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1. INTRODUCTION

Reliable and accurate measurement of product composi-
tions is one of the important issues in distillation col-
umn control. On-line composition measurement devices
are usually expensive and unreliable. In addition, there is
usually a considerable time delay that may be a limitation
to control performance. On the other hand, temperature
measurements are fast, inexpensive and reliable and are
used for distillation column control in industry instead of
composition analyzers.

Commonly, simple linear relationships, ŷ = Hx, are
used to estimate composition (y) based on temperature
measurements (x). Ghadrdan et al. Ghadrdan et al. (2013)
have presented the optimal estimators for different control
applications. They are optimal in the sense that they give
minimum error for the estimation of primary variables at
steady-state in the presence of disturbance and noise.

Using a combination of measurements leads to a better
steady-state estimate (compared to single measurements).
However, dynamically it may give rise to right-half plane
zeros (inverse response behaviour) in the transfer function
from input u to the estimate ŷ (G = HGx), which limit
the closed-loop performance for SISO systems. We have
ŷ = Hx = HGxu (see Figure 1). The appearance of a
RHP zero in the square transfer function HGx(s) from u
to ŷ is common. The measurements (Gx(s)) have different
dynamics, i.e. fast or slow, as they are located at different
sections in the plant. This is noted by Alstad (2005) with
a simple example with two measurements and one input.

ŷ(s) = HGx(s)u(s) = h1g1(s)u(s) + h2g2(s)u(s) (1)

It is assumed that Gx is modeled as a rational transfer

function on the form gi(s) =
ngi

(s)

dgi (s)
, thus the resulting

plant is:

ŷ(s) = (h1g1(s) + h2g2(s)) u(s) =

(
h1
ng1 (s)

dg1 (s)
+ h2

ng2 (s)

dg2 (s)

)
u(s)

=

(
h1ng1 (s)dg2 (s) + h2ng2 (s)dg1 (s)

dg1 (s)dg2 (s)

)
u(s)

(2)

The poles of the resulting plant are identical to the poles
of the two subsystems, while the zeros are changed. For
systems where h1g1 and h2g2 have opposing effects, this
may lead to right-hand plane zeros.

We have studied three approaches to overcome this prob-
lem:

• Cascade Control:
The idea is to close a fast inner loop based on a
single measurement with no RHP-zero and adjust the
setpoint on a time scale which is slower than the RHP-
zero.

• Use of measurements from the same section of the
process:
If the dynamic behavior of the selected measurements
are similar, then it is less likely to get RHP-zero.
However, this gives a larger steady-state error.

• Filters:
Low-pass filters will keep the system optimal at
steady state. The idea is to filter the measurements
before they are combined to give the estimate. The
filtered measurements are ŷ = HHFu

2. MOTIVATING EXAMPLE

We first illustrate the ideas with a simple example. After-
wards, we will give some guidelines for the case study of a
distillation column.

Consider a system with two measurements x and one input
u

Gx =

[
g1
g2

]
=

 1

3s+ 1
1

s+ 1


Assume the estimator matrix H is
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H = [ 2 −1 ]

2.1 No dynamic compensation

The transfer function from u to ŷ is

G = HGx =
2

3s+ 1
− 1

s+ 1
=

1− s
(3s+ 1)(s+ 1)

x
Gx

u(s)
H

Fig. 1. Block diagram of the estimation

The RHP zero in G(s) will limit the achievable closed-loop
performance. Thus, we have introduced an unnecessary
limitation on performance.

3. CASCADE CONTROL

Now we consider if we can avoid the effect of the RHP
zero using cascade control. We assume that we control
the faster measurement x2 ( 1

s+1 ) in an internal loop. The
desired closed-loop time constant is assumed to be τc = 0.1
(time units).

H

d

u
K1

x1
x2s

GxK2 x2

Fig. 2. Block diagram of the estimation with a cascade
loop

Using the SIMC 1 PI-tuning rules (Skogestad, 2003) with
θ = 0, we have

Kc =
1

k

τ1
τc + θ

= 10

τI = min(τ1, 4(τc + θ)) = 0.4

The resulting controller and loop transfer functions be-
come

K1(s) =
Kc

τIs
(τIs+ 1) =

10

0.4s
(0.4s+ 1)

L1(s) = K1(s).g2(s) =
25(0.4s+ 1)

s(s+ 1)
and

x2 =
L1

L1 + 1
x2s =

0.4s+ 1

(0.1283s+ 1)(0.3117s+ 1)
x2s

and with
u = g−12 x2

we can find x1 and then

ŷ = Hx =
(0.4s+ 1)(−s+ 1)

(0.1283s+ 1)(0.3117s+ 1)(3s+ 1)
x2s

1 Skogestad’s IMC

We see that the RHP zero still remains. This is explained
from the following theorem.

Theorem 1. Cascade (inner-loop) control can not move the
zero of HGx

Proof. The expression for the estimated primary variable
is

ŷ = h1x1 + h2x2

where
x1 = g1u

x2 = g2u

Assume we control x2 in an inner cascade loop.

u = K(s)(x1s − x1)

So,

x2 =
K(s)g2

1 +K(s)g2
x2s

x1 =
g1
g2

x2

The transfer function from x2s to ŷ is

ŷ = (h1
g1
g2

+ h2)
Kg2

1 +Kg2
x2s (3)

The term (h1g1 + h2g2), which includes the RHP zero, is
unchanged.

4. SELECTION OF A SUBSET OF MEASUREMENTS

To improve the dynamic controllability, one idea is to
put structural constraints on the measurements. This is
done to reduce the time delay between the MVs to CVs,
and also to have measurements of the same dynamics
to avoid inverse response. Yelchuru and Skogestad (2011)
have studied the optimal solution for measurement combi-
nations with structural constraints. In our simple example,
it means that we need to choose only one of the measure-
ments, which is closer to the corresponding MV. In this
way, better controllability is achieved at the expense of
less accurate estimation.

5. FILTERING

Here we use individual compensators (or filters) on the
measurements as illustrated by the block HF in Figure 3.
The diagonal matrix HF is applied on the measurements
to improve the dynamic behavior. It is required that
HF (0) = I. This means that the steady-state gain should
not change, because it is already optimal. Each of the
filters are simple first-order low-pass or lead-lag, e.g.

HF =

 1

τF1s+ 1
0

0
1

τF1s+ 1


or

HF =

 τF1ns+ 1

τF1ds+ 1
0

0
τF2ns+ 1

τF2ds+ 1


Different filters are used for the case-study in Table 1.
Figure 4 shows the step responses of different filters
introduced. We can make the transfer function from x to
ŷ as fast as we want. From this example, it is seen that
the lead-lag filters are performing better in making the
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Fig. 3. Block diagram of the estimation system including
filter (H)
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Fig. 4. Step response of the transfer function from input
to the primary variable and all alternatives

response fast than the low-pass filters. One can optimize
the filter parameters to get the best performance. In
this particular example, it is not clear what the best
performance means. The transfer function from x to ŷ is
at most second order and does not have any limitations on
control performance.

5.1 Distillation Case-study

We have designed a steady-state estimator H for a multi-
component distillation column based on rigorous model in
UNISIM (Honeywell, 2008). Figure 5 shows the value of
H from each stage in the column for the two estimated
values.

Table 1. Different filters and the final transfer
functions

Filter matrix Transfer function from u to ŷ

HF1 =

 1

s+ 1
0

0
1

3s+ 1

 G1 = HHF1Gx = 1
(3s+1)(s+1)

HF2 =

[
1 0

0
1

3s+ 1

]
G2 = HHF2Gx = 2s+1

(3s+1)(s+1)

HF3 =

[
1 0

0
s+ 1

3s+ 1

]
G3 = HHF3Gx = 1

3s+1

HF4 =

[
3s+ 1

s+ 1
0

0 1

]
G4 = HHF4Gx = 1

s+1
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Fig. 5. Steady-state contribution of temperatures to the
estimates (H), Dashed: top composition estimate,
Solid: bottom composition estimate

Figure 6 shows the open-loop response of the primary
variables and the estimated values to a change in boilup
rate. An inverse response is seen in the estimate of the
top composition. To check why this is happening, the
contribution of the temperatures to the final estimate
is studied. Figures 7-8 show the temperature changes as
each of the degrees of freedom is perturbed, and the
contribution of each of the measurements to the estimate
of the top composition. Figure 8 is actually obtained by
multiplying H to each of the time-series vectors of the
measurements. The perturbation is small enough so that
the results in the negative and positive directions are
similar.
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Fig. 6. Top and bottom estimates with -1% change in
boilup

As a simple trial, by adding first-order filters on the
6th, 16th and 17th stages which show fast dynamics (see
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Fig. 7. Temperature changes in the column with -1%
change in boilup and constant Reflux ratio
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Fig. 8. Contributions to the top composition estimate with
-1% change in boilup and constant Reflux ratio

the first 100 minutes in Figure 8) when boilup flow is
perturbed, we see in Figure 9 that the inverse response is
removed. Note that the numbers on the curves in Figure
8 are the stage numbers.
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Fig. 9. Estimated composition in the top and the filtered
estimate. Filters are on 6th, 16th and 17th measure-
ments

6. OPTIMIZATION OF THE FILTERS

6.1 Low-pass Filters

The filter time constants can be optimized to give the best
performance. The objective function can be defined as

min
HF

‖Gref −HHFGx‖∞ (4)

where Gref is the desired transfer function from input
to the estimate. For monitoring purpose, the best perfor-
mance means the closest response to the actual composi-
tions. So, in this case Gref would be the transfer function
from the inputs to the real primary variables. Figure 10
shows the optimized filtered top estimate together with
the real primary value and the unfiltered estimate which
is obtained from the steady-state calculations. We have
focused on the first 100 min, since we don’t want to let the
steady-state offset value be part of the objective function
value. As it is seen in Figure 10, the filtered estimate
matches perfectly the real primary variable value in the
first 100 minutes and it diverges to get to the steady state
value of the unfiltered estimate (note that these are LP
filters with no change in SS). Table 2 shows the values of
the filter time constants for this optimization.
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Fig. 10. Estimated composition with optimized filters

6.2 Explicit solution for the optimization problem

In this section, we want to solve the optimization problem
by considering it as a model-matching problem and solving
Nehari problem obtained from it. The problem is to
compute an upper bound γ and then compute a Q such
that

‖T1 −T2QT3‖∞ ≤ γ

An optimal Q exists if the ranks of the two matrices
T2(jω) and T3(jω) are constant for all 0 < ω < ∞
(Francis, 1987). Our reason to use this method is shown by
the motivating example. We saw that we can not be sure
about the structure of the filters, i.e. being lead-lag, low-
pass, etc. The following Theorem is obtained from Francis
(1987), based on which an algorithm to find an optimal Q
is proposed (Francis, 1983).

Lemma 2. Let U be an inner matrix and define

E =

[
U∼

I−UU∼

]
Then, ‖EG‖∞ = ‖G‖∞
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Proof. It suffices to show that E∼E = I

Lemma 3. Suppose F and G are matrices with no poles
on imaginary axis with equal number of columns. If

‖
[
F
G

]
‖∞ < γ (5)

then
‖G‖∞ < γ (6)

and
‖FG−1o ‖∞ < 1 (7)

Proof. Proof is given in Francis (1987).

Theorem 4. (i) α = inf {γ : ‖Y‖∞ < γ,dist (R,RH∞) < 1}
(ii) Suppose γ > α, G,X ∈ RH∞

‖R−X‖∞ ≤ 1

X = U0QY−1o
(8)

Then ‖T1 −T2Q‖∞ ≤ γ

Proof. (i) Let

γinf = inf {γ : ‖Y‖∞ < γ,dist (R,RH∞) < 1}
choose ε > 0 and then choose γ such that α + ε > γ > α.
Then there exist Q in RH∞ such that

‖T1 −T2Q‖∞ < γ

From Lemma 2 we have:

‖
[

U∼i
I−UiU

∼
i

]
(T1 −T2Q) ‖∞ ≤ γ (9)

This is equivalent to

‖
[
U∼i T1 −UoQ

Y

]
‖∞ < γ (10)

Table 2. The time constants of the filters from
optimization

Stage no. H for top comp. τF

5 -0.0043 1039.8

6 -0.0013 1338.3

7 0.0012 33.6

8 0.0028 514.1

9 0.0037 1209.1

10 0.0036 55.0

11 0.0029 1211.4

12 0.0018 1589.6

13 0.0004 554.6

14 -0.0010 1976.2

15 -0.0021 909.4

16 -0.0030 1424.3

17 -0.0032 466.6

18 -0.0025 1640.2

19 -0.0006 278.2

20 0.0023 19.8

21 0.0015 8.3

22 0.0005 1577.0

23 -0.0003 484.9

24 -0.0008 1158.8

25 -0.0010 1026.5

26 -0.0009 925.0

27 -0.0005 860.4

28 0.0000 1992.7

29 0.0006 868.7

30 0.0009 1404.7

31 0.0005 831.4

32 -0.0009 477.4

This implies from Lemma 3 that

‖Y‖∞ < γ (11)

‖U∼i T1Y
−1
o −UoQY−1o ‖∞ < 1 (12)

The latter inequality implies

dist
(
R,UoRH∞Y−1o

)
< 1 (13)

Uo is right-invertible in RH∞ and Yo is invertible in RH∞.
So, (14) gives

dist (R,RH∞) < 1 (14)

Lemma 5. For R in RL∞

dist (R,RH∞) = dist (R,H∞) = ‖ΓR‖

Proof. We have

dist (R,RH∞) ≥ dist (R,H∞) = ‖ΓR‖
The latter is the Nehari’s theorem. Choose ε > 0 and set
β := ‖ΓR‖. Then

dist
[
(β + ε)

−1
R,H∞

]
= (β + ε)

−1 ‖ΓR‖

= β/ (β + ε)

< 1

This inequality implies that there exists X in RH∞ such
that

‖ (β + ε)
−1
R−X‖∞ ≤ 1

Thus,

dist (R,RH∞) ≤ β + ε

= dist (R,H∞) + ε

So,

dist (R,RH∞) ≤ dist (R,H∞)

The general algorithm to obtain Q is as follows (Francis,
1987)

Step 1 Compute Y and ‖Y‖∞
Step 2 Find an upper bound α1 for α (‖T1‖∞ is the

simplest choice)
Step 3 Select a trial value for γ in the interval (‖Y‖∞,α1]
Step 4 Compute R and ‖ΓR‖. Then ‖ΓR‖ < 1 iff α < γ.

Change the value of γ correspondingly to meet this
criteria

Step 5 Find a matrix X such that ‖R−X‖∞ ≤ 1.
Step 6 Solve X = UoQY−1o for Q

If R is matrix-valued, the algorithm will be as below. This
is with the assumption of R being strictly proper (if not,
we need to factorize it as R = R1+R2 where R1 is proper),
and ‖ΓR‖ < 1

Step 1 Find a minimal realization of R: R(s) = [A, B, C, 0]
Step 2 Solve the lyapunov equations to find controlla-

bility and observability gramians and set N =
(I− LoLc)

−1

Step 3 Set

L1(s) =
[
A −LcNCT C I

]
L2(s) =

[
A NTB C 0

]
L3(s) =

[
−AT NCT −BT 0

]
L4(s) =

[
−AT NLoB

T BT I
]

Step 4 Select Y in RH∞ with ‖Y‖∞ ≤ 1 (for example
Y = 0) and set X = R− (L1Y + L2) (L3Y + L4)
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In our case, T1 is the transfer function Gref from input
to the primary variables (the top composition estimate
change by boilup flow perturbation), and T2 is the transfer
function GT

x from input to the measurements (a matrix
of 28×1 transfer functions of the temperature change by
boilup flow perturbation). Since we want to apply filter
for every measurement, this means that we have R as a
matrix. The other issue is that since the final values of
the estimates are optimal, the effect of filters should be
nullified at low frequencies. So, a weight function which
is dependant on frequency should be multiplied to T
matrices. The inner-outer factorization of T2 matrix is
possible if D in state-space representation be nonzero. This
is possible if at least one of the transfer functions in T2

has the same degree in numerator and denominator. This
is possible since some of the measurements include delay
which can be interpreted as RHP zero (e−θs = 1− θs).

7. DISCUSSION

Specifying Gref for control purpose is not that easy. When
the system is not only stabilizable but also controllable,
one can make the closed-loop eigenvalues arbitrarily fast
Antsaklis and Michel (1997). We need to know what is the
fastest response we can get. One idea is to specify a first-
order transfer function with the smallest time constant in
the process as the desired transfer function from inputs
to the estimates. From Skogestad and Morari (1987) we
know that the internal time constant are smaller than the
external time constants. These can be found from changing
the two inputs boilup and reflux rate at the same time
such that the external flows remain constant. This is very
difficult to do in practice. The responses to internal flow
changes while the external flows are constant are shown in
Figures 11 and 12.

The transfer functions of the compositions when the in-
ternal flows are changed so that the external flows remain
constant are as below. The reason is that for high pu-
rity distillation, the product compositions are sensitive to
changes in external flows and the effect of internal flows
may not be seen since the gain is small.

∆yD = (exp(−2s)× −7.99e− 5

s+ 0.00135
)∆V

∆xB = (exp(−0.33s)× −4.92e− 4

s+ 0.0073
)∆V (15)

8. CONCLUSION

In this paper, we have discussed different methods to over-
come the band-width limitations caused by combining dif-
ferent measurements with different dynamics to build the
static estimators. We have shown that adding filters is the
best option. By using filters, we will correct the dynamic
behavior while keeping the optimal steady-state estimator
untouched. We have done it with two approaches. First, we
suggested filtering some of the measurements based on the
insight from the process. Then, we use a more systematic
way to construct a filter which is almost optimal.
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Fig. 11. Top composition, ∆L = ∆V , ∆D = ∆B = 0
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