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A method for deriving reduced dynamic models of one-dimensional distributed sys-
tems is presented. It inherits the concepts of the aggregated modeling method of Lévine
and Rouchon originally derived for simple staged distillation models and can be
applied to both spatially discrete and continuous systems. The method is based on par-
titioning the system into intervals of steady-state systems, which are connected by
dynamic aggregation elements. By presolving and substituting the steady-state systems,
a discrete low-order dynamic model is obtained. A characteristic property of the
aggregation method is that the original and the reduced model assume identical steady
states. For spatially continuous systems, the method is an alternative to discretization
methods like finite-difference and finite-element methods. Implementation details of the
method are discussed, and the principle is illustrated on three example systems,
namely a distillation column, a heat exchanger, and a fixed-bed reactor. VVC 2011 Ameri-

can Institute of Chemical Engineers AIChE J, 58: 1524–1537, 2012
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Introduction

This article presents a method for deriving reduced
dynamic models of spatially discrete or continuous one-
dimensional distributed parameter systems. The reduced
models are low-order systems of ordinary differential equa-
tions or differential-algebraic equations. For continuous sys-
tems, the method can be used as an alternative to common
spatial discretization methods such as finite-difference, finite-
volume, and finite-element methods.1

The method is based on the concept of aggregation, which
was used by Lévine and Rouchon2 for deriving reduced-
order distillation models. Linhart and Skogestad3 showed
that this method can be used to increase the simulation speed
several times, and extended the method to more complex
distillation models.4 In this case, the method is an alternative
to other model reduction methods for this kind of one-

dimensional separation processes such as orthogonal colloca-
tion methods5,6 and wave propagation methods.7,8

The method presented here is a generalization from distilla-
tion columns to one-dimensional spatially distributed parame-
ter systems. These systems can be discrete in space, like stage-
wise processes such as staged distillation columns, or continu-
ous, like packed distillation columns, fixed-bed reactors, and
heat exchangers. A special class of discrete systems are spatial
discretizations, for example obtained by finite-differences, of
continuously distributed systems. The reduction method can be
applied to these systems in the same way as it is applied to spa-
tially discrete systems. The reduction procedure for continuous
systems can be derived as the limit case of the procedure for dis-
crete systems, where the reduction method is first applied to the
discretized system, and then the limit case when the discretiza-
tion interval goes to zero is considered. For continuous systems,
the method is limited to spatially second-order systems.

The reduction procedure starts with choosing several
‘‘aggregation points’’ on the spatial domain of the distributed
system. To each of these aggregation points, dynamic
‘‘aggregation elements’’ are assigned. The ordinary or partial
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differential equations on the intervals between the aggrega-
tion points are treated as at steady-state. The values on the
boundaries of the steady-state systems, which appear in the
dynamic equations of the adjacent aggregation elements, are
computed as functions of the states of the aggregation ele-
ments on both sides of each steady-state system. The thus
obtained system is discrete and low-order in nature.

The main principle of the method is to replace the signal
transport through the system by instantaneous transport
through the steady-state intervals from aggregation element to
aggregation element, where the dynamics are slowed down
again by the large capacities of the aggregation elements.

The article is organized as follows. The ‘‘Method’’ section
describes the mathematical structure of the one-dimensional
systems that the method can be applied to. Subsequently, the
main conceptual steps of the reduction procedure, which are
the same for both spatially discrete and continuous systems,
are explained. The detailed mathematical derivations of the
reduction method for discrete and spatially first- and second-
order continuous systems is described in the following subsec-
tions. In the last subsection, it is shown that both the original
and the reduced models assume the same steady-state, which
is a characteristic property of the method. The ‘‘Examples’’
section illustrates the reduction method on three example sys-
tems, namely a distillation column, a heat exchanger, and a
fixed-bed reactor. In the first part of each example, the origi-
nal and the derivation of the reduced model is explained. In
the second part, a simulation study that demonstrates the
approximation quality of the reduced models is presented. In
the ‘‘Discussion’’ section, the advantages and limitations of
the model reduction method are discussed. The similarities
with and differences from reduced models derived via singu-
lar perturbation procedures are described subsequently, and a
comparison of the method with alternative discretization
schemes is given. Finally, a summary of the method and its
performance is given in the ‘‘Conclusions" section.

Method

In the following, the mathematical structures of the two
types of spatially distributed systems the method can be

applied to are described. These are basically one-dimensional
systems with spatially either discretely or continuously dis-
tributed variables. Subsequently, the reduction procedure is
described, where the conceptual steps are the same for both
types of systems.

Discrete distributed parameter systems

The first type of systems the reduction method can be
applied to are discrete one-dimensional distributed systems.
Figure 1 shows the principal structure of these systems.

The main characteristic of these systems is that they con-
sist of a number of consecutive similar units that communi-
cate with the respective neighboring units along one dimen-
sion. For a mathematically convenient notation, the dynamic
and algebraic equations of each unit are expressed in vector
notation:

M1x1ðtÞ ¼ f1ðx1ðtÞ; x2ðtÞ;p; tÞ; (1)

MixiðtÞ ¼ f iðxi�1ðtÞ; xiðtÞ; xiþ1ðtÞ;p; tÞ;
2 � i � N � 1;

(2)

MNxNðtÞ ¼ fNðxN�1ðtÞ; xNðtÞ; p; tÞ; (3)

where i is the index of the unit, N is the total number of units, t
is the time variable, xi is the vector consisting of the dynamic
and algebraic variables of unit i, Mi is a diagonal ‘‘mass’’
matrix that can be used to render some of the equations
algebraic by setting the corresponding values to 0, fi is a
vector-valued function of the variables of unit i and the
neighboring units, and p is a parameter vector. External inputs
to the system are included in the notation above by the time-
dependency of the functions fi.

Continuous distributed parameter systems

The second type of systems are one-dimensional continu-
ous distributed parameter systems, where the spatial order is
restricted to a maximum of two. These systems can be writ-
ten as vector-valued partial differential equations:

Figure 1. Schematic illustration of the reduction method for discrete distributed systems.
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@xðz; tÞ
@t

¼ Dzxðz; tÞ þ Rðxðz; tÞ; z; tÞ; 0 � z � 1; (4)

where x(z, t) is the vector of the distributed state variables, z is
the spatial variable, t is the time, Dz is a spatial differential
operator acting on the state vector x(z, t), and R(x(z, t), z, t) is a
local source term. A certain set of boundary conditions is
needed to complete the description, which can also be time-
dependent and thus contain external inputs to the system. For
simplicity, the spatial domain of the partial differential
equation is here chosen to be [0;1]. This is not a restriction,
as any other spatial domain can be transformed into this by a
simple scaling of the spatial variable z.

General reduction procedure

Figures 1 and 2 illustrates the principle of the method.
The procedure can be divided into the following steps, which
are the same for both discrete and continuous systems:
(1) Derivation of reduced model equations

(a) Selection of aggregation points

On the spatial domain of the system, n ‘‘aggregation
points’’ are chosen. For discrete systems, these are n distinct
indices of units sj, j ¼ 1,…, n. For continuous systems, these
are n points zj with 0 � zj � 1, j ¼ 1,…, n.

The number and position of the aggregation points will
affect the dynamic approximation quality of the reduced sys-
tem but not the steady-states, and all choices will lead to a
functional system.

(b) Introduction of aggregation elements

At every aggregation point, an ‘‘aggregation element’’ is
positioned. For discrete systems, these elements are just the
units at the aggregation points with a modified ‘‘capacity’’
H. For continuous systems, an aggregation element is posi-
tioned at every aggregation point. Their dynamics are gov-
erned by simple differential equations that are derived from
the original partial differential equations. The derivation is
explained in the later sections. The ‘‘capacity’’ H of an
aggregation element refers to a factor that multiplies the left-
hand sides of the dynamic equations of the element.

(c) Steady-state approximation between aggrega-

tion elements

For discrete systems, the left hand sides of the equations
of all units that are not aggregation elements are set to 0.

This results in systems of algebraic equations that depend on
certain variables of the aggregation elements on both sides.
For continuous systems, the partial differential equations on
the intervals between the aggregation elements are treated
as steady-state boundary value problems, where certain
variables of the aggregation elements serve as boundary
conditions.
(2) Implementation

(a) Precomputed solution of steady-state systems

The steady-state systems are pre-solved either numerically
or analytically for a range of possible values of the states of
the aggregation elements on both sides of each system. For
the integration of the aggregation element equations, the sol-
utions on the boundaries of the steady-state systems have to
be known. They are therefore expressed as functions of the
state variables of the neighboring aggregation elements and
substituted into the aggregation element equations.

(b) Substitution of steady-state solutions

The functions computed in Step 2a are substituted into the
equations of the capacity elements. The resulting system is a
set of ODEs (or DAEs, if algebraic equations are present).

Steps 1a to c yield a model with reduced dynamics. This
model is, however, of the same complexity as the original
model. For discrete systems, a large number of dynamic
equations have been converted into algebraic equations, but
the total number of equations is unchanged. For continuous
systems, the continuous system has been partitioned into
dynamic aggregation elements and boundary value problems,
which have to be solved simultaneously. A real reduction in
model complexity and computational effort is therefore
obtained only after implementing the precomputed steady-
state solutions in Steps 2a and b.

In the following, details specific for either discrete or con-
tinuous systems are described.

Discrete systems

After Step 1c, the equations of the reduced system read

H1M1x1ðtÞ ¼ f1ðx1ðtÞ; x2ðtÞ;p; tÞ; (5)

HjMsjxsjðtÞ ¼ fsjðxsj�1ðtÞ; xsjðtÞ; xsjþ1ðtÞ;p; tÞ;
j ¼ 2;…; n� 1; ð6Þ

Figure 2. Schematic illustration of the reduction method for continuous distributed systems.
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0 ¼ f iðxi�1ðtÞ; xiðtÞ; xiþ1ðtÞ;p; tÞ;
i ¼ 2;…;N � 1; i 6¼ sj; j ¼ 1;…; n; ð7Þ

HnMNxNðtÞ ¼ fNðxN�1ðtÞ; xNðtÞ;p; tÞ: (8)

In the above equations, unit 1 and N are chosen to be
aggregation elements (s1 ¼ 1 and sn ¼ N). Either of these
could be steady-state systems as well.

Step 2a involves solving the systems 7 for the variables
xsj-1 and xsjþ1, j ¼ 1,…, n (except for x0 if s1 ¼ 1 and xNþ1

if sn ¼ N). These are needed in the equations of the aggrega-
tion elements 5, 6, and 8. The variables are expressed as
functions of the variables of the aggregation elements on
both sides. This means that, for example, for aggregation
element j, the functions

xsjþ1 ¼ /jðxsj ; xsðjþ1Þ ; pÞ ¼ /jðxj; xjþ1;pÞ; (9)

and

xsj�1 ¼ wjðxsðj�1Þ ; xsj ;pÞ ¼ wjðxj�1; xj;pÞ (10)

are required. Here, the variable xsjþ1 is a function of the
variables xsj and xsðjþ1Þ of aggregation elements sj and s(jþ1).
Note the difference between the variables xsjþ1 and xsðjþ1Þ . The
former are the variables of the first unit after the aggregation
element unit j, whereas the latter are the variables of the
aggregation element unit j þ 1. To make this difference clear,
the notation xj is introduced, where the bar denotes the state
variables of the aggregation elements.

Generally, these functions are computed numerically and
have to be implemented in a suitable way. A straightforward
way is the tabulation of the solution values on a certain do-
main of the independent variables and the retrieval of the
function values by interpolation of the table values. Whether
the functions are implemented as look-up tables or in
another way, they will be complex if the dimensionality of
the xi variables is high. It is therefore advisable to choose the
independent variables carefully, because not necessarily all
variables are needed to compute the function values. In addi-
tion, not the whole vectors of the variables xsj�1 and xsjþ1

might be necessary in the aggregation element equations.
Step 2b implies the substitution of the functions 9 and 10

into the aggregation element equations 5, 6, and 8. The
resulting system then reads

H1M1x1ðtÞ ¼ f1ðx1ðtÞ;/1ðx1ðtÞ; x2ðtÞ;pÞ; p; tÞ; (11)

HjMjxjðtÞ ¼ f jðwjðxj�1; xj;pÞ; xjðtÞ;/jðxj; xjþ1;pÞ;p; tÞ;
j ¼ 2;…; n� 1; ð12Þ

HnMnxnðtÞ ¼ fnðwnðxn�1; xn; pÞ; xnðtÞ; p; tÞ: (13)

Here, the notation M, x, and f is used to indicate a change
of index of the variables and functions due to the elimination
of the steady-state variables and equations. For every j,
xj ¼ xsj holds.

Continuous systems: second-order systems

The differential equations of the aggregation elements for
continuous systems can be derived by applying the reduction

procedure to a finite-difference discretization of the partial
differential equations, and considering the limit case of Dz
! 0, where Dz is the length of the finite-difference intervals.
The result of this operation depends on the order of the spa-
tial differential operator. The main derivation is demon-
strated here for a system with second-order spatial deriva-
tives, which represents a typical convection-diffusion-reac-
tion system. The differences in the procedure for systems
with first-order spatial derivatives are discussed in the next
section.

The system discussed in this section reads

@x

@t
¼ �a

@x

@z
þ b

@2x

@z2
þ RðxÞ; (14)

with a certain set of boundary conditions, and a and b being
dimensionless numbers. For notational simplicity, a scalar
system is used for the derivation of the reduced model
equations.

A finite-difference discretization of the spatial derivatives
yields

dxi
dt

¼ �a
xi � xi�1

Dz
þ b

xi�1 � 2xi þ xiþ1

Dz2
þ RðxiÞ; (15)

where xi are the states of the discretized system at the N
distinct discretization points zi, i ¼ 1,…, N, which span the
spatial domain over intervals of length Dz ¼ 1/(N � 1).

According to Steps 1a and b, a number of n aggregation
points zj, j ¼ 1,…, n, is chosen among all discretization
points, and the differential equations of the corresponding
states are modified by multiplying the left-hand side with a
‘‘capacity’’ Hj:

Hj

dxsj
dt

¼ �a
xsj � xsj�1

Dz
þ b

xsj�1 � 2xsj þ xsjþ1

Dz2
þ RðxsjÞ;

j ¼ 1;…; n: ð16Þ

Step 1c requires that the remaining equations are treated
as in steady-state:

0 ¼ �a
xi � xi�1

Dz
þ b

xi�1 � 2xi þ xiþ1

Dz2
þ RðxiÞ;

i ¼ 1;…;N; i 6¼ sj; j ¼ 1;…; n: ð17Þ

The resulting model has the same steady-state as the origi-
nal discretized model. The capacities Hj can be chosen
freely, but should compensate for the missing capacities of
the steady-state elements. A straightforward choice for a
reduced model with equidistant aggregation points is there-
fore Hj ¼ N/n, which distributes the capacities of the ele-
ments of the original discretized model equally among the
aggregation points of the reduced model. N is expressed in
terms of Dz as N ¼ 1/Dz þ 1, such that the equations of the
aggregation elements read

1
Dz þ 1

n

dxsj
dt

¼ �a
xsj � xsj�1

Dz
þ b

xsjþ1�xsj
Dz � xsj�xsj�1

Dz

Dz
þ RðxsjÞ:

(18)
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The second-order finite-difference approximation is here
written as the finite-difference of two first-order finite-differ-
ences. Multiplying with Dz yields

1þ Dz
n

dxsj
dt

¼ �aðxsj � xsj�1Þ þ b
xsjþ1 � xsj

Dz
� xsj � xsj�1

Dz

� �
þRðxsjÞDz: ð19Þ

Dz ! 0 yields the continuous equations. As the system
discussed here is a continuous second-order system,
xsj�1 ! xsj for Dz ! 0. This is not the case if the system is
first-order. This case will be discussed separately below. Thus,
Dz ! 0 results in

1

n

d�xj
dt

:¼ 1

n

dxsj
dt

¼ b
@x

@z

����
þ

zj

�@x

@z

����
�

zj

 !
: (20)

The notation �xj is introduced here to express that the only
remaining state variables are the states at the aggregation
points, i.e., �xj ¼ xsj .

In Step 2a, the right derivative @x
@z

��þ
zj
is calculated from the

boundary value systems between the aggregation points zj
and zjþ1,

0 ¼ �a
@x

@z
þ b

@2x

@z2
þ RðxÞ; zj � z � zjþ1; (21)

with the boundary conditions

xðzjÞ ¼ �xj; (22)

xðzjþ1Þ ¼ �xjþ1; (23)

and the left derivative @x
@z

���
zj

is calculated from the boundary
value systems between the aggregation points zj�1 and zj
correspondingly. The solution can be obtained, for example,
by using a finite-difference approximation as in Eq. 17. From
the solution of a steady-state system 21 between the
aggregation points zj and zjþ1 with the boundary conditions
22 and 23, the derivatives @x

@z

��þ
zj
and @x

@z

���
zjþ1

can be calculated as
functions of the states of the aggregation elements:

@x

@z

����
þ

zj

¼ /jð�xj; �xjþ1Þ; (24)

@x

@z

����
�

zjþ1

¼ wjþ1ð�xj; �xjþ1Þ; j ¼ 2;…; n� 1: (25)

For j ¼ 1 or j ¼ n, the boundary conditions of the original
system can be used to solve Eq. 21. The resulting left and
right derivatives depend then either on only one aggregation
element variable and a possible input variable u, for example

@x

@z

����
þ

1

¼ /Nð�xn; u1Þ (26)

for independent boundary conditions on the right side, or, for
cyclic boundary conditions, on the states of the aggregation
elements on both ends of the system in addition to a possible
input variable u:

@x

@z

����
�

0

¼ w1ð�x1; �xn; u0Þ: (27)

Step 2b implies the substitution of these functions into Eq.
20 to yield the final reduced model

1

n

d�xj
dt

¼ b /jð�xj; �xjþ1Þ � wjð�xj�1; �xjÞ
� �

; j ¼ 1;…; n: (28)

At steady-state, Eq. 28 are differentiability conditions for
the steady-state profile at the aggregation points as they
imply equality of the left and right derivatives.

Continuous systems: first-order systems

A partial differential equation with first-order spatial de-
rivative reads

@x

@t
¼ �a

@x

@z
þ RðxÞ; (29)

with a certain boundary condition on the left side, and a being
a dimensionless number. This is a transport system with a
source term R, with transport from left to right. The same
procedure for Steps 1a to c as in the derivation for second
order systems is applied. The equations for the steady-state
systems 17 now read

0 ¼ �a
xi � xi�1

Dz
þ RðxiÞ; i ¼ 1;…;N; i 6¼ sj; j ¼ 1;…; n:

(30)

These are discretizations of the continuous steady-state
systems

0 ¼ �a
@xðzÞ
@z

þ RðxðzÞÞ; zj � z � zjþ1; (31)

with the single boundary condition on the left side

xðzjÞ ¼ �xj; (32)

where x(z) denotes the spatially distributed states of the steady-
state system j between the aggregation points zj and zjþ1, and �xj
is the state of aggregation element j on the left side of the
system. This implies that the values of the variables on the
right side of the steady-state systems are generally not the
same as the variable values of the adjacent aggregation
element but depend on the left boundary condition:

xðzjþ1Þ ¼ wjþ1ð�xjÞ: (33)

The limit case of Eq. 19, which for first-order systems reads

1þ Dz
n

dxsj
dt

¼ �aðxsj � xsj�1Þ þ RðxsjÞDz;
is therefore

1

n

d�xj
dt

¼ �að�xj � wjð�xj�1ÞÞ: (34)
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Equations 34 for j ¼ 1,…, n are the reduced model for
first-order systems of the form 29. At steady-state, Eq. 34
are continuity conditions for the steady-state profile.

Steady-state preservation property

The characteristic property of the aggregation model
reduction method is that the original and the reduced model
assume identical steady states. This means that
(1) if the states of the reduced model assume the values

of the steady-state profile of original system at the aggrega-
tion points, the reduced model is in steady-state, and
(2) if the reduced model is in steady-state, the profile of

the aggregation elements with the interconnecting steady-
state systems coincides with the unique steady-state profile
of the original system.

To show this, it is assumed that there exists a unique
steady-state for the original system. For continuous systems,
the argument is restricted to systems with spatial derivatives
of order up to two, and the steady-state profile of the origi-
nal system is assumed to be differentiable.

The discrete case is trivial to show, because at steady-state,
the equations of the original system 1–3 and the equations of
the reduced system 5–8 are identical. As uniqueness of the so-
lution is assumed, the solutions are identical as well.

In the continuous case, the two parts can be shown sepa-
rately. The argument is given for second-order systems; first-
order systems follow as a special case.
(1) As the states of the aggregation elements lie on the

unique steady-state profile of the original system 14, the pro-
files of the steady-state systems between the aggregation ele-
ments coincide with the corresponding parts of the steady-
state profile of the original model. Differentiability of the
profile of the original system implies that the left and right
derivatives at each aggregation point as in Eq. 20 coincide,
and the equations are at steady-state.
(2) On the steady-state systems between the aggregation

points of the reduced model 21, the equations of the original sys-
tem 14 are satisfied at steady-state. As the boundary conditions
of the steady-state systems are the states of the aggregation ele-
ments, the profile of the connected steady-state systems is con-
tinuous. As the reduced model is in steady-state, Eq. 20 implies
that the first-order spatial derivatives of the steady-state systems
on both sides of each aggregation points assume the same val-
ues. Then, by Eq. 21, the second-order derivatives of the steady-
state systems assume the same values on both sides of each
aggregation point. This means that the profile resulting from
connecting all steady-state profiles satisfies the original system
14 at steady-state on the complete domain and is therefore the
unique solution of the original system 14 at steady-state.

Examples

The method is illustrated on three simple example systems.

Distillation column

Model As an example for a discrete system, a staged dis-
tillation column is considered. This example system was
used by Lévine and Rouchon2 for the derivation of their
reduction method, and has been discussed extensively in

Linhart and Skogestad.3 Therefore, the derivation of the
model is described here only briefly.

The original model reads

H1 _x1 ¼ Vy2 � Vx1; (35)

Hi _xi ¼ Lxi�1 þ Vyiþ1 � Lxi � Vyi; i ¼ 2;…; iF � 1; (36)

HiF _xiF ¼ LxiF�1 þ VyiFþ1 � ðLþ FÞxiF � VyiF þ FzF; (37)

Hi _xi ¼ ðLþ FÞxi�1 þ Vyiþ1 � ðLþ FÞxi � Vyi;

i ¼ iF þ 1;…;N � 1; ð38Þ
HN _xN ¼ ðLþ FÞxN�1 � ðLþ F� VÞxN � VyN ; (39)

where Hi is the total liquid molar holdup, xi and yi ¼ k(xi) are
the concentrations of the first component in the liquid and
vapor phase, respectively, of stage i, N is the number of stages
including the condenser and reboiler, iF is the index of the feed
stage, V and L are the liquid and vapor flows in the column,
respectively, and F and zF are the feed flow rate and the feed
concentration, respectively. The molar holdups, liquid and
vapor flows are assumed to be constant. The energy balance is
simplified using the constant relative volatility assumption

yi ¼ kðxiÞ ¼ axi
1þ ða� 1Þxi : (40)

After applying Steps 1a to c of the model reduction
method, the reduced model equations read

�H1 _�x1 ¼ Vkð�x2Þ � V�x1; (41)

�Hj _�xsj ¼ L�xsj�1 þ Vkð�xsjþ1Þ � L�xsj � Vkð�xsjÞ;
j ¼ 2;…; n� 1; j 6¼ jF; ð42Þ

�HjF
_�xiF ¼ L�xiF�1 þ Vkð�xiFþ1Þ � ðLþ FÞ�xiF � Vkð�xiFÞ þ FzF;

(43)

0 ¼ L�xi�1 þ Vkð�xiþ1Þ � L�xi � Vkð�xiÞ;
i ¼ 2;…;N � 1; i 6¼ sj; j ¼ 1;…; n; ð44Þ

�Hn _�xN ¼ ðLþ FÞ�xN�1 � ðLþ F� VÞ�xN � kð�xNÞ; (45)

where n is the number of aggregation stages, �Hj and sj are the
aggregated holdup and the index of aggregation stage j,
respectively, and jF is the index of the aggregation stage where
the feed is entering. The terms ‘‘aggregation stage’’ and ‘‘aggregated
holdup’’ are here used for the more general terms ‘‘aggregation
element’’ and ‘‘capacity’’ as used in the ‘‘Method’’ section.

Steps 2a and b imply the solution of the algebraic equations
and the substitution of the required solutions Yj into the
dynamic equations. Please note that in Eq. 44 as well as in Eq.
47 below, L should be replaced by (L þ F) as in Eq. 38 for
stages below the feed stage.

�H1
_~x1 ¼ VY1ð~x1; ~x2;V=LÞ � V~x1; (46)

�Hj
_~xj ¼ L~xj�1 þ VYjð~xj; ~xjþ1;V=LÞ � L~xj � VYj�1ð~xj�1; ~xj;V=LÞ;

j ¼ 2;…; n� 1; j 6¼ jF; ð47Þ
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�HjF
_~xjF ¼ L~xjF�1 þ VYjFð~xjF ; ~xjFþ1;V=ðLþ FÞÞ � ðLþ FÞ~xjF

�VYjF�1ð~xjF�1; ~xjF ;V=LÞ þ FzF; ð48Þ
�Hn
_~xn ¼ ðLþ FÞ~xn�1 � ðLþ F� VÞ~xn

�VYn�1ð~xn�1; ~xn;V=ðLþ FÞÞ: ð49Þ

The functions Yj correspond to the functions /j in Eq. 9.
Due to mass conservation of the steady-state systems 44,
only the functions /, but not the functions w are needed.
The model parameters are given in Table 1. A reduced
model of a more complex distillation model with complex
hydrodynamic and thermodynamic relationships has been
described in Linhart and Skogestad.4

Simulation study. Figure 3 shows the responses of the
top and bottom concentrations of the full distillation model
with 74 stages (xtop ¼ x1, x

bottom ¼ xN) and reduced distilla-
tion models with 3, 5, and 7 aggregation stages (xtop ¼ ~x1,
xbottom ¼ ~xn), to a step change in the feed concentration zF
from 0.45 to 0.55.

The reduced model parameters, i.e., the position of the
aggregation stages and their aggregated holdups, are given in

Table 2. They are taken from Linhart and Skogestad.3 The
parameter sets for the models with 5 and 7 aggregation
stages are ‘‘optimized’’ to minimize the deviation from the
original model over a broad range of changes in the feed
concentration zF and liquid and vapor flows L and V as
described in Linhart and Skogestad.3 However, the optimiza-
tion is restricted to the position and the aggregated holdups
of the aggregation stages except reflux drum and reboiler
and constrained to the requirement that the sum of the aggre-
gation stage capacities equals to the number of stages in the
system. Consequently, there is no degree of freedom for the
model with three aggregation stages. If these restrictions are
lifted, better approximation quality, especially for the model
with three aggregation stages, can be expected.

It can be seen that especially the approximation quality of
the reduced model with seven aggregation stages is very
good. This model has less than 10% of the states as the full
model. The gain in computation time has been shown in Lin-
hart and Skogestad3 to be in the same order of magnitude as
the reduction in the number of states.

Heat exchanger

Model. As an example of a continuous system described
by (coupled) first-order partial differential equations, a tubu-
lar counter-current heat exchanger is considered (see Fig. 4).

A description of these types of heat exchangers can be
found in Skogestad.9 The partial differential equations of the
system are of the form of Eq. 29 and read

Ahqh
@Th

@t
¼ �mh @T

h

@z
� Up

chp
ðTh � TcÞ; (50)

Acqc
@Tc

@t
¼ mc @T

c

@z
þ Up

ccp
ðTh � TcÞ; 0\z\l; (51)

Thðt; 0Þ ¼ Th
in; (52)

Tcðt; lÞ ¼ Tc
in; (53)

where Th, Tc, mh, mc, Ah, Ac, qh, qc, chp, and ccp are the
temperatures, mass flows, tube cross-sectional areas, densities,
and heat capacities of the hot and the cold streams,
respectively, U and p are the heat transmission coefficient
and the perimeter of the surface between the hot and cold
stream, respectively, l is the tube length, and Thin and T

c
in are the

inlet temperatures of the hot and the cold stream, respectively.
The main assumptions in this model are incompressible fluids,
temperature-independent fluid properties, no diffusive heat
transport, and negligible heat capacity of the tube walls. The
parameter values are given in Table 3.

Figure 3. Distillation model top and bottom concentra-
tion responses to step change in feed con-
centration zF from 0.45 to 0.55.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Table 2. Positions and Holdups of the Aggregation Stages of
the Reduced Models

Aggregation Stage Index j 1 2 3 4 5 6 7

sj (3 agg. stages) 1 36 74
�Hj 20 72 20
sj (5 agg. stages) 1 14 36 60 74
�Hj 20 21 28 23 20
sj (7 agg. stages) 1 8 20 36 53 67 74
�Hj 20 10 15 19 18 10 20

Table 1. Parameters of the Distillation Column Model

Parameter Value

N 74
nF 36
H1 20 mol
HN 20 mol
Hi,i ¼ 2,…,N � 1 1 mol
a 1.33

Input Nominal value

zF 0.45
F 0.04 mol/s
L 0.12 mol/s
V 0.14 mol/s
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A straightforward choice of n aggregation points accord-
ing to Step 1a of the reduction procedure is an equal-distri-
bution of the aggregation points over the whole domain with
the end points placed at the ends of the heat exchanger:

sj ¼ j� 1

n� 1
l; j ¼ 1;…; n: (54)

The heat exchanger equations are a combination of two
counter-current transport equations with a source term repre-
senting the heat exchange. The dynamic equations for the
aggregation elements can therefore be derived from Eq. 34
to be

Cj

d �Th
j

dt
¼ � mh

Ahqhl
ð �Th

j � wjð �Th
j�1;

�Tc
j ÞÞ; (55)

Cj

d �Tc
j

dt
¼ � mc

Acqcl
ð �Tc

j � /jð �Th
j ;

�Tc
jþ1ÞÞ; (56)

where Cj is the capacity of aggregation element j, and /j and
wj are the solutions of the steady-state system right and left of
aggregation element j, respectively. Figure 5 shows a
schematic diagram of the reduced model.

A straightforward choice for the capacities is Cj ¼ 1/n.
This way, the continuously distributed heat capacity of the
original model is equally distributed over the aggregation
elements.

For heat exchangers, analytic steady-state solutions are
available10:

Th
out

Tc
out

� �
¼ 1

1� Rca

1� Rc Rcð1� aÞ
1� a að1� RcÞ

� �
Th
in

Tc
in

� �
; (57)

where the parameters Rc and a are defined as follows:

Rc ¼ mcccp
mhchp

; a ¼ exp �Upð1� RcÞ
mcccp

 !
: (58)

Expression 57 can be used in Step 2a of the reduction pro-
cedure to derive the steady-state functions / and w:

wj

/j�1

� �
¼ 1

1� Rca

1� Rc Rcð1� aÞ
1� a að1� RcÞ

� � �Th
j�1

�Tc
j

� �
: (59)

Here, �Th
j�1 and �Tc

j are the temperatures of the neighboring
aggregation elements j � 1 and j of the steady-state system
(compare figure 5). In Step 2b of the reduction procedure,
the steady-state functions 59 are substituted into the dynamic
equations 55 and 56 of the aggregation elements.

Simulation study. To demonstrate the approximation
quality of the reduced models, Figures 6–9 compare the

responses of reduced models with 2, 5, and 30 aggregation
elements with finite-difference approximations with 100 and
2000 finite-differences. The simulation with 2000 finite-dif-
ferences is referred to as the exact solution.

The variables that are compared are the outlet tempera-
tures Thout and Tcout of the hot and the cold stream, respec-
tively. In the reduced model, they are the temperatures of
the aggregation elements at both ends of the heat exchanger,
i.e., Tc

out ¼ �Tc
1 and Th

out ¼ �Th
n . Figure 6 shows the responses

to a step in the hot stream inlet temperature Thin from 360 K
to 370 K.

It can be seen that the response of the cold stream outlet
temperature Tcout, which is located at the same side as the hot
stream inlet, is approximated very well by the reduced mod-
els. The response of the model with 30 aggregation elements
is almost indistinguishable from the exact solution. All
reduced aggregation models perfectly reproduce the steady-
state. The finite-difference approximation with 100 elements
shows a certain steady-state deviation from the reference so-
lution. For this heat exchanger model, this deviation can be
corrected rather easily.11 However, without any modification
of the finite-difference models, the aggregated models
achieve a certain approximation quality with much less
dynamic states.

The response of the hot stream outlet temperature Thout
(lower part of Figure 6) shows a dead-time period, which is
characteristic for transport systems, since the hot stream out-
let is located on the opposite side of the hot stream inlet
where the change is applied. The approximation quality of
the reduced models is rather poor here, since a dead-time
system requires a model of high dynamic order for good
approximation. Therefore, the 100 finite-difference approxi-
mation is superior to the aggregated model with 30 aggrega-
tion elements. Still, the aggregated models show a better
approximation towards the steady state.

Figure 7 shows the responses to a 20% step change in the
hot stream flow rate vh.

Table 3. Parameters of the Heat Exchanger Model

Parameter Value

Acqc 31.4 kg/m
Ahqh 39.3 kg/m
ccp 3000 J/(kgK)
chp 4000 J/(kgK)
U 0.5 kW/m2

p 0.6283 m

Input Nominal Value

mc 2 kg/s
mh 1 kg/s
Tcin 320 K
Thin 360 K

Figure 4. Schematic diagram of a tubular heat exchanger.
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This is approximated very well by the model with 30
aggregation elements. Since the fluid is assumed incompres-
sible, the flow rate changes simultaneously throughout the
whole system. Due to the increased velocity of the hot fluid,
both the temperature of the hot and cold outlet streams rise.
The transport characteristic of the system is still present in
the response of the hot stream outlet temperature Thout, where
the initial slope is flattened for the residual time of the hot
fluid in the system.

Figures 8 and 9 show the responses to slow changes in Thin
and vh, respectively. Here, the input signal is a cubic spline
curve with a transient time of 1000 s. Generally, the approx-
imation quality of the reduced models with 5 and 30 aggre-
gation elements is good. The approximation of the dead-time
period of the hot stream outlet temperature Thout (lower part
of Figure 8) is much better than in case of a step change.
This is explicable by the diffusive character of the heat
exchange between the counter-current flows, which is more
dominant in this case.

Fixed bed reactor

Model. As an example of a second-order continuous sys-
tem, an adiabatic fixed-bed reactor model is considered12

(see Figure 10):

r
@a
@t

¼ � @a
@x

þ 1

Pem

@2a
@x2

þ DaRða; hÞ; (60)

@h
@t

¼ � @h
@x

þ 1

Peh

@2h
@x2

þ DaRða; hÞ; (61)

which is in form of Eq. 14. Here, a is the conversion, y a
dimensionless temperature, and the reaction term is given by

Rða; hÞ ¼ ð1� aÞrexp c
bh

1þ bh

� �
: (62)

The boundary conditions are

að0; tÞ ¼ 1

Pem

@a
@x

����
x¼0

; (63)

hð0; tÞ ¼ fhð1; tÞ þ 1

Peh

@h
@x

����
x¼0

; (64)

@a
@x

����
x¼1

¼ 0; (65)

@h
@x

����
x¼1

¼ 0: (66)

Figure 5. Schematic diagram of the reduced heat exchanger model.

Figure 6. Heat exchanger outlet temperature
responses of cold (upper plot) and hot (lower
plot) streams to a step change in the hot inlet
temperature Th

in.

The dotted vertical line marks the time when the step
change is applied. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 7. Heat exchanger outlet temperature
responses of cold (upper plot) and hot (lower
plot) streams to a step change in the hot
stream flow rate vh.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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The derivation of a reduced model for this system is
shown in detail in the ‘‘Method’’ section for second order
systems. For the purpose of demonstrating the approximation
quality of the reduced models, models derived using Steps 1a
to c are sufficient. If a gain in computational performance is
desired, the steady-state systems have to be eliminated from
the model using Steps 2a and b. All aggregation points are
chosen at locations xj on inner points of the domain of the
partial differential equation, i.e. 0 \ xj \ 1, j ¼ 1,…, n.
Therefore, the boundary conditions of the original model have
to be included in the solutions of the steady-state systems on
the boundary of the system. The left boundary condition 64 is
special in a way that it includes the state y(1,t) on the right
side of the system. This results in expressions of the form

@a
@x

����
�

x1

¼ wa
1ð�a1; �h1Þ; (67)

@h
@x

����
�

x1

¼ wh
1ð�a1; �h1; �an; �hnÞ (68)

for the left side, and

@a
@x

����
þ

x1

¼ /a
nð�an; �hnÞ; (69)

@h
@x

����
þ

x1

¼ /h
nð�an; �hnÞ (70)

for the right side of the system.
Simulation study. To demonstrate the approximation

quality of the reduced models, Figures 11 and 12 compare
the responses of reduced models with 5, 15, and 30 aggrega-
tion elements with finite-difference approximations with 100
and 2000 finite-differences. The simulation with 2000 finite-

Figure 8. Heat exchanger outlet temperature
responses of cold (upper plot) and hot (lower
plot) streams to a slow change in the hot
inlet temperature Th

in.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 9. Heat exchanger outlet temperature
responses of cold (upper plot) and hot (lower
plot) streams to a slow change in the hot
stream flow rate vh.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 10. Schematic diagram of a fixed bed reactor with heat recycle.

The structure of the reduced model is schematically shown using dashed lines.
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differences is referred to as the exact solution. Liu and
Jacobsen12 show that the system exhibits a complex bifurca-
tion behavior when Da is chosen as bifurcation parameter.
At Da ¼ 0.05 and Da ¼ 0.07, the system has one stable
steady-state, whereas at Da ¼ 0.1, the steady-state is unsta-
ble, and the system performs limit cycle oscillations.

Figure 11 shows the trajectories of a and y at the right
end of the reactor, when a step change in Da from 0.05 to
0.07 is applied.

The trajectories show a fast initial change in a, which is
due to the small parameter r multiplying the left-hand side
of Eq. 60. After that, the system performs a slow transient to
a stable steady-state at Da ¼ 0.07. It can be seen that the
approximation quality of all reduced models is excellent,
except for some deviation of the model with five aggregation
elements in the beginning of the slow transient phase. While
the reduced aggregation models perfectly reproduce the
steady-state of the original system, the 100 finite-differences
approximation shows a certain deviation.

Figure 12 shows the trajectories of the same variables,
when a larger step change in Da from 0.05 to 0.1 is applied.

At Da ¼ 0.1, the system exhibits high-frequency limit-
cycle oscillations. It can be seen that the approximation qual-
ity of all reduced models of the slow motion towards the
limit-cycle oscillations is excellent. The reduced model with
30 aggregation elements is also capable to reproduce the fast
limit-cycle oscillations. It is remarkable that the reduced model
can reproduce the fast movement despite its slow nature.

Discussion

Advantages and limitations of the aggregation method

The method presented in this article is conceptually
straightforward. The good approximation quality of the
reduced models has been demonstrated in several examples.
The approximation quality can even be improved by

optimizing the locations and capacities of the aggregation
elements for the given problem.

The main limitation of the method lies in the implementa-
tion Step 2a of the reduction procedure. The problem is the
high dimension of the functions that have to be substituted
into the dynamic equations if the original system has a large
number of spatially distributed state variables. In Linhart and
Skogestad,4 the method was applied to a complex distillation
model containing energy balances and complex thermody-
namic and hydraulic relationships. There, substitution was
possible by using five-dimensional tables with linear interpo-
lation. If, on the other hand, simple analytic solutions for the
steady-state systems as in case for the heat exchanger model
are available, the reduction method is easy to apply and
yields models of good approximation quality.

Relationship to singular perturbation models

The presented method is not a singular perturbation
method, but is closely related both structurally and in terms
of approximation properties. In the following, the reduction
procedure is therefore compared to the procedure to derive
slow reduced models in singular perturbation theory.13,14

The discussion is presented for discrete systems. As the con-
tinuous procedure is derived using the discrete procedure,
the argument applies to continuous systems as well.

Singular perturbation procedure. In singular perturbation
theory, systems with dynamics on two or more time-scales
are analyzed mathematically. For this, a system

dx

dt
¼ fðx;uÞ; (71)

is transformed into the standard form of singular perturbations

dy

dt
¼ fðy; z;uÞ; (72)

Figure 11. Responses of fixed-bed reactor conversion
a and temperature y at the right end to a
change of Da from 0.05 to 0.07.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 12. Responses of fixed-bed reactor conversion
a and temperature y at the right end simu-
lated to a change of Da from 0.05 to 0.1.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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e
dz

dt
¼ gðy; z; uÞ; (73)

where y is a vector of ‘‘slow’’ variables, z is a vector of ‘‘fast’’
variables, and e \\ 1 is a small singular perturbation
parameter. This is usually achieved by scaling the original
equations and by a transformation of the state vector x. In
general, there is no unique procedure for choosing the scaling
of the equations or the state transformation.

If the time-scales of the system are sufficiently separated,
and the scaling and state transformation is suitable, then Eq.
72 and 73 represent the slow and the fast dynamics in the
system, respectively. Then, these equations can be used for
further analysis of the system. One common procedure is to
apply the quasi-steady-state assumption e ! 0 to Eq. 73,
thus obtaining the reduced slow model

dy

dt
¼ fðy; z; uÞ; (74)

0 ¼ gðy; z;uÞ: (75)

Here, the dynamic equations 73 are converted into the
algebraic equations 75. This is one reason why e is called
the singular perturbation parameter. Depending on the time-
scale separation and the appropriate transformation of the
system, this system approximates the original dynamics
more or less accurately. Due to the replacement of the fast
equations by algebraic relationships, the fast dynamics are
approximated by ‘‘instantaneous’’ dynamics. This is signifi-
cant for changes in the inputs u, where the response of the
slow model is actually faster than the response of the origi-
nal model. The term ‘‘slow model’’ therefore refers to the in-
ternal dynamics of the reduced model and not to its input-
output behavior.

If a low-order model is desired and Eq. 75 can be solved
explicitly for z, then

z ¼ hðy; uÞ; (76)

can be used to eliminate the fast variables z from the slow
model

dy

dt
¼ fðy; hðy;uÞ;uÞ: (77)

Comparison with aggregation method. To compare the
singular perturbation procedure with the aggregation method
proposed in this article, it can first be observed that after
step 1c of the reduction procedure, the system is basically in
the form of Eq. 74 and 75. Steps 2a and b correspond to the
procedure in Eq. 76 and 77. The main difference between
the procedures lies in the derivation of the form 74 and 75.
In contrast to the singular perturbation procedure, the aggre-
gation method does not use a state transformation and scal-
ing of the equations to arrive at this form. Instead, the left-
hand sides of the dynamic equations are manipulated in a
way that cannot be achieved by a state transformation and
scaling. The method does therefore not rely on the existence
of a time-scale separation in the system. Instead, the method
is based on approximating the spatial signal transport
through the system by instantaneous transport through

intervals connected by large capacity elements. This is an ar-
tificial construction, which deviates from the treatment of
singular perturbation systems.

Lévine and Rouchon2 derive their method for staged dis-
tillation columns, which ultimately leads to the reduction
procedure for discrete systems described in this article, as a
singular perturbation method. They partition the column into
compartments of consecutive stages, and use a singular per-
turbation procedure to separate the time-scales created by
the ratio of the large compartment holdups and the small
stage holdups. This time-scale separation is, however, not
present in the original model, since the compartments are
introduced completely artificially. The reason that the result-
ing models still approximate the original model sufficiently
well is the simplification of certain terms during the quasi-
steady-state approximation due to the incorrect introduction
of the singular perturbation parameter e. As a consequence,
the compartment boundaries do not appear anymore in the
resulting models. If a reduced model is derived without this
simplification, it shows some unphysical inverse response,
which is clear evidence of the incorrect introduction of the
singular perturbation parameter.3

The crucial property for the success of the aggregated
models is the perfect reproduction of the steady-state. This
property is also characteristic for slow singular perturbation
models as Eq. 74 and 75. Both the derivation and the
dynamic behavior of aggregated and singular perturbation
models can therefore be said to be closely related.

Alternative numerical discretization schemes

As mentioned before, the method described in this article
can be regarded as a discretization method for continuous
systems. Classical methods for equations of the type of Eq.
14 are finite-difference and finite-element methods.1 Direct
comparisons with finite-element discretizations have been
presented in the heat exchanger and fixed-bed reactor exam-
ples in the previous section. Below, a short comparison with
finite-element discretizations is given. For certain classes of
transport-reaction-diffusion systems in a control and optimi-
zation context, there exist more refined methods based on
global spatial basis functions.15,16

Steady-state approximation. One difference between the
aggregation method and other methods such as finite-volume
and finite-element methods is immediately obvious: the
aggregation method perfectly reproduces the steady-state
even when the number of dynamic states is zero, while the
above mentioned methods achieve this only in the limit case
when the number of dynamic states goes to infinity. This is
due to the incorporation of steady-state information into the
aggregated models, which is not the case in the other meth-
ods.

Finite-element methods. In finite-element methods, the
solution is approximated by weighted sums of basis func-
tions, which usually are polynomials. The weights of the ba-
sis functions are determined by inserting the approximation
into the original equations and weighting the residual over
the spatial domain by certain functions. If these functions
are the basis functions themselves, the method is called a
Galerkin method. In collocation methods, the residual is
required to vanish at certain discrete points, the so-called
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collocation points. This method is popular in chemical engi-
neering for the reduction of distillation models.5,6 The effi-
ciency of the method is based on the assumption that the so-
lution profiles can be approximated by polynomials. To
account for solution profiles that are difficult to approximate
with polynomials over the whole spatial interval, the latter
can be divided into finite-elements, on each of which a poly-
nomial approximation by collocation is used. This procedure
is therefore different from the aggregation procedure. Collo-
cation models might be superior in approximating the fast
responses of a system, whereas aggregation models will
show better approximation of the behavior of systems that
are close to steady state.

Eigenfunction decomposition methods. In many systems,
a small number of spatio-temporal patterns dominate the sys-
tem dynamics. In analogy to linear systems, these patterns
can be regarded as eigenfunctions. The system dynamics can
then be approximated by a time-dependent superposition of
these patterns. Typically, the dominant patterns correspond
to the slow dynamics of the system, because the fast dynam-
ics settle quickly after some excitation. To approximate the
dynamics of a given system, it is therefore often only neces-
sary to consider the slow eigenfunctions. For nonlinear sys-
tems, proper orthogonal decomposition (also known as Kar-
hunen-Loève method or principal component analysis) is a
common method to derive empirical eigenfunctions from
simulated trajectories.17 It works by projecting the dynamics
of a discretized distributed system on a lower-dimensional
subspace containing the most dominant spatial patterns.
While for many systems it is possible to obtain accurate
low-order approximations for the dynamic range covered by
the simulated trajectories, the original computational com-
plexity is usually retained in the reduced models. This is
because the complete set of equations is evaluated at the
inclusion of the reduced state in the original state space.

There exist more specialized methods using eigenfunction
decompositions for the treatment of distributed systems
which combine several techniques to derive low-order
reduced models. Christofides and Daoutidis15 utilize the
time-scale separation in quasi-linear PDEs marked by the
differences in eigenvalue magnitude of the eigenfunctions of
the linear spatial operator to derive approximate inertial
manifolds, which contain the slow dynamics of the system.
The obtained reduced models on basis of the approximate
intertial manifolds are then used to derive nonlinear control-
lers. Baker and Christofides16 extend the approximate inertial
manifold method to nonlinear spatial operators using empiri-
cal eigenfunctions obtained by proper orthogonal decomposi-
tion. The time-scale separation and the slow dynamics are
determined by the eigenvalues and eigenvectors of a lineari-
zation around a certain point, and the equations are trans-
formed into a slow and a fast subsystem by a linear transfor-
mation using the eigenvectors.

The approximation quality of these approaches depends on
how clearly the time-scales of a system are separated, and
how well the separation into slow and fast variables reflects
this time-scale separation. Due to the different complexities,
these methods are difficult to compare with the aggregation
method proposed in this paper. However, one main
difference is that the methods described above are more
specialized towards closed-loop controller design, while the

aggregation method yields general-purpose reduced models.
On the other hand, a similarity is that methods using spatial
eigenfunctions typically work better for systems with strong
diffusive characteristics (parabolic systems with important
second-order spatial derivative) than for systems with strong
transport characteristics (parabolic systems with weak sec-
ond-order spatial derivative or hyperbolic systems). The
aggregation method, as can be seen in the heat exchanger
example in the Examples section, works also better for sys-
tems with stronger diffusive characteristics (large heat
exchange due to low flow rates) than for stronger transport
behavior (less heat exchange due to high flow rates). An im-
portant structural difference between methods relying on
some sort of eigenfunctions and the method described in this
paper is that in the former methods, the dynamic variables
globally affect the whole spatial interval, while in the latter
method, the dynamic variables are distributed over the spa-
tial profile, having a more local effect.

Conclusions

An approach for deriving reduced models of one-dimen-
sional distributed systems is presented in this paper. The
approach extends the aggregated modeling method of Lévine
and Rouchon2 to general discrete and continuous one-dimen-
sional systems. The main idea is the approximation of the
spatial transport of signals through the system by instantane-
ous transport through intervals of steady-state systems con-
nected by aggregation elements of large capacity, which
slow down the system dynamics to match the dynamics of
the original system. The most important property of the
method is the perfect reproduction of the steady-state of the
original system. The method has been demonstrated on three
typical process engineering example systems. The method
presents an alternative method to established spatial discreti-
zation methods such as finite-differences and finite-elements
for spatially continuous systems, and to methods such as col-
location or wave propagation methods for spatially discrete
models. The approximation quality of the reduced models
depends on the number, position and capacity of the aggre-
gation elements. Generally, a good approximation quality
can be achieved with a relatively low number of aggregation
elements compared with other discretizations methods. The
implementation effort of the reduced models depends on the
difficulty to express the solutions of the steady-state systems
as functions of the aggregation element variables in a suita-
ble way.
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