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Abstract: This paper discusses the minimum backed off operating point selection problem
based on process economics. In this work, we consider the case where the nominal operating
point is not completely constrained, i.e., there are some unconstrained degrees of freedom or
manipulations available. In this regard, we propose a stochastic formulation that ensures feasible
dynamic operating region within the prescribed confidence limit. Furthermore, the formulation
also finds a suitable multivariable controller to achieve economic benefits. The problem is
nonlinear and non-convex and hence an iterative solution procedure is proposed such that at
each step in the iteration, a convex problem is solved. Finally, the approach is illustrated using
an evaporation process.
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1. INTRODUCTION

With increase in global competition, it has become in-
creasingly important and relevant to operate a chemical
plant at the profitable operating point within the oper-
ating window. Often, the optimal operation is found to
occur at the boundary of the operating window. These
boundaries define the design constraints, environmental
and safety limits, etc. However, presence of uncertainties in
the form of measurement noise, modeling error, parametric
uncertainties and control errors caused by disturbances
cause violation of these constraints. In this paper, we
consider the effect of dynamic control errors caused by
the normally distributed random disturbances. Thus, back
off from the constraints is required to remain feasible.
Back-off is defined as the amount by which the actual
operating point is departed from the optimal operating
point to ensure feasibility. On the other hand, departure
from optimality will result in loss of profit. Hence, the
rational solution is to formulate and solve an optimization
problem that accounts for the trade-off between feasibility
and profitability and this is the focus of this contribution.

The notion of back off is illustrated in Fig. 1 where the rect-
angular region represents the feasible operating window.
Contours of the objective function are shown in dashed
line. Generally, the Optimal Operating Point (OOP) is de-
termined by solving a non-linear steady state optimization
problem. Often, the OOP is constrained and is marked by
star. To determine the economic back-off, the knowledge
of dynamic operating region is required. Dynamic region
indeed depends on the selected controller. Under the as-
sumption of Gaussian uncertainty, the Expected Dynamic
Operating Region (EDOR) can be represented as ellipses.
The size of the region is characterized by the confidence
limit and variance of the disturbance considered while the
orientation of the ellipse depends the controller. Hence, the
selection of Minimum Back-off Operating Point (MBOP)

Fig. 1. Idea of back off operating point selection

depends on the structural decisions in the control layer.
Figueroa et al. (1996) solved the dynamic optimization
problem to compute the necessary back off using open
loop indicators. However, the formulation does not include
controller as decision variable rather only alternative con-
troller performance are studied. Later, Peng et al. (2005)
addressed the simultaneous controller and MBOP selection
in the stochastic framework for a fully constrained case
(i.e., number of manipulated inputs equals the number of
active constraints). As their formulation contains a set of
convex and reverse convex constraints, a branch and bound
type procedure for obtaining globally optimal solution has
been proposed. Several other authors have also addressed
the issue of how process operations are limited by process
design (Narraway et al. (1991); Pistikopoulos (1995)) and
structural decisions on online optimizer and controller
(Loeblein and Perkins (1999); Kookos and Perkins (2002)).
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Loeblein and Perkins (1999) and Peng et al. (2005) have
computed the amount of back off required using first
order sensitivity of the cost function which applies to
fully constrained optimal solution. It is well known that
the solution of the Linear Program is always constrained
and hence linear approximation yields a solution at the
corner points of the operating envelope. As a result,
the back off solution will be near the corner points. To
consider a more general case where some unconstrained
degrees of freedom are available, it is important to include
quadratic information in the cost function. In this work, we
have extended the formulation for a partially constrained
case (i.e., number of manipulated inputs is greater than
the number of active constraints) to determine MBOP
and the controller. Furthermore, convex relaxation of the
constraints are presented and a solution methodology is
developed. Finally, the proposed formulation is exemplified
using an evaporator system.

2. PROBLEM FORMULATION

In this section, we develop a stochastic formulation that
ensures feasible operation modulo, a prescribed confidence
limit i.e., the probability that the constraints are satisfied
is greater than or equal to the confidence limit. In this
formulation, we have assumed full state feedback and dis-
turbance as the only source of uncertainty and is charac-
terized by zero mean Gaussian white noise. Following Peng
et al. (2005), the dynamic operating region is defined for
the given disturbances which follow from the closed loop
covariance analysis of the state space model of the process.
Therefore, the current objective is to formulate the opti-
mization problem that aims at determining the MBOP
and optimal controller such that the dynamic operating
region remains feasible for the given confidence limit while
minimizing the loss in profit.

We start by determining the optimal operating point at
steady state operation that minimizes the economic cost
(the negative of the operating profit) J(x0, u0, d0) where
x0,u0 and d0 denote the states, manipulated inputs and
expected value of disturbances. Thus, the steady state
optimizer solves the nonlinear steady state optimization
problem of the form,

min
x0,u0

J(x0, u0, d0) (1a)

s.t. g(x0, u0, d0) = 0 (1b)

h(x0, u0, d0) ≤ 0 (1c)

At OOP, the states, manipulated inputs are denoted as
x∗0, u

∗
0 respectively. It is common that at OOP, some of the

inequality constraints are active. As mentioned previously,
operating at OOP is usually not possible because of
random disturbances, therefore it is necessary to back off
from OOP. The back off is defined as,

Back − off = |Actual steady state operating point
−Nominal steady state operating point|(2)

Linearizing the process model (1b) around the nominally

optimal operating point (x∗0, u
∗
0, d0), we have: ˙̃x = Ax̃ +

Bũ + Gd̃ by defining deviation variables (x̃, ũ, d̃) with
respect to the optimal point where A, B and G are the

partial derivative of g evaluated at (x∗0, u
∗
0, d0). For the

assumed zero mean disturbances, the linearized model in
terms of the steady state backed-off variables (x̃ss, ũss) is
given by

0 = Ax̃ss +Bũss (3)

The above equation defines the set of feasible backed-off
operating points. The inequality performance limits (1c) is
linearized around (x∗0, u

∗
0, d0) and writing in bounded form

by defining a new variable z0 as:

z0 = Zxx0 + Zuu0 + Zdd0 (4a)

zmin ≤ z0 ≤ zmax (4b)

where Zx, Zu and Zd are the partial derivative of h
evaluated at (x∗0, u

∗
0, d0). Now, rewriting the inequalities

in terms of backed-off variables (x̃ss, ũss) yield,

z̃ss = Zxx̃ss + Zuũss (5a)

z̃min ≤ z̃ss ≤ z̃max (5b)

where z̃min = zmin−Zxx∗0−Zuu∗0−Zdd and z̃max = zmax−
Zxx

∗
0−Zuu∗0−Zdd. To determine the Backed-off Operating

Point (BOP) that yield a maximum profit, it is necessary
to account for the dynamic effect of disturbances which
might cause constraint violation. As random disturbances
are assumed, we follow stochastic framework to define the
EDOR around the given BOP. The dynamic model is
rewritten in terms of the new deviation variables around
the BOP (x̃ss,ũss,d) and is given by

ẋ = Ax+Bu+Gd (6)

z = Zxx+ Zuu+ Zdd (7)

z̃min − z̃ss ≤ z ≤ z̃max − z̃ss (8)

where x = x̃ − x̃ss,u = ũ − ũss and d = d0 − d0.
In this framework, the EDOR is a region such that the
probability that the system is confined to the EDOR
is greater than the prescribed confidence limits. When
the model is linear and uncertainties are Gaussian, the
EDOR is usually described as an ellipsoid and can be
computed given the covariance and the prescribed con-
fidence limits. This covariance matrix depends on the
process dynamics, controller and measurement. Assuming
full state information and linear feedback u = Lx, the
closed loop steady state covariance matrix of the state
vector (Σx := lim

t→∞
E[x(t)Tx(t)]) is given by the symmetric

positive semi-definite solution to the Lyapunov equation

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (9)

Respectively, the covariance of the signal z is given by

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (10)

Convex optimization tools are highly useful in transform-
ing the “difficult-to-solve” non linear constraints into solv-
able Linear Matrix Inequality (LMI) forms (Boyd and
Vandenberghe (2004)). In this regard, it has been shown
that the above non linear matrix inequalities (9)-(10) can
be converted to LMIs in terms of relaxation variables
(X,Y ) as:

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (11)[

Σz − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (12)
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where Y = LX and X = Σx � 0 (� 0) denotes that X is
positive definite (respectively positive semi-definite). The
last LMI (12) is the consequence of the following trick

Σz = (Zx + ZuL)XX−1X(Zx + ZuL)T + ZdΣdZd
T

Σz = (ZxX + ZuLX)X−1(ZxX + ZuLX)T + ZdΣdZd
T

and applying Schur complement (see Boyd and Vanden-
berghe (2004)) yields the LMI (12). This holds true when
there exists a stabilizing feedback gain L (For more details,
please refer theorem 2.1 of Chmielewski and Manthanwar
(2004)).

2.1 Fully constrained case

In this subsection, we present two formulations of the mini-
mum backed off operating point selection problem for fully
constrained case, which differ in the way, the feasibility
constraint of dynamic operating region is expressed.

MBOP formulation 1 The MBOP formulation is formu-
lated as Peng et al. (2005):

min Jx
T x̃ss + Ju

T ũss (13a)

s.t. 0 = Ax̃ss +Bũss (13b)

z̃ss = Zxx̃ss + Zuũss (13c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0(13d)[

Σz − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (13e)

Σz(i, i) < (z̃ss,i − z̃min,i)2; i = 1 · · ·nz (13f)

Σz(i, i) < (z̃max,i − z̃ss,i)2; i = 1 · · ·nz (13g)

z̃min ≤ z̃ss ≤ z̃max (13h)

where x̃ss, ũss, z̃ss, Y , X � 0 and Σz � 0 are the decision
variables. The above problem has a linear objective func-
tion with a set of convex (linear, LMIs) and reverse-convex
(13f)-(13g) constraints which requires a branch and bound
scheme for solution. It is also important to note that the
above reverse convex constraints ensure the feasibility of
dynamic operating region.

MBOP formulation 2 As mentioned previously, the
EDOR can be expressed as ellipsoids which can be math-

ematically represented by defining P = Σ
1/2
z as:

E95% = {(z̃min ≤ z̃ss + αPz ≤ z̃max) | ‖z‖2 ≤ 1} (14)

where α depends on the confidence limit, e.g., for a limit
of 95%, α = 2. This ellipsoid containment constraint
(14) makes the MBOP selection problem as a infinite
dimensional one. However, this could be transformed into
a finite dimensional problem using S - procedure (see Boyd
and Vandenberghe (2004)) as LMIs of the form−τi − hiT z̃ss − ti α2 hiTP

(
α

2
hi
TP )T τiI

 � 0; τi > 0; i = 1 · · · 2nz

(15)
where hi’s, ti’s are the respective vectors and scalars of the
bound constraints written in the form of hi

T z̃ss + ti ≤ 0.
Thus the matrix H = [Zx|Zu;−Zx| − Zu] and vector
t = [z̃max;−z̃min]. Now the MBOP selection problem with
the same set of decision variables is reformulated in terms
of LMI constraints as :

min Jx
T x̃ss + Ju

T ũss (16a)

s.t. 0 = Ax̃ss +Bũss (16b)

z̃ss = Zxx̃ss + Zuũss (16c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0(16d)[

Σz − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (16e)

P = Σ1/2
z (16f)−τi − hiT z̃ss − ti α2 hiTP

(
α

2
hi
TP )T τiI

 � 0; τi > 0 (16g)

where x̃ss, ũss, z̃ss, Y , X � 0, Σz � 0 and P � 0
are the decision variables. The objective function and
all the constraints in the above formulation (16) except
(16f) are convex. Thus, the formulated minimum back
off operating point selection problem is a non linear non
convex program. However, this problem could be solved
using the solution methodology developed in Section 3.

2.2 General case: Partially constrained

To determine the BOP that result in the minimum loss,
the economic objective is linearized in terms of states
and inputs. In addition, a quadratic penalty for inputs
are included in the cost to account for the unconstrained
degrees of freedom. Now the MBOP problem (16) is re-
formulated by replacing (16a) with (17) but with same set
of constraints and decision variables as follows:

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (17)

where Juu � 0 can be obtained by numerically perturbing
the unconstrained inputs and hence denotes the economic
penalty for backing off the inputs from the nominal opti-
mal value. Note that this cost function considers only the
steady state effect on economics. Since the disturbances
are assumed to be Gaussian and zero mean, this implies
that the cost accounts only for the nominal steady state
value of disturbances. This restriction of considering only
the steady state effect in cost also applies to the cost in
(13a)and (16a) but here the restriction is less severe as
long as the optimal constraints remain the same. The last
term must be included in the partially constrained case
to get a meaningful solution. Also note that the optimal
controller uses the unconstrained degrees of freedom for
minimizing the linear cost (backoff from the active con-
straints) plus the quadratic cost in terms of changing the
steady state operating point. As mentioned previously,
the formulation is non-linear and non convex. Since not
all constraints could be convexified, we propose a simple
two stage iterative procedure that reduce the variability
of the economically important (i.e., active constrained)
variables by progressively increasing the variability of the
economically unimportant variables at each iteration.

3. SOLUTION METHODOLOGY

The basic idea in the first stage is to find the smallest
(in terms of trace) feasible ellipsoid Σz and a suitable
multivariable controller L. In the second stage, this co-
variance ellipsoid is used to determine the closest possible
MBOP (z̃ss) to the OOP (x∗0, u

∗
0, d0) such that the EDOR
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is feasible. Information from the second stage (i.e., BOP) is
used to create lower bounds on the variances by defining
the parameter δ describing the closeness to OOP. This
information is used as bounds to individual variances to
recompute Σz and L in the first stage. This process is
iterated until convergence. In the solution of the first stage,
we impose the following constraints on the individual vari-
ances for obtaining the Σz and L that ensures feasibility
in the second stage,

σ2
z,i <

1

4α2
(z̃max,i − z̃min,i)2; i = 1 · · ·nz (18)

where σ2
z,i is the variance of the ith component of z, viz.,

zi. Additionally, we define the following constraints with
respect to variance of the jth variable σ2

z,j ,

σ2
z,i >

δ2
i,j

α2
σ2
z,j ; i = 1, j − 1, j + 1, nz (19)

where the iterative parameters δ2
i,j are chosen such that the

BOP selected in stage 2 is used to select the new minimum
variance ellipsoid that forces the BOP close to OOP. The
parameter δi,j is defined as

δi,j =
distance of variable i from its closest bound

distance of variable j from its closest bound
(20)

Physically, it tries to exploit the available manipulated
input space to be utilized to find the MBOP and controller.

3.1 Stage 1

min
X�0,Σz�0,Y

Tr(Σz)

s.t. (AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0[

Σz − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0

σ2
z,i <

1
4α2 (z̃max,i − z̃min,i)2; i = 1 · · ·nz

σ2
z,i >

δ2i,j
α2 σ

2
z,j ; i = 1, j − 1, j + 1, nz

Solution of Stage 1 results in a feasible covariance ellipsoid

Σz. Let P = Σ
1/2
z . This is used to find the approximation

to the MBOP in stage 2 as follows.

3.2 Stage 2

min
x̃ss,ũss,z̃ss

Jx
T x̃ss + Ju

T ũss + ũTssJuuũss

s.t. 0 = Ax̃ss +Bũss
z̃ss = Zxx̃ss + Zuũss−τi − hiT z̃ss − ti α2 hiTP

(
α

2
hi
TP )T τiI

 � 0;

τi � 0; i = 1, · · · 2nz
The δ’s are updated based on the new MBOP and used
to resolve Stage 1. It is to be noted that P is not a
decision variable since Σz is known from first stage. Now
it can be easily recognized that both the stages contains
only convex constraints which could be easily solved using
CVX, a package for specifying and solving convex programs
(Grant and Boyd (2011)). Initializing δi,j to zero and given
two successive iterates, z̃iter−1

ss and z̃iterss this process is
iterated until the convergence criteria ‖z̃iterss − z̃iter-1ss ‖2 ≤ ε
is satisfied where ε being the prescribed tolerance limit.

Fig. 2. Evaporator system

4. EVAPORATION PROCESS

The proposed back-off approach is applied to the evap-
oration process of Newell and Lee (1989). The forced-
circulation evaporator system is depicted in Fig. 2, where
the concentration of the feed stream is increased by evap-
orating the solvent through a vertical heat exchanger with
circulated liquor. The overhead vapor is condensed by the
use of process heat exchanger. The details of the mathe-
matical model can be found in the original reference. The
separator level is assumed to be perfectly controlled using
the exit product flow rate F2 which also eliminates the
integrating nature of the state. The economic objective
is to maximize the operational profit [$/h], formulated as
a minimization problem of the negative profit (Kariwala
et al. (2008)). The first three terms of (21) are utility costs
relating to steam, coolant and pumping respectively. The
fourth term is the raw material cost, whereas the last term
is the product value.

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2

(21)
The process has the following constraints related to prod-
uct specification, safety, and design limits:

X2 ≥ 35% (22)

40 kPa ≤ P2 ≤ 80 kPa (23)

P100 ≤ 400 kPa (24)

0 kg/min ≤ F200 ≤ 400 kg/min (25)

0 kg/min ≤ F1 ≤ 20 kg/min (26)

0 kg/min ≤ F3 ≤ 100 kg/min (27)

Nominal operating point. The nominal steady state
values are obtained by solving a nonlinear optimization
problem for the nominal values of disturbances and the
profit is found to be J = $693.41/h and the nominal
values are shown in Table 1. At the nominal optimal point,
there are two active constraints: product composition,
X2 = 35% and steam pressure, P100 = 400 kPa. And,
the corresponding Lagrange multipliers are 229.36 $/% h
and -0.096685 $/kPa h respectively.

Degree of freedom analysis. The process model has
seven degrees of freedom. Inlet conditions of the feed (flow
rate, composition, temperature) and inlet temperature of
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Table 1. Variables and Nominal optimal values

Variables Description Nominal value

States (x)
X2 product composition 35.00 %
P2 operating pressure 56.15 kPa

Inputs (u)
F3 recirculating flow rate 27.70 kg/min
P100 steam pressure 400 kPa
F200 cooling water flow rate 230.57 kg/min

Disturbances (d)
F1 feed flow rate 10.00 kg/min
X1 feed composition 5.00 %
T1 feed temperature 40.00 ◦C
T200 inlet temperature of cooling water 25.00 ◦C

Dependent variables
F2 product flow rate 1.43 kg/min
F4 vapor flow rate 8.57 kg/min
F5 condensate flow rate 8.57 kg/min
F100 steam flow rate 9.99 kg/min
T2 product temperature 90.91 ◦C
T3 vapor temperature 83.47 ◦C
T100 steam temperature 151.52 ◦C
T201 outlet temperature of cooling water 45.45 ◦C
Q100 heat duty 365.63 kW
Q200 condenser duty 330.00 kW

the condenser are considered as disturbances (i.e., d =
[F1 X1 T1 T200]T ). There are three manipulated inputs,
u = [F3 P100 F200]T . The disturbance range is assumed
to be 10% variation of the nominal value (i.e., Σd =
diag([1 0.25 16 6.25])2 ) and the set of active constraints
do not change in the whole range of disturbances . It is
important to note that there is one unconstrained degrees
of freedom.
Linearized steady state model. Linear approximation
of the process model at the nominal optimum yields,

A =

[
−0.16709 −0.17185
−0.013665 −0.043132

]
;

B =

[
0.44083 0.04217 0
0.062976 0.0060243 −0.0016249

]
;

G =

[
−1.2211 0.5 0.031818 0
0.039837 0 0.0045455 0.03665

]
The performances z are defined by the matrices,

Zx = [I2×2|02×3]T ;Zu = [03×2|I3×3]T ;Zd = [04×5]T

and the bound constraints written in the form of hi
T z̃ss +

ti ≤ 0 are obtained from the rows of the matrix H and
elements of vector t, H = [I5×5| − I5×5]T ; t = [−5 −
23.849 − 72.299 0 − 169.43 0 − 16.151 − 27.701 − 200 −
230.57]T . The linearized negative profit function is

Jx = [−293.23 − 526.8]T ; Ju = [1368.9 130.85 0.6]T

As the input P100 is constrained, the quadratic penalty
is included only for the other inputs and the numerical
perturbation of inputs F3 and F200 yield,

Juu =

[
4.4953 0.00010226

0.00010226 0.0052699

]
Results. For the case of full state information, the amount
of back off required to remain feasible for 10% variation
in the nominal disturbances is tabulated in Table 2. It
is to be noted that the amount of back-off for steam
pressure (P100) is zero as expected as it is a input variable.
However, the assumed disturbances have significant effect
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Fig. 3. Product composition vs operating pressure. a)
Open loop case: F3 and F200 are constant. b) Closed
loop case: F3 and F200 are used for control of X2
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on product exit composition, X2. The MBOP solution
and EDOR for the open loop and closed loop case are
shown as ellipses in Figures 3-6. The loss obtained for
operating the evaporator at this backed off operating
point is $58.65/h which corresponds to the achievable
profit of $634.76/h. In other words, the loss we incur
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Table 2. Nominal and Back-off operation

Variables Units Nominal value MBOP solution(17)
closed loop open loop
(proposed) (u = 0)

States
X2 % 35.00 35.26 39.75
P2 kPa 56.15 56.10 55.16

Inputs
F3 kg/min 27.70 27.78 29.12
P100 kPa 400.00 400 400
F200 kg/min 230.57 232.71 271.65
Profit $/h 693.41 634.76 -414.92

to ensure feasible operation with 95% confidence interval
is $58.65/h. Indeed, the back-off estimated is the best
possible lower bound for the product composition to ensure
feasibility because of the simultaneous consideration of
controller in the formulation. This could be inferred from
Table 2 by comparing the closed loop solution with the
open loop solution. The multivariable feedback controller
(u = Lx) to be implemented to operate the system
profitably is

L =

[−108.5643 0.3868
−0.0606 0.0002
−123.2216 97.3625

]
Without the controller (open loop case), the amount of
back off required is higher and also the process would
incur a loss of $414.92/h. Note that the optimal con-
troller is using both F3 and F200 to control the prod-
uct composition with the aim of minimizing the overall
cost. This feedback gain could be used to determine the
appropriate objective function weights using the inverse
optimality results of Chmielewski and Manthanwar (2004)
and could be successfully implemented using Model Pre-
dictive Control. The back off operating point determined
above are given as set points to the control system. It is
important to note that without the quadratic term, the
MBOP solution obtained by solving formulation (16) is
[xTuT ] = [35.41 76.53 35.80 399.99 0.01]. Note that for
instance, F200 is changed from 230.57 to 0.01 kg/min,
which is unrealistic. This corresponds to the lower left
corner in Fig. 6. Hence, the quadratic term in the cost
function is important in the partially constrained case to
get a meaningful solution.

5. CONCLUSION

A multivariable controller obtained from the proposed
formulation which when implemented to operate the evap-
oration process at the back-off operating point will ensure
feasible operation and also yields the maximum achievable
profit. The proposed solution strategy has been success-
fully demonstrated using the evaporation process. This
formulation could be extended to include measurement
noise as an additional source of uncertainty.
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