogestad and Postlethwaite (2005)).

min
K

‖N(K)‖
∞

, N
∆
=











WuKS

WTT

WPS











(27)

where Wu, WT and WP determine the desired shapes of KS, T and S, respectively. Typically, W−1

P

is chosen to be small at low frequencies to achieve good disturbance attenuation (i.e., performance),

and W−1

T is chosen to be small outside the control bandwidth, which helps to ensure good stability

margin (i.e., robustness). Wu is often chosen as a constant. The solution to this optimization

problem gives a stabilizing controllerK that satisfies (Doyle et al. (1989), Glover and Doyle (1988)):

σ(KS(jω)) ≤ γσ(W−1
u (jω))

σ(T (jω)) ≤ γσ(W−1

T (jω))

σ(S(jω)) ≤ γσ(W−1

P (jω))

(28)

y2 is the particular output for feedback control in the generalized plant in Figure 8. The value of

γ in equation (28) should be as small as possible for good controllability. However, it depends on

the design specifications Wu, WT and WP .

7. H∞ loop-shaping design

We consider the stabilization of the plant G which has a normalized left coprime factorization

G = M−1N (29)

where we have dropped the subscripts from M and N for simplicity. A perturbed plant model Gp

can then be written as

Gp = (M +∆M )−1(N +∆N ) (30)
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where ∆M and ∆N are stable unknown transfer functions which represent the uncertainty in the

nominal plant model G. The objective of robust stabilization is to stabilize not only the nominal

model G, but a family of perturbed plants defined by

Gp =
{

(M +∆M )−1(N +∆N ) : ‖[∆N ∆M ]‖∞ < ǫ
}

(31)

where ǫ > 0 is then the stability margin (Skogestad and Postlethwaite (2005)). To maximize this100

stability margin is the problem of robust stabilization of normalized coprime factor plant description

as introduced and solved by Glover and McFarlane (1989).

For the perturbed feedback system of Figure 9, the stability property is robust if and only if the

nominal feedback system is stable and

γK ,

∥

∥

∥

∥

∥

∥





K

I



 (I −GK)−1M−1

∥

∥

∥

∥

∥

∥

∞

≤
1

ǫ
(32)

Notice that γK is the H∞ norm from φ to





u

y



 and (I −GK)−1 is the sensivity function for this

positive feedback arragmenet. A samll γK is corresponding to a large stability margin.

8. Small-scale experiments105

8.1. Exprimental setup

The experiments were performed on a small-scale laboratory rig for anti-slug control at the

Chemical Engineering Department of NTNU. Figure 10 shows a schematic presentation of the

laboratory setup. The pipeline and the riser are made from flexible pipes with 2 cm inner diameter.

The length of the pipeline is 4 m, and it is inclined with a 15◦ angle. The height of the riser is 3110

m. A buffer tank is used to simulate the effect of a long pipe with the same volume, such that the

total resulting length of pipe would be about 70 m.

The topside choke valve opening Z is used as the input for control (MV = Z). The separator

pressure after the topside choke valve is nominally constant at atmospheric pressure. The feed into

the pipeline is assumed to be at constant flow rates, 4 litre/min of water and 4.5 litre/min of air.115

With these boundary conditions, the critical valve opening where the system switches from stable

(non-slug) to oscillatory (slug) flow is at Z∗ = 15% for the top-side valve. The bifurcation diagrams

are shown in Figure 11.
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Figure 10: Small-scale experimental rig

The desired steady-state (dashed middle line) at slugging conditions (Z > 15%) is unstable, but

it can be stabilized using feedback control. The slope of the steady-state line (in the middle) is the120

static gain of the system, k = ∂y/∂u = ∂Pin/∂Z. As the valve opening increase this slope decreases,

and the gain finally approaches zero. This makes control of the system with large valve openings

very difficult. On the other hand, large valve openings are desirable because this minimizes the

pressure drop over the valve and increases the production rate.

The controlled output in experiments is the inlet pressure of the pipeline (CV = Pin). As

mentioned above stabilizing the system at large valve openings (low pressure set-points) is difficult

because of the small gain. We decrease the controller set-point to see if the controller can stabilize

the system with lower set-point. we use the same set of descending pressure set-points in all

experiments. The controllers are tuned (designed) for a valve opening of Z = 30%, and controllers

with good gain margin can stabilize the system with larger valve openings (lower set-points). To

have an impartial comparison for robustness of the controllers, we tune the controllers such that

all of them result in the same input usage (Mks = 50). Here, Mks is peak of KS and for the PIDF

controller in (19) it becomes

Mks = −Kc(Td/Tf + 1). (33)

13
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8.2. Model identification125

Valve opening of Z = 20%

The flow regime switches to slugging flow at a valve opening of Z = 15%, hence it is unstable

at Z = 20%. We closed the loop with a proportional controller with Kc0 = −10, and changed the

set-point by 2 kPa (Figure 12). Since the response is noisy, a low-pass filter was used to reduce

the noise effect. Then, we use the method described in Section 3 to identify the closed-loop stable

transfer function:
y(s)

ys(s)
=

3.13s+ 0.81

20.62s2 + 2.20s+ 1
(34)

The identified closed-loop transfer function is shown by the red line in Figure 12. From this, we

back-calculate to an open-loop unstable process model:

G(s) =
−0.015(s+ 0.26)

s2 − 0.045s+ 0.0093
(35)

If we linearize the four-state mechanistic model given in (2)-(5) at the operating point Z = 20%,

we get the following fourth-order model.

G(s) =
−0.28(s+ 20.21)(s+ 0.27)

(s2 − 0.046s+ 0.013)(s2 + 21.68s+ 256.1)
(36)

The frequency response of the identified model at the valve opening Z = 20% (35) is compared to

the mechanistic model (36) in Figure 13. This agreement is surprisingly good. The two unstable

poles of the mechanistic model are p = 0.0233 ± 0.1096i, and the unstable poles of the identified

model are p = 0.0227± 0.0937i.130
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Figure 12: Experimental closed-loop step test compared with identified model and mechanistic

model (Z = 20%)
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model (Z = 30%)

Valve opening of Z = 30%

We repeated the previous experiment at Z = 30% valve opening. We closed the loop using a

proportional controller with Kc0 = −20 and changed the set-point by 2 kPa (Figure 14). Then, we

use the method explained in Section 3 to identify the closed-loop stable transfer function:

y(s)

ys(s)
=

2.634s+ 0.6635

13.39s2 + 2.097s+ 1
(37)

The identified closed-loop transfer function is shown by the red line in Figure 14. Then, we back-

calculate to an open-loop unstable system:

G(s) =
−0.0098(s+ 0.25)

s2 − 0.04s+ 0.025
(38)

The four-state mechanistic model given in (2)-(5), linearized at the operating point Z = 30%,

results in the following fourth-order model.

G(s) =
−0.18(s+ 20.18)(s+ 0.27)

(s2 − 0.17s+ 0.023)(s2 + 26.57s+ 303.4)
(39)

The frequency response of the identified model at the valve opening Z = 30% (38) is compared to

the mechanistic model (39) in Figure 15. The agreement is very good also in this case. The two

unstable poles of the mechanistic model are p = 0.0860±0.1235i, and the two poles of the identified

model are p = 0.0200± 0.1572i.135

16



10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

M
ag

 [−
]

 

 

Mechanistic model
Identified model

10
−2

10
−1

10
0

10
1

−200

−150

−100

−50

0

50

100

P
ha

se
 [d

eg
]

ω [Rad/s]

 

 

Mechanistic model
Identified model

Figure 15: Comparison of identified and mechanistic models in frequency domain (Z = 30%)

8.3. IMC (PIDF)

We used the identified model in (38) for an IMC design. We chose the filter time constant

λ = 6.666 s to get Mks = 50. The resulting IMC controller becomes

C(s) =
−50(s2 + 0.0867s+ 0.0069)

s(s+ 0.25)
. (40)

Note that the controller has complex zeros. The corresponding PIDF setting values are Kc =

−11.84, Ti = 8.59 s, Td = 12.89 s and Tf = 4 s. Figure 16 shows performance of the PIDF

controller in the experiment. It was stable with 2 sec added time delay.

8.4. PI tuning140

Next, we obtain the PI tuning from the IMC controller (40) as explained in Section 5. The PI

tuning parameters are Kc = −50.00 and τI = 36.30 s. Figure 17 shows result of experiment using

the PI controller. This controller was stable with 1 sec added time delay.
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Figure 16: Experimental result of PIDF with Kc = −11.84, Ti = 8.59 s, Td = 12.89 s and Tf = 4 s
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Figure 17: Experimental result of PI controller with Kc = −50.00, τI = 36.30 s
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Figure 18: Experimental result of loop-shaping H∞

8.5. H∞ loop-shaping

We used the IMC controller (40) to obtain the initially shaped plant for the H∞ loop-shaping

design. The following fifth-order controller was resulted.

C(s) =
−188.49(s2 + 0.02s+ 0.005)(s2 + 0.087s+ 0.0069)

s(s+ 0.25)(s+ 3.76)(s2 + 0.082s+ 0.0067)
(41)

The experimental result of the controller in (41) is shown in Figure 18.145

8.6. H∞ mixed-sensitivity

We design the H∞ mixed-sensitivity controller with the following design specifications:

WP (s) =
s/Ms + ωB

s+ ωBA
, (42)

WT (s) =
s/(10ωB) + 1

0.01s+ 1
, (43)

Wu = 0.0135, (44)
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Figure 19: Experimental result of mixed-sensitivity H∞

where Ms = 1, ωB = 0.14 and A = 0.01. We chose these design specifications so that we achieve

Mks = 50 and good robustness properties. We get the following fourth-order stabilizing controller.

C(s) =
−9.08×106(s+ 100)(s2 + 0.0137s+ 0.011)

(s+ 1.8× 105)(s+ 112.5)(s+ 0.231)(s+ 0.0014)
(45)

We achieved γ = 1.21 with this controller; the experimental performance is shown in Figure 19.

9. Medium-scale experiments

9.1. Experimental setup

The tuning procedures were validated also on a medium-scale test rig. This test rig is an S-riser150

with a height of about 7 m. Other dimensions of this experimental set-up are shown in Figure 20.

This riser is made from stainless steel pipes with inner diameter of 50 mm. Similar to the small

scale setup, an air buffer thank is installed at inlet to emulate the effect of a long pipeline with the

same volume. The volume of the buffer tank is 200 litres; this is equivalent 101.86 m of pipe. The

inlet flow rates to the system are 0.0024 kg/sec air and 0.3927 kg/sec water. The outlet separator155

20



7.04 2.83 2.63 1.4113.96
4.01 2.70 6.43

Figure 20: Experimental setup for medium-scale S-riser rig, all dimensions in meter

0 100 200 300 400 500 600
145

150

155

160

165

P
in

 [
kp

a]

t [sec]

 

 

data set−point filtered identified

Figure 21: Closed-loop step test on medium-scale rig

pressure is constant at the atmospheric pressure. With these boundary conditions, the system

switches from non-slug to slugging flow conditions at Z∗ = 16% opening of the topside valve.

9.2. IMC (PIDF) controller at Z=18%

Figure 21 shows a closed-loop step test performed on the S-riser. A proportional controller with

the gain Kc0 = −250 was used for the test. The pressure set-point before the step test was 155

kPa which results in a valve opening of Z = 18% (region of unstable open-loop operation). We

identified an unstable model as the following:

G(s) =
−5.6× 10−4(s+ 0.082)

s2 − 0.069s+ 0.0040
(46)
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Figure 22: Experimental result of PIDF controller with Kc = −3.47, Ti = 2.33 s, Td = 1.19× 104 s

and Tf = 12.25 s on medium-scale rig

By choosing λ = 24.5, we designed the following IMC controller:

C(s) =
−340.75(s2 + 0.0052s+ 0.00036)

s(s + 0.0816)
(47)

The corresponding PIDF tuning are Kc = −3.47, Ti = 2.33 s, Td = 1.19× 104 s and Tf = 12.25 s.

Experimental result of control using this PIDF tuning is shown in Figure 22. In this experiment, we160

decreased the set-point until the system becomes unstable. This controller was able to control the

system up to a Z = 32% valve opening, which is two time of the critical valve opening Z∗ = 16%.

9.3. PI-controller tuning at Z=18%

The PI tuning obtained from the IMC controller in (47) are Kc = −340.75 and τI = 229.23 s.

The experimental result is given in Figure 23 where system was stabilized up to Z = 24%.165

10. Discussion

Performance and robustness of the different controllers used in the experiments are compared in

Table 1. We use Integral Square Error (ISE) as a measure of the performance, and the robustness

22



0 5 10 15 20 25 30
120

140

160

180

200

220

open−loop stable

open−loop unstable

inlet pressure (controlled variable)

P
in

 [
kp

a]

t [min]

0 5 10 15 20 25 30
0

20

40

60

80

Controller Off Controller On

open−loop stable

open−loop unstable

Z
m
 [

%
]

t [min]

actual valve position (manipulated variable)

Figure 23: Experimental result of PI controller with Kc = −340.75 and τI = 229.23 s on medium-

scale rig

is evaluated based on peak of T , gain-margin and delay-margin. The PIDF controller shows the

best performance, and the PI controller is the second best controller for performance. The H∞170

mixed-sensitivity controller shows a large value for ISE, because for the lower set-points it has

some oscillations (see Figure 19). This is related to the poor gain-margin of the controller; the H∞

mixed-sensitivity has the largest (worst) value for the gain-margin. The H∞ loop-shaping controller

has the best gain-margin, and the smallest value for the peak of T . On the other hand, The H∞

mixed-sensitivity has the best delay-margin, but the worst gain margin as mentioned.175

In summary, considering combined performance and robustness measures, the H∞ loop-shaping

controller is the best, and the PIDF controller is the next one in our results.

11. Conclusion

In this paper we developed and compared feedback controllers for unstable multiphase flow in

risers. The study included simple PIDF tuning rules, PI-tuning and two H∞ controllers. The180

comparison was based on experimental tests carried out in two prototype flow systems.
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Table 1: Comparison of different controllers in experiments

Controller ISE ‖S‖∞ ‖T ‖∞ ‖KS‖∞ GM DM

IMC PIDF 171.45 1.00 1.19 50 0.11 2.49

IMC PI 178.03 1.03 1.38 51.64 0.10 1.80

H∞ Loop Shaping 184.98 1.10 1.12 50 0.10 2.48

H∞ Mixed Sensitivity 330.25 1.00 1.18 50 0.15 3.00

We identified a second-order unstable model for the system, and compared the identified model

with a mechanistic model in time domain and the frequency domain. The identified model for a

valve opening of 20% is very close to the mechanistic model. Also, agreement between the models

for a valve opening of 30% was good.185

We showed that for this case performance and robustness of a PIDF controller is close to H∞

controllers (see Table 1). Slightly better results can be achieved by the H∞ loop-shaping approach,

where we employ the PIDF controller to obtain the initially shaped plant. However, this method

results in higher order controllers which may not be desired by the practitioner.

The H∞ mixed-sensitivity design is more involved as it requires tuning of many weights simul-190

taneously. However, we could not achieve better results than that of a PIDF controller for this case

and further investigation is needed.

We tested the PIDF and PI controllers on a medium-scale flow system which shows applicability

of the proposed tuning rules on large systems. Testing the tuning rules in real applications is

recommended.195

We have used three PIDF controllers in a gain-scheduling scheme to counteract the nonlinearity

over wide operation range (from 20% to 60% valve opening). Compared to nonlinear controllers

based on the mechanistic model, the gain-scheduling solution is more robust, and it does not need

the mechanistic model (Jahanshahi and Skogestad (2013b)).
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Appendix A. Model Identification Calculations250

Stable closed-loop transfer function:

y(s)

ys(s)
=

K2(1 + τzs)

τ2s2 + 2ζτs+ 1
(A.1)
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The Laplace inverse (time-domain) of the transfer function in (A.1) is given in Yuwana and Seborg

(1982) as

y(t) = ∆ysK2 [1 +D exp(−ζt/τ) sin(Et+ φ)] , (A.2)

where

D =

[

1− 2ζτz
τ

+
(

τz
τ

)2
]

1

2

√

1− ζ2
(A.3)

E =

√

1− ζ2

τ
(A.4)

φ = tan−1

[

τ
√

1− ζ2

ζτ − τz

]

(A.5)

By differentiating (A.2) with respect to time and setting the derivative equation to zero, one gets

time of the first peak:

tp =
tan−1

(

1−ζ2

ζ

)

+ π − φ
√

1− ζ2/τ
(A.6)

And the time between the first peak (overshoot) and the undershoot:

tu = πτ/
√

1− ζ2 (A.7)

The damping ratio ζ can be estimated as

ζ̂ =
− ln v

√

π2 + (ln v)
2

(A.8)

where

v =
∆y∞ −∆yu
∆yp −∆y∞

(A.9)

Then, using equation (A.7) we get

τ̂ =
tu

√

1− ζ̂2

π
. (A.10)

The steady-state gain of the closed-loop system is estimated as

K̂2 =
∆y∞
∆ys

. (A.11)

We use time of the peak tp and (A.6) to get an estimate of φ :

φ̂ = tan−1

[

1− ζ̂2

ζ̂

]

−
tp

√

1− ζ̂2

τ̂
(A.12)
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From (A.4), we get

Ê =

√

1− ζ̂2

τ̂
(A.13)

The overshoot is defined as

D0 =
∆yp −∆y∞

∆y∞
. (A.14)

By evaluating (A.2) at time of peak tp we get

∆yp = ∆ysK̂2

[

1 + D̂ exp(−ζ̂tp/τ̂) sin(Êtp + φ̂)
]

(A.15)

Combining equation (A.11), (A.14) and (A.15) gives

D̂ =
D0

exp(−ζ̂tp/τ̂) sin(Êtp + φ̂)
. (A.16)

We can estimate the last parameter by solving (A.3):

τ̂z = ξ̂τ̂ +

√

ζ̂2τ̂2 − τ̂2
[

1− D̂2(1− ζ̂2)
]

(A.17)

Then, we back-calculate to parameters of the open-loop unstable model. The steady-state gain of

the open-loop model is

K̂ =
∆y∞

Kc0 |∆ys −∆y∞|
(A.18)

From this, we can estimate the four model parameters in equation (A.5) are

â0 =
1

τ̂2(1 +Kc0K̂p)
(A.19)

b̂0 = K̂pâ0 (A.20)

b̂1 =
K̂2τ̂z
Kc0τ̂2

(A.21)

â1 = −2ζ̂/τ̂ +Kc0b̂1, (A.22)

where â1 > 0 gives an unstable system.
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