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Abstract

A new method for deriving reduced dynamic models of one-dimensional

distributed parameter systems is presented. It inherits the concepts of the

aggregated modeling method of Lévine and Rouchon [1] for simple staged

distillation models, and can be applied to both spatially discrete and con-

tinuous systems. It is based on partitioning the system into intervals

of steady-state systems, which are connected by dynamic aggregation el-

ements. By presolving and substituting the steady-state systems, a

discrete low-order dynamic model is obtained, which asymptotically ap-

proaches the true steady-state of the original model. The method is an

alternative to discretization methods like finite difference and finite ele-

ment methods for spatially continuous systems, and collocation and wave

propagation methods for spatially discrete systems. Implementation de-

tails of the method are discussed, and the principle is illustrated on three

example systems, namely a distillation column, a heat exchanger, and a

fixed-bed reactor.
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1 Introduction

This paper presents a new approach for deriving reduced dynamic models of

spatially discrete or continuous one-dimensional distributed parameter systems.

The reduced models are low-order systems of ordinary differential equations or

differential-algebraic equations. For continuous systems, the method can be

used as an alternative to common spatial discretization methods such as finite

difference, finite volume and finite element methods (Hundsdorfer and Verwer

[2]).

The method is based on the concept of aggregation, which was used by Lévine

and Rouchon [1] for deriving reduced-order distillation models. Linhart and

Skogestad [3] showed that this method can be used to increase the simulation

speed several times, and extended the method to complex distillation models

(Linhart and Skogestad [4]). In this case, the method is an alternative to other

model reduction methods for this kind of one-dimensional separation processes

such as orthogonal collocation methods (Cho and Joseph [5], Stewart et al. [6])

and wave propagation methods (Marquardt [7], Kienle [8]).

The method presented here is a generalization from distillation columns to one-

dimensional spatially distributed parameter systems. These systems can be

discrete in space, like stage-wise processes such as staged distillation columns,

or continuous, like packed distillation columns, fixed-bed reactors, and heat

exchangers. A special class of discrete systems are spatial discretizations, for

example obtained by finite differences, of continuously distributed systems. The

reduction method can be applied to these systems in the same way as it is ap-

plied to spatially discrete systems. The reduction procedure for continuous

systems can be derived as the limit case of these systems, where the reduction

method is first applied to the discretized system, and then the limit case when

the discretization interval goes to zero is considered. For continuous systems,

the method is limited to spatially second-order systems.

The method is based on choosing several “aggregation points” on the spatial
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domain of the distributed system. To each of these aggregation points, dynamic

“aggregation elements” are assigned. The partial differential equations or the

discretely distributed system on the intervals between the aggregation points is

treated as at steady-state. The values on the boundaries of the steady-state

systems, which appear in the dynamic equations of the adjacent aggregation

elements, are computed as functions of the states of the aggregation elements

on both sides of each steady-state system. The thus obtained system is discrete

and low-order in nature.

The main principle of the method is to replace the signal transport through

the system by instantaneous transport through the steady-state intervals from

aggregation element to aggregation element, where the dynamics is slowed down

again by the large capacities of the aggregation elements.

The paper is organized as follows. Section 2 describes the mathematical struc-

ture of the one-dimensional systems that the method can be applied to. Subse-

quently, the main conceptual steps of the reduction procedure, which are analog

for both spatially discrete and continuous systems, are explained. The detailed

mathematical derivations of the reduction method for discrete and spatially

first- and second-order continuous systems is described in the following subsec-

tions. In the last subsection, it is shown that both the original and the reduced

models assume the same steady-state, which is the main characteristic property

of the method. Section 3 illustrates the reduction method on three example

systems, namely a distillation column, a heat exchanger, and a fixed-bed reac-

tor. In the first part of each example, the respective original and the derivation

of the reduced model is explained. In the second part, a simulation study that

demonstrates the approximation quality of the reduced models is presented. In

section 4, the advantages and limitations of the model reduction method are

discussed. The similarities and differences to reduced models resulting from

a singular perturbation procedure are described subsequently, and a compari-

son of the method with alternative discretization schemes is given. Finally, a

summary of the method and its performance is given in section 5.
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Figure 1: Schematic illustration of the reduction method for discrete distributed
systems.

2 Method

In the following, the mathematical structure of the two types of spatially dis-

tributed systems the method can be applied to is described. These are basi-

cally one-dimensional systems, which are spatially either discrete ore continu-

ous. Subsequently, the reduction procedure, the conceptual steps of which are

the same for all systems, is described.

2.1 Discrete distributed parameter systems

The first type of systems the reduction method can be applied to are discrete

one-dimensional distributed systems. Figure 1 shows the principal structure of

these systems. The main characteristic of these systems is that they consist

of a number of consecutive similar units that communicate with the respective

neighboring units along one dimension. For a mathematically convenient nota-

tion, the dynamic and algebraic equations of each unit are expressed in vector

notation:

M1ẋ1(t) = f1(x1(t),x2(t),p, t), (1)

Miẋi(t) = fi(xi−1(t),xi(t),xi+1(t),p, t), (2)

2 ≤ i ≤ N − 1,
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MN ẋN (t) = fN (xN−1(t),xN (t),p, t), (3)

where i is the index of the unit, N is the total number of units, t is the time

variable, xi is the vector consisting of the dynamic and algebraic variables of

unit i, Mi is a diagonal “mass” matrix that can be used to render some of the

equations algebraic by setting the corresponding value to 0, fi is a vector-valued

function of the variable vectors of the current and the neighboring units, and

p is a parameter vector. External inputs to the system are included in the

notation above by the time-dependency of the functions fi.

2.2 Continuous distributed parameter systems

The second class of systems are one-dimensional continuous distributed param-

eter systems, where the spatial order is restricted to a maximum of two. These

systems can be written as vector-valued partial differential equations:

∂x(z, t)

∂t
= Dzx(z, t) + R(x(z, t), z, t), 0 ≤ z ≤ 1, (4)

where x(z, t) is the vector of the distributed state variables, z is the spatial vari-

able, t is the time, Dz is a spatial differential operator acting on the state vector

x(z, t), and R(x(z, t), z, t) is a local source term. A certain set of boundary con-

ditions is needed to complete the description, which can also be time-dependent

and thus contain external inputs to the system. For simplicity, the spatial do-

main of the partial differential equation is here chosen to be [0; 1]. This is not a

restriction, since any other spatial domain can be transformed to this by simple

scaling of the spatial variable z.

2.3 General reduction procedure

Figures 1 and 2 illustrates the principle of the method. The procedure can be

divided into the following steps, which are the same for both the discrete and

continuous case:

1. Selection of aggregation points
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Figure 2: Schematic illustration of the reduction method for continuous dis-
tributed systems.

On the spatial domain of the system, n “aggregation points” are chosen.

For discrete systems, these are n distinct indices of units sj , j = 1, ..., n.

For continuous systems, these are n points zj with 0 ≤ zj ≤ 1, j = 1, ..., n.

The number and position of the aggregation points will affect the dynamic

approximation quality of the reduced system, but not the steady-states,

and all choices will lead to a functional system.

2. Introduction of aggregation elements

At every aggregation point, an “aggregation element” is positioned. In the

discrete case, these elements are just the units at the aggregation points

with a modified “capacity”H. In the continuous case, at every aggregation

point, an aggregation element is positioned. Their dynamics are governed

by simple differential equations that are derived from the original partial

differential equations. The derivation is explained in sections 2.5 and

2.6. The “capacity“ H of an aggregation element refers to a factor that

multiplies the left-hand sides of the dynamic equations of the element.

3. Steady-state approximation of systems between aggregation el-

ements

The equations on the intervals between the aggregation points are treated

as in steady-state. In the discrete case, the left hand sides of all equations

of the units that are not aggregation elements are set to 0. This results
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in systems of algebraic equations that depend on certain variables of the

aggregation elements on both sides. In the continuous case, the partial dif-

ferential equations on the intervals between the aggregation elements are

treated as steady-state boundary value problems, where certain variables

of the aggregation elements serve as boundary conditions.

4. Precomputed solution of steady-state systems

The steady-state systems are solved either numerically or analytically for

a range of possible values of the states of the aggregation elements on

both sides of each system. For the integration of the aggregation element

equations, the solutions on the boundaries of the steady-state systems

have to be known. They are therefore expressed as functions of the state

variables of the neighboring aggregation elements, and substituted into

the aggregation element equations.

5. Substitution of steady-state solutions

The functions computed in step 4 are substituted into the equations of

the capacity elements. The resulting system is a set of ODEs (or DAEs,

if algebraic equations are present).

Steps 1 to 3 yield a model with reduced dynamics. It is, however, of the same

complexity as the original model. In the discrete case, a large number of dynamic

equations have been converted into algebraic equations. In the continuous case,

the continuous system has been partitioned into dynamic aggregation elements

and boundary value problems, which have to be solved simultaneously. A real

reduction in model complexity and computational effort is therefore obtained

only after steps 4 and 5.

In the following, details specific for either discrete or continuous systems are

described.
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2.4 Discrete systems

After step 3, the equations of the reduced system read

H1M1ẋ1(t) = f1(x1(t),x2(t),p, t), (5)

HjMsj
ẋsj

(t) = fsj
(xsj−1(t),xsj

(t),xsj+1(t),p, t), (6)

j = 2, ..., n− 1,

0 = fi(xi−1(t),xi(t),xi+1(t),p, t), (7)

i = 2, ..., N − 1, i 6= sj , j = 1, ..., n,

HnMN ẋN (t) = fN (xN−1(t),xN (t),p, t). (8)

Here, to simplify notation, a case is written where unit 1 and N are aggregation

elements (s1 = 1 and sn = N). Either of these could be steady-state systems

as well.

Step 4 involves solving the systems (7) for the variables xsj−1 and xsj+1,

j = 1, ..., n (except for x0 if s1 = 1 and xN+1 if sn = N). These are needed

in the equations of the aggregation elements (5), (6) and (8). The variables

are expressed as functions of the variables of the aggregation elements on both

sides. This means that, for example, for aggregation element j, the functions

xsj+1 = φj(xsj
,xs(j+1)

,p) = φj(x̄j , x̄j+1,p), (9)

and

xsj−1 = ψj(xs(j−1)
,xsj

,p) = ψj(x̄j−1, x̄j ,p) (10)

are required. Here, the variable xsj+1 is a function of the variables xsj
and

xs(j+1)
of aggregation elements sj and s(j+1). Note the difference between the

variables xsj+1 and xs(j+1)
. The former are the variables of the first unit af-

ter the aggregation element unit j, whereas the latter are the variables of the

aggregation element unit j + 1. To make this difference clear, the notation x̄j

is introduced, where the bar denotes the state variables of the aggregation ele-

ments.
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Generally, these functions contain numerical solutions and have to be imple-

mented in a suitable way. A straightforward way is the tabulation of the solution

values over a certain domain of the independent variables, and the retrieval of

the function values by interpolation of the table values. Whether the functions

are implemented as look-up tables or in another way, they will be complex if the

dimensionality of the xi variables is high. It is therefore advisable to choose the

independent variables carefully, since not all variables necessarily are needed to

compute the function values. In addition, not the whole vectors of the variables

xsj−1 and xsj+1 might be necessary in the aggregation element equations.

Step 5 implies the substitution of the functions (9) and (10) into the aggre-

gation element equations (5), (6) and (8). The resulting system then reads

H1M̄1 ˙̄x1(t) = f̄1(x̄1(t), φ1(x̄1(t), x̄2(t),p),p, t), (11)

HjM̄j ˙̄xj(t) = f̄j(ψj(x̄j−1, x̄j ,p), x̄j(t), φj(x̄j , x̄j+1,p),p, t), (12)

j = 2, ..., n− 1,

HnM̄n ˙̄xn(t) = f̄n(ψn(x̄n−1, x̄n,p), x̄n(t),p, t). (13)

Here, the notation M̄, x̄ and f̄ is used to indicate a change of index of the

variables and functions due to the elimination of the steady-state variables and

equations. For every j, x̄j = xsj
etc. holds.

2.5 Continuous systems: second order systems

The differential equations of the aggregation elements for continuous systems

can be derived by applying the reduction procedure to a finite difference dis-

cretization of the partial differential equations, and considering the limit case

of ∆z → 0, where ∆z is the length of the finite difference intervals. The re-

sult of this operation depends on the order of the spatial differential operator.

The main derivation is demonstrated here for a system with second-order spa-

tial derivatives, which represents a typical convection-diffusion-reaction system.
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The differences in the procedure for systems with first-order spatial derivatives

are discussed in the next section.

The system discussed in this section reads

∂x

∂t
= −α

∂x

∂z
+ β

∂2x

∂z2
+R(x), (14)

with a certain set of boundary conditions, and α and β being dimensionless

numbers. For simplicity of notation, a scalar system is used for the derivation

of the reduced model equations.

A finite difference discretization of the spatial derivatives yields

dxi

dt
= −α

xi − xi−1

∆z
+ β

xi−1 − 2xi + xi+1

∆z2
+R(xi), (15)

where xi are the states of the discretized system at the N distinct discretization

points zi, i = 1, ..., N , which span the spatial domain over intervals of length

∆z = 1/(N − 1).

According to step 1 and 2, a number n of aggregation points zsj
, j = 1, ..., n,

is chosen among all discretization points, and the differential equations of the

corresponding states are modified by multiplying the left hand side with a “ca-

pacity” Hj :

Hj

dxsj

dt
= −α

xsj
− xsj−1

∆z
+ β

xsj−1 − 2xsj
+ xsj+1

∆z2
+R(xsj

), (16)

j = 1, ..., n.

Step 3 requires that the remaining equations are treated as in steady-state:

0 = −α
xi − xi−1

∆z
+ β

xi−1 − 2xi + xi+1

∆z2
+R(xi), (17)

i = 1, ..., N, i 6= sj , j = 1, ..., n.

The resulting model has the same steady-state as the original discretized model.

The capacities Hj can be chosen freely, but should compensate the missing ca-

pacities of the steady-state elements. A straightforward choice for a reduced
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model with equidistant aggregation points is therefore Hj = N/n, which dis-

tributes the capacities of the discretized states of the original discretized model

equally among the aggregation points of the reduced model. N is expressed

in terms of ∆z as N = 1/∆z + 1, such that the equations of the aggregation

elements read

1
∆z

+ 1

n

dxsj

dt
= −α

xsj
− xsj−1

∆z
+ β

xsj+1−xsj

∆z
−

xsj
−xsj−1

∆z

∆z
(18)

+R(xsj
),

The second-order finite difference approximation is here written as the finite

difference of two first-order finite differences. Multiplying with ∆z yields

1 + ∆z

n

dxsj

dt
= −α(xsj

− xsj−1) (19)

+β

(

xsj+1 − xsj

∆z
−
xsj

− xsj−1

∆z

)

+R(xsj
)∆z.

∆z → 0 yields the continuous equations. Since the system discussed here is a

continuous second-order system, xsj−1 → xsj
for ∆z → 0. This is not the case

if the system is first-order. This case will be discussed separately below. Thus,

∆z → 0 results in

1

n

dx̄j

dt
:=

1

n

dxsj

dt
= β

(

∂x

∂z

∣

∣

∣

∣

+

zj

−
∂x

∂z

∣

∣

∣

∣

−

zj

)

. (20)

The notation x̄j is introduced here to express that the only remaining state

variables are the states at the aggregation points, i.e. x̄j = xsj
.

In step 4, the right derivative ∂x
∂z

∣

∣

∣

∣

+

zj

is calculated from the boundary value sys-

tems between the aggregation points zj and zj+1,

0 = −α
∂x

∂z
+ β

∂2x

∂z2
+R(x), zj ≤ z ≤ zj+1, (21)
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with the boundary conditions

x(zj) = x̄j , (22)

x(zj+1) = x̄j+1, (23)

and the left derivative ∂x
∂z

∣

∣

∣

∣

−

zj

is calculated from the boundary value systems

between the aggregation points zj−1 and zj correspondingly. The solution can be

obtained, for example, by using a finite difference approximation as in equations

(17). From the solution of a steady-state system (21) between the aggregation

points zj and zj+1 with the boundary conditions (22) and (23), the derivatives

∂x
∂z

∣

∣

∣

∣

+

zj

and ∂x
∂z

∣

∣

∣

∣

−

zj+1

can be calculated as functions of the states of the aggregation

elements:

∂x

∂z

∣

∣

∣

∣

+

zj

= φj(x̄j , x̄j+1), (24)

∂x

∂z

∣

∣

∣

∣

−

zj+1

= ψj+1(x̄j , x̄j+1), (25)

j = 2, ..., n− 1.

For j = 1 or j = n, the boundary conditions of the original system can be used

to solve equation (21). The resulting left and right derivatives depend then

either only on one aggregation element variable and a possible input variable u,

for example

∂x

∂z

∣

∣

∣

∣

+

1

= φN (x̄n, u1) (26)

for independent boundary conditions on the right side, or, for cyclic boundary

conditions, on the states of the aggregation elements on both ends of the system

in addition to a possible input variable u:

∂x

∂z

∣

∣

∣

∣

−

0

= ψ1(x̄1, x̄n, u0). (27)
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Step 5 implies the substitution of these functions into equation (20) to yield the

final reduced model

1

n

dx̄j

dt
= β (φj(x̄j , x̄j+1) − ψj(x̄j−1, x̄j)) , j = 1, ..., n. (28)

At steady-state, equations (28) are differentiability conditions for the steady-

state profile at the aggregation points.

2.6 Continuous systems: first order systems

A partial differential equation with first-order spatial derivative reads

∂x

∂t
= −α

∂x

∂z
+R(x), (29)

with a certain boundary condition on the left side, and α being a dimensionless

number. This is a transport system with a source term R, with transport from

left to right. The same procedure for steps 1, 2 and 3 as in section 2.5 is applied.

The equations for the steady-state systems (17) now read

0 = −α
xi − xi−1

∆z
+R(xi), (30)

i = 1, ..., N, i 6= sj , j = 1, ..., n.

These are discretizations of the continuous steady-state systems

0 = −α
∂x(z)

∂z
+R(x(z)), zj ≤ z ≤ zj+1, (31)

with the single boundary condition on the left side

x(zj) = x̄j , (32)

where x(z) denotes the spatially distributed states of the steady-state system j

between the aggregation points zj and zj+1, and x̄j is the state of aggregation

element j on the left side of the system. This implies that the values of the

variables on the right side of the steady-state systems are generally not the
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same as the variable values of the adjacent aggregation element, but depend on

the left boundary condition:

x(zj+1) = ψj+1(x̄j). (33)

The limit case of equation (19) of section 2.5, which now reads

1 + ∆z

n

dxsj

dt
= −α(xsj

− xsj−1) +R(xsj
)∆z,

is therefore

1

n

dx̄j

dt
= −α(x̄j − ψj(x̄j−1)). (34)

Equations (34) for j = 1, ..., n are the reduced model for first-order systems of

the form (29). At steady-state, equations (34) are continuity conditions for the

steady-state profile.

2.7 Steady-state preservation property

The characteristic property of the aggregation model reduction method is that

the original and the reduced model assume identical steady-states. This means

that

1. if the states of the reduced model assume the values of the steady-state

profile of original system at the aggregation points, the reduced model is

in steady-state, and

2. if the reduced model is in steady-state, the profile of the aggregation el-

ements with the interconnecting steady-state systems coincides with the

unique steady-state profile of the original system.

To show this, it is assumed that there exists a unique steady-state for the original

system. For continuous systems, the argument is restricted to systems with

spatial derivatives of order up to two, and the steady-state profile of the original

system is assumed to be differentiable.
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The discrete case is trivial to show, since at steady-state, the equations of the

original system (1)-(3) and the equations of the reduced system (5)-(8) are

identical. Since uniqueness of the solution is assumed, the solutions are identical

as well.

In the continuous case, the two parts can be shown separately. The argument

is given for second-order systems; first-order systems follow as a special case.

1. Since the states of the aggregation elements lie on the unique steady-state

profile of the original system (14), the profiles of the steady-state systems

between the aggregation elements coincide with the corresponding parts

of the steady-state profile of the original model. Differentiability of the

profile of the original system implies that the left and right derivatives at

each aggregation point as in equation (20) coincide, and the equations are

at steady-state.

2. On the steady-state systems between the aggregation points of the re-

duced model (21), the equations of the original system (14) are satisfied

at steady-state. Since the boundary conditions of the steady-state sys-

tems are the states of the aggregation elements, the profile of the connected

steady-state systems is continuous. Since the reduced model is in steady-

state, equation (20) implies that the first-order spatial derivatives of the

steady-state systems on both sides of each aggregation points assume the

same values. Then, by equation (21), the second-order derivatives of the

steady-state systems assume the same values on both sides of each aggre-

gation point. This means that the profile resulting from connecting all

steady-state profiles satisfies the original system (14) at steady-state on

the complete domain and is therefore the unique solution of the original

system (14) at steady-state.

3 Examples

The method is illustrated on three simple example systems.
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3.1 Distillation column

3.1.1 Model

As an example for a discrete system, a staged distillation column is considered.

This example system is was used by Lévine and Rouchon [1] for the derivation

of their reduction method, and has been discussed extensively in Linhart and

Skogestad [3]. Therefore, the derivation of the model is described only very

briefly.

The original model reads

H1ẋ1 = V y2 − V x1, (35)

Hiẋi = Lxi−1 + V yi+1 − Lxi − V yi, (36)

i = 2, ..., iF − 1,

HiF
ẋiF

= Lxi−1 + V yi+1 − (L+ F )xi − V yi + FzF , (37)

Hiẋi = (L+ F )xi−1 + V yi+1 − (L+ F )xi − V yi, (38)

i = iF + 1, ..., N − 1,

HN ẋN = (L+ F )xN−1 − (L+ F − V )xN − V yN , (39)

where Hi is the total liquid molar holdup, xi and yi = k(xi) are the concentra-

tions of the first component in the liquid and vapor phase, respectively, of stage

i, N is the number of stages including the condenser and reboiler, iF is the

index of the feed stage, V and L are the liquid and vapor flows in the column,

respectively, and F and zF are the feed flow rate and the feed concentration,

respectively. The molar holdups, liquid and vapor flows are assumed to be con-

stant. The energy balance is simplified using the constant relative volatility

assumption

yi = k(xi) =
αxi

1 + (α− 1)xi

. (40)
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After applying steps 1 to 3 of the model reduction method, the reduced model

equations read

H̄1 ˙̄x1 = V k(x̄2) − V x̄1, (41)

H̄j ˙̄xsj
= Lx̄sj−1 + V k(x̄sj+1) − Lx̄sj

− V k(x̄sj
), (42)

j = 2, ..., n− 1, j 6= jF ,

H̄jF
˙̄xiF

= Lx̄iF −1 + V k(x̄iF +1) − (L+ F )x̄iF
− V k(x̄iF

) + FzF , (43)

0 = Lx̄i−1 + V k(x̄i+1) − Lx̄i − V k(x̄i), (44)

i = 2, ..., N − 1, i 6= sj , j = 1, ..., n,

H̄n ˙̄xN = (L+ F )x̄N−1 − (L+ F − V )x̄N − V k(x̄N ), (45)

where n is the number of aggregation stages, H̄j and sj are the aggregated

holdup and the index of aggregation stage j, respectively, and jF is the index of

the aggregation stage where the feed is entering. The terms “aggregation stage”

and “aggregated holdup” are here used for the more general terms “aggregation

element” and “capacity” as used in section 2.

Steps 4 and 5 imply the solution of the algebraic equations and the substitution

of the required solutions Yj into the dynamic equations.

H̄1
˙̃x1 = V Y1(x̃1, x̃2, V/L) − V x̃1, (46)

H̄j
˙̃xj = Lx̃j−1 + V Yj(x̃j , x̃j+1, V/L) − Lx̃j

−V Yj−1(x̃j−1, x̃j , V/L), (47)

j = 2, ..., n− 1, j 6= jF ,

H̄jF
˙̃xjF

= Lx̃jF −1 + V YjF
(x̃jF

, x̃jF +1, V/L) − Lx̃jF

−V YjF −1(x̃jF −1, x̃jF
, V/L) + FzF , (48)

H̄n
˙̃xn = (L+ F )x̃n−1 − (L+ F − V )x̃n

−V Yn−1(x̃n−1, x̃n, V/(L+ F )). (49)
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parameter value
N 74
nF 36
H1 20 mol
HN 20 mol
Hi, i = 2, ..., N − 1 1 mol
α 1.33
input nominal value
zF 0.45
F 0.04 mol/s
L 0.12 mol/s
V 0.14 mol/s

Table 1: Parameters of the distillation column model.

aggregation stage index j 1 2 3 4 5 6 7
sj (3 agg. stages) 1 36 74
H̄j 20 72 20
sj (5 agg. stages) 1 14 36 60 74
H̄j 20 21 28 23 20
sj (7 agg. stages) 1 8 20 36 53 67 74
H̄j 20 10 15 19 18 10 20

Table 2: Positions and holdups of the aggregation stages of the reduced models.

The functions Yj correspond to the functions φj in equation (9). Due to mass

conservation of the steady-state systems (44), only the functions φ, but not the

functions ψ are needed. The model parameters are given in table 1. A reduced

model of a more complex distillation model with complex hydrodynamic and

thermodynamic relationships has been described in Linhart and Skogestad [4].

3.1.2 Simulation study

Figure 3 shows the responses of the top and bottom concentrations of the full

distillation model with 74 stages (xtop = x1, x
bottom = xN ), and reduced distil-

lation models with 3, 5 and 7 aggregation stages (xtop = x̃1, x
bottom = x̃n), to a

step change in the feed concentration zF from 0.45 to 0.55. The reduced model

parameters, i.e. the position of the aggregation stages and their aggregated

holdups, are given in table 2. They are taken from Linhart and Skogestad [3].

The parameter sets for the models with 5 and 7 aggregation stages are “opti-
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Figure 3: Distillation model top and bottom concentration responses to step
change in feed concentration zF from 0.45 to 0.55.

mized” to minimize the deviation from the original model over a broad range

of changes in the feed concentration zF and liquid and vapor flows L and V as

described in Linhart and Skogestad [3]. However, the optimization is restricted

to the position and the aggregated holdups of the aggregation stages except

reflux drum and reboiler, and constrained to the requirement that the sum of

the aggregation stage capacities equals to the number of stages in the system.

Consequently, there is no degree of freedom for the model with 3 aggregation

stages. If these restrictions are lifted, better approximation quality, especially

for the model with 3 aggregation stages, can be expected.

It can be seen that especially the approximation quality of the reduced model

with 7 aggregation stages is very good. This model has less than 10% of the

states as the full model. The gain in computation time of the models has been

shown in Linhart and Skogestad [3] to be in the same order of magnitude as the

reduction in the number of states.
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Figure 4: Schematic diagram of a tubular heat exchanger.

3.2 Heat exchanger

3.2.1 Model

As an example of a continuous system described by (coupled) first-order partial

differential equations, a tubular counter-current heat exchanger is considered

(see figure 4). A description of these types of heat exchangers can be found in

Skogestad [9]. The partial differential equations of the system are of the form

of equation (29) and read

Ahρh ∂T
h

∂t
= −mh ∂T

h

∂z
−
Up

chp
(Th − T c), (50)

Acρc ∂T
c

∂t
= mc ∂T

c

∂z
+
Up

ccp
(Th − T c), 0 < z < l, (51)

Th(t, 0) = Th
in, (52)

T c(t, l) = T c
in, (53)

where Th, T c, mh, mc, Ah, Ac, ρh, ρc, chp , and ccp are the temperatures, mass

flows, tube cross-sectional areas, densities and heat capacities of the hot and the

cold streams, respectively, U and p are the heat transmission coefficient and the

perimeter of the surface between the hot and cold stream, respectively, l is the

tube length, and Th
in and T c

in are the inlet temperatures of the hot and the cold

stream, respectively. The main assumptions in this model are incompressible

fluids, temperature-independent fluid properties, no diffusive heat transport,

and negligible heat capacity of the tube walls. The parameter values are given

in table 3.

A straightforward choice of n aggregation points according to step 1 of the

reduction procedure is an equal-distribution of the aggregation points over the
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parameter value
Acρc 31.4 kg/m
Ahρh 39.3 kg/m
ccp 3 kJ/(kgK)
chp 4 kJ/(kgK)
U 0.5 kW/m2

p 0.6283 m
input nominal value
mc 2 kg/s
mh 1 kg/s
T c

in 320 K
Th

in 360 K

Table 3: Parameters of the heat exchanger model.

Th
in

T c
in

Th
out

T c
out

T̄h
jT̄h

j−1 T̄h
j+1

T̄ c
jT̄ c

j−1 T̄ c
j+1ψjψj−1 ψj+1

φjφj−1 φj+1

Figure 5: Schematic diagram of the reduced heat exchanger model.

whole domain with the end points placed at the ends of the heat exchanger:

sj =
j − 1

n− 1
l, j = 1, ..., n. (54)

The heat exchanger equations are a combination of two counter-current trans-

port equations with a source term representing the heat exchange. The dynamic

equations for the aggregation elements can therefore be derived from equation

(34) to be

Cj

dT̄h
j

dt
= −

mh

Ahρhl
(T̄h

j − ψj(T̄
h
j−1, T̄

c
j )), (55)

Cj

dT̄ c
j

dt
= −

mc

Acρcl
(T̄ c

j − φj(T̄
h
j , T̄

c
j+1)), (56)

where Cj is the capacity of aggregation element j, and φj and ψj are the solu-

tions of the steady-state system right and left of aggregation element j, respec-

tively. Figure 5 shows a schematic diagram of the reduced model.

A straightforward choice for the capacities is Cj = 1/n. This way, the continu-

ously distributed heat capacity of the original model is equally distributed over
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the aggregation elements.

For heat exchangers, analytic steady-state solutions are available (Kern [10]):







Th
out

T c
out






=

1

1 −Rca







1 −Rc Rc(1 − a)

1 − a a(1 −Rc)













Th
in

T c
in






, (57)

where the parameters Rc and a are defined as follows:

Rc =
mcccp
mhchp

, a = exp

(

−
Up(1 −Rc)

mcccp

)

. (58)

Expression (57) can be used in step 4 of the reduction procedure to calculate

the steady-state functions φ and ψ:







ψj

φj−1






=

1

1 −Rca







1 −Rc Rc(1 − a)

1 − a a(1 −Rc)













T̄h
j−1

T̄ c
j






. (59)

Here, T̄h
j−1 and T̄ c

j are the temperatures of the neighboring aggregation elements

j − 1 and j of the steady-state system (compare figure 5). In step 5 of the

reduction procedure, the steady-state functions (59) are substituted into the

dynamic equations of the aggregation elements (55) and (56).

3.2.2 Simulation study

To demonstrate the approximation quality of the reduced models, figures 6 to 9

compare the responses of reduced models with 2, 5 and 30 aggregation elements

with finite difference approximations with 100 and 2000 finite differences. The

simulation with 2000 finite differences is referred to as the exact solution.

The variables that are compared are the outlet temperatures Th
out and T c

out of

the hot and the cold stream, respectively. In the reduced model, they are the

temperatures of the aggregation elements at both ends of the heat exchanger,

i.e. T c
out = T̄ c

1 and Th
out = T̄h

n . Figure 6 shows the responses to a step in the hot

stream inlet temperature Th
in from 360 K to 370 K. It can be seen that the re-

sponse of the cold stream outlet temperature T c
out, which is located at the same

side as the hot stream inlet, is approximated very well by the reduced models.
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Figure 6: Heat exchanger outlet temperature responses of cold (upper plot) and
hot (lower plot) streams to a step change in the hot inlet temperature Th

in. The
dotted vertical line marks the time when the step change is applied.
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The response of the model with 30 aggregation elements is almost indistinguish-

able from the exact solution. All reduced aggregation models perfectly repro-

duce the steady-state. The finite difference approximation with 100 elements

shows a certain steady-state deviation from the reference solution. For this heat

exchanger model, this deviation can be corrected rather easily (Mathisen [11]).

However, without any modification of the finite difference models, the aggre-

gated models achieve a certain approximation quality with much less dynamic

states.

The response of the hot stream outlet temperature Th
out (lower part of figure 6)

shows a dead-time period, which is characteristic for transport systems, since

the hot stream outlet is located on the opposite side of the hot stream inlet

where the change is applied. The approximation quality of the reduced models

is rather poor here, since a dead-time system requires a model of high dynamic

order for good approximation. Therefore, the 100 finite difference approxima-

tion is superior to the aggregated model with 30 aggregation elements. Still,

the aggregated models show a better approximation towards the steady-state.

Figure 7 shows the responses to a 20% step change in the hot stream flow rate

vh. This is approximated very well by the model with 30 aggregation elements.

Since the fluid is assumed incompressible, the flow rate changes simultaneously

throughout the whole system. Due to the increased velocity of the hot fluid,

both the temperature of the hot and cold outlet streams rise. The transport

characteristic of the system is still present in the response of the hot stream

outlet temperature Th
out, where the initial slope is flattened for the residual time

of the hot fluid in the system.

Figures 8 and 9 show the responses to slow changes in Th
in and vh, respec-

tively. Here, the input signal is a cubic spline curve with a transient time of

1000 s. Generally, the approximation quality of the reduced models with 5 and

30 aggregation elements is good. The approximation of the dead-time period of

the hot stream outlet temperature Th
out (lower part of figure 8) is much better

than in case of a step change. This is explicable by the diffusive character of
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Figure 7: Heat exchanger outlet temperature responses of cold (upper plot) and
hot (lower plot) streams to a step change in the hot stream flow rate vh.
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hot (lower plot) streams to a slow change in the hot inlet temperature Th

in.
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Figure 9: Heat exchanger outlet temperature responses of cold (upper plot) and
hot (lower plot) streams to a slow change in the hot stream flow rate vh.

the heat exchange between the counter-current flows, which is more dominant

in this case, and is approximated better by the reduced models.

3.3 Fixed bed reactor

3.3.1 Model

As an example of a second-order continuous system, an adiabatic fixed-bed

reactor model investigated by Liu and Jacobsen (2004) is considered (see figure

10):

σ
∂α

∂t
= −

∂α

∂x
+

1

Pem

∂2α

∂x2
+DaR(α, θ), (60)

∂θ

∂t
= −

∂θ

∂x
+

1

Peh

∂2θ

∂x2
+DaR(α, θ), (61)
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Figure 10: Schematic diagram of a fixed bed reactor with heat recycle. The
structure of the reduced model is schematically shown using dashed lines.

which is in form of equation (14). Here, α is the conversion, θ a dimensionless

temperature, and the reaction term is given by

R(α, θ) = (1 − α)rexp

(

γ
βθ

1 + βθ

)

. (62)

The boundary conditions are

α(0, t) =
1

Pem

∂α

∂x

∣

∣

∣

∣

x=0

, (63)

θ(0, t) = fθ(1, t) +
1

Peh

∂θ

∂x

∣

∣

∣

∣

x=0

, (64)

∂α

∂x

∣

∣

∣

∣

x=1

= 0, (65)

∂θ

∂x

∣

∣

∣

∣

x=1

= 0. (66)

The derivation of a reduced model for this system is shown in detail in sec-

tion 2.5. For the purpose of demonstrating the approximation quality of the

reduced models, models derived using steps 1 to 3 are sufficient. If a gain

in computational performance is desired, the steady-state systems have to be

eliminated from the model using steps 4 and 5. All aggregation points are cho-

sen at locations zj inside the domain of the partial differential equation, i.e.

0 < zj < 1, j = 1, ..., n. Therefore, the boundary conditions of the original

model have to be included in the solutions of the steady-state systems on the

boundary of the system. The left boundary condition (64) is special in a way

that it includes the state θ(1, t) on the right side of the system. This results in
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expressions of the form

∂α

∂x

∣

∣

∣

∣

−

x1

= ψα
1 (ᾱ1, θ̄1), (67)

∂θ

∂x

∣

∣

∣

∣

−

x1

= ψθ
1(ᾱ1, θ̄1, ᾱn, θ̄n) (68)

for the left side, and

∂α

∂x

∣

∣

∣

∣

+

xn

= φα
n(ᾱn, θ̄n), (69)

∂θ

∂x

∣

∣

∣

∣

+

xn

= φθ
n(ᾱn, θ̄n) (70)

for the right side of the system.

3.3.2 Simulation study

To demonstrate the approximation quality of the reduced models, figures 11 and

12 compare the responses of reduced models with 5, 15 and 30 aggregation ele-

ments with finite difference approximations with 100 and 2000 finite differences.

The simulation with 2000 finite differences is referred to as the exact solution.

Liu and Jacobsen [12] show that the system exhibits a complex bifurcation

behavior when Da is chosen as bifurcation parameter. At Da = 0.05 and

Da = 0.07, the system has one stable steady-state, whereas at Da = 0.1, the

steady-state is unstable, and the system performs limit cycle oscillations.

Figure 11 shows the trajectories of α and θ at the right end of the reactor, when

a step change in Da from 0.05 to 0.07 is applied.

The trajectories show a fast initial change in α, which is due to the small

parameter σ multiplying the left-hand side of equation (60). After that, the

system performs a slow transient to a stable steady-state atDa = 0.07. It can be

seen that the approximation quality of all reduced models is excellent, except for

some deviation of the model with 5 aggregation elements in the beginning of the

slow transient phase. While the reduced aggregation models perfectly reproduce

the steady-state of the original system, the 100 finite differences approximation
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Figure 11: Responses of fixed-bed reactor conversion α and temperature θ at
the right end to a change of Da from 0.05 to 0.07.

shows a certain deviation.

Figure 12 shows the trajectories of the same variables, when a larger step change

in Da from 0.05 to 0.1 is applied. At Da = 0.1, the system exhibits high-

frequency limit-cycle oscillations. It can be seen that the approximation quality

of all reduced models of the slow motion towards the limit-cycle oscillations is

excellent. The reduced model with 30 aggregation elements is also capable to

reproduce the fast limit-cycle oscillations. It is remarkable that the reduced

model can follow the fast movement despite its slow nature.

4 Discussion

4.1 Advantages and limitations of the aggregation method

The method presented in this paper is conceptually straightforward. The good

approximation quality of the reduced models has been demonstrated in several
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Figure 12: Responses of fixed-bed reactor conversion α and temperature θ at
the right end simulated to a change of Da from 0.05 to 0.1.

examples. The approximation quality can even be improved by optimizing the

location and capacities of the aggregation elements for the given problem.

The main limitation of the method lies in step 4 and 5 of the method. The

problem is the high dimension of the functions that have to be substituted into

the dynamic equations if the original system has a large number of spatially

distributed state variables. In Linhart and Skogestad [4], the method was ap-

plied to a complex distillation model containing energy balances and complex

thermodynamic and hydraulic relationships. There, substitution was possible

by using five-dimensional tables with linear interpolation. If, on the other hand,

simple analytic solutions for the steady-state systems as in case for the heat ex-

changer model are available, the reduction method is easy to apply and yields

models of good approximation quality.
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4.2 Relationship to singular perturbation models

In the following, the reduction procedure of this study is compared to the proce-

dure to derive slow reduced models in singular perturbation theory (Kokotovic

et al. [13], Lin and Segel [14]). This is done for discrete systems. Since the con-

tinuous procedure is derived using the discrete procedure, the argument applies

to continuous systems as well.

4.2.1 Singular perturbation procedure

In singular perturbation theory, systems with dynamics on two or more time-

scales are analyzed mathematically. For this, a system

dx

dt
= f(x,u), (71)

is transformed into the standard form of singular perturbations

dy

dt
= f(y, z,u), (72)

ε
dz

dt
= g(y, z,u), (73)

where y is a vector of “slow” variables, z is a vector of “fast” variables, and

ε << 1 is a small singular perturbation parameter. This is usually achieved by

scaling the original equations and by a transformation of the state vector x. In

general, there is no unique procedure to choose the scaling of the equations or

the state transformation.

If the time-scales of the system are sufficiently separated, and the scaling and

state transformation is suitable, then equations (72) and (73) represent the slow

and the fast dynamics in the system, respectively. Then, these equations can

be used for further analysis of the system. One common procedure is apply

the quasi-steady-state assumption ε → 0 to equation (73), thus obtaining the

reduced slow model

dy

dt
= f(y, z,u), (74)
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0 = g(y, z,u). (75)

Here, the dynamic equations (73) are converted into the algebraic equations

(75). This is one reason why ε is called the singular perturbation parameter.

Depending on the time-scale separation and the appropriate transformation of

the system, this system approximates the original dynamics more or less accu-

rately. Due to the replacement of the fast equations by algebraic relationships,

the fast dynamics are approximated by “instantaneous” dynamics. This is sig-

nificant for changes in the inputs u, where the response of the slow model is

actually faster than the response of the original model. The term “slow model”

therefore refers to the internal dynamics of the reduced model, and not to its

input-output behavior.

If a low-order model is desired and equations (75) can be solved explicitly for

z, then

z = h(y,u), (76)

can be used to eliminate the fast variables z from the slow model

dy

dt
= f(y,h(y,u),u). (77)

4.2.2 Comparison with aggregation method

To compare the singular perturbation procedure with the aggregation method

proposed in this study, it can first be observed that after step 3 of the aggre-

gation method described in this study, the system is basically in the form of

equations (74) and (75). Steps 4 and 5 correspond to the procedure in equa-

tions (76) and (77). The main difference of the procedures lies in the derivation

of the form (74) and (75). In contrast to the singular perturbation procedure,

the aggregation method does not use a state transformation and scaling of the

equations to arrive at this form. Instead, the left-hand sides of the dynamic

equations are manipulated in a way that cannot be achieved by a state trans-
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formation and scaling. The method does therefore not rely on the existence

of a time-scale separation in the system. Instead, the method is based on ap-

proximating the spatial signal transport through the system by instantaneous

transport through intervals connected by large capacity elements. This is an

artificial construction, which deviates from the treatment of singular perturba-

tion systems.

Lévine and Rouchon [1] derive their method for staged distillation columns,

which ultimately leads to the reduction procedure for discrete systems described

in this study, as a singular perturbation method. They partition the column

into compartments of consecutive stages, and use a singular perturbation proce-

dure to separate the time-scales created by the ratio of the large compartment

holdups and the small stage holdups. This time-scale separation is, however,

not present in the original model, since the compartments are introduced com-

pletely artificially. The reason that the resulting models still approximate the

original model sufficiently well is the simplification of certain terms during the

quasi-steady-state approximation due to the incorrect introduction of the singu-

lar perturbation parameter ε. As a consequence, the compartment boundaries

do not appear anymore in the resulting models. If a reduced model is derived

without this simplification, it shows some unphysical inverse response, which is

clear evidence of the incorrect introduction of the singular perturbation param-

eter. This is discussed in detail in Linhart and Skogestad [3].

The crucial property for the success of the aggregated models is the perfect

reproduction of the steady-state. This property the aggregated models have

in common with slow singular perturbation models. Both their derivation and

their dynamics can therefore be said to be related.

4.3 Comparison with other numerical discretization schemes

As mentioned before, the method introduced in this study can be seen as a

discretization method for continuous systems. A good overview of these methods

for equations of the type of equation (14) is given in Hundsdorfer and Verwer [2].
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In the following, some qualitative similarities and differences will be discussed.

4.3.1 Steady-state approximation

One difference between the aggregation method and other methods such as finite

volume and finite element methods is immediately obvious: the aggregation

method perfectly reproduces the steady-state even when the number of dynamic

states is zero, while the above mentioned methods achieve this only in the limit

case when the number of dynamic states approaches infinity. This is due to the

incorporation of steady-state information into the aggregated models, which is

not the case in the other methods.

4.3.2 Finite element methods

In finite element methods, the solution is approximated by weighted sums of ba-

sis functions, which usually are polynomials. The weights of the basis functions

are determined by inserting the approximation into the original equations and

weighting the residual over the spatial domain by certain functions. If these

functions are the basis functions themselves, the method is called a Galerkin

method. In collocation methods, the residual is required to vanish at certain

discrete points, the so-called collocation points. This method is popular in

chemical engineering for the reduction of distillation models (Cho and Yoseph

[5], Stewart et al. [6]). The efficiency of the method is based on the assump-

tion that the solution profiles can be approximated by polynomials. In order to

account for solution profiles that are difficult to approximate with polynomials

over the whole spatial interval, the latter can be divided into finite elements, on

each of which a polynomial approximation by collocation is used. This proce-

dure is therefore different from the aggregation procedure. Collocation models

might be superior in approximating the fast responses of a system, whereas

aggregation models will show better approximation of the behavior of systems

that are close to steady-state.
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5 Conclusions

A new approach for deriving reduced models of one-dimensional distributed

systems is presented in this paper. The approach extends the aggregated mod-

eling method of Lévine and Rouchon [1] to general discrete and continuous one-

dimensional systems. The main idea is the approximation of the spatial trans-

port of signals through the system by instantaneous transport through intervals

of steady-state systems connected by aggregation elements of large capacity,

which slow down the system dynamics to match the dynamics of the original

system. The most important property of the method is the perfect reproduction

of the steady-state of the original system. The method has been demonstrated

on three typical process engineering example systems. The method presents an

alternative method to established spatial discretization methods such as finite

differences and finite elements for spatially continuous systems, and to methods

such as collocation or wave propagation methods for spatially discrete models.

The approximation quality of the reduced models depends on the number, posi-

tion and capacity of the aggregation elements. Generally, a good approximation

quality can be achieved with a relatively low number of aggregation elements

compared to other discretizations methods. The implementation effort of the

reduced models depends on the difficulty to express the solutions of the steady-

state systems as functions of the aggregation element variables in a suitable

way.
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