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We  present  a method  for finding  optimal  controlled  variables,  which  are  polynomial  combinations  of
measurements.  Controlling  these  variables  gives  optimal  steady  state  operation.  Our  work  extends  the
concept  of  self-optimizing  control;  starting  from  the first-order  necessary  optimality  conditions,  any
unknown  variables  are  eliminated  using  elimination  theory  for  polynomial  systems  to  obtain  invariant
variable  combinations,  which  contain  only  known  variables  (measurements).  If  a disturbance  causes  the
active  constraints  to  change,  the invariants  may  be  used  to identify,  and  switch  to  the right region.  This
makes  the  method  applicable  over  a wide  disturbance  range  with  changing  active  sets.  The procedure  is
applied to  two  case  studies  of  continuous  stirred  tank  reactors.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For continuous processes which are operated in steady-state
most of the time, an established method to achieve optimal opera-
tion in spite of varying disturbances is real-time optimization (RTO)
[1]. The real-time optimizer generally uses a nonlinear steady-state
model, which is updated at intervals based on measurements. This
updated model is used to on-line recompute optimal setpoints
for the controlled variables in the control layer below. The con-
cept has gained acceptance in industry and is increasingly used for
improving plant performance. However, installing an RTO system
and maintaining it generally entails large costs.

An alternative approach to optimizing plant performance is to
use a process model off-line to find a “self-optimizing control”
structure. The basic concept of self-optimizing control was  con-
ceived by [2],  who wrote that we “want to find a function c of the
process variables which when held constant leads automatically to
the optimal adjustments of the manipulated variables”. However,
they did not provide any method for identifying this function. The
idea is to use this function as a controlled variable and keep it at a
constant setpoint by simple control structures, e.g. PID controllers,
or by more complex model predictive controllers (MPC). Using this
kind of controlled variables disburdens the real-time optimizer [3],
or may  even make it superfluous.

∗ Corresponding author. Tel.: +47 735 94154.
E-mail address: skoge@chemeng.ntnu.no (S. Skogestad).

The term “self-optimizing control” was  coined in the context
of controlled variable selection with the purpose of describing the
practical goal of finding “smart” controlled variables c:

“Self-optimizing control is achieved if a constant setpoint policy
results in an acceptable loss L (without the need to re-optimize
when disturbances occur)” [4].

Many industrial processes are operated using self-optimizing
control, although this term may  not be used. Optimally active
constraints may  be considered as self-optimizing variables, for
example, the use of maximum cooling for a compressor. However,
the more difficult problem is to identify self-optimizing control
variables associated with unconstrained degrees of freedom. An
example for the unconstrained case is controlling the air/fuel ratio
to a combustion engine at a constant value.

The concept of self-optimizing control enables us to separate
the two problems of optimizing the system and designing the con-
troller. Thus, in a first step the controlled variables c are determined
based on steady-state optimization of the process, and in a second
step a suitable controller is designed. In most cases, a PI controller
will be sufficient, but also more advanced controllers can be used
to control the self-optimizing variable. The advantage of this two-
step approach is that it makes it possible to focus completely on
steady-state optimal behavior when designing the control struc-
ture, while all issues which arise when handling dynamic systems
are considered separately when designing the actual controllers.

In the last decade, several contributions have been made
to the systematic search of controlled variables which have
self-optimizing properties [5–9], but only for cases with linear

0959-1524/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Table 1
Procedure for finding nonlinear invariants as controlled variables.

1. Formulate optimization problem
2. For the expected set of disturbances, find all regions with different sets of

active constraints Ai

3. For each region of active constraints Ai

(a) Formulate optimality conditions
(b) Eliminate Lagrangian multipliers � from optimality conditions to obtain
invariants Jz,red (reduced gradient)
(c) Obtain measurement invariants c(y) by eliminating unknowns, such that

c(y)  = 0 ⇔ Jz,red = 0
4. In each region Ai

(a) Control active constraints
(b) Control the invariants c(y)

Use controlled variables and measured constraints for changing regions

measurement models and a quadratic cost function. This results
in linear measurement combinations c = Hy as controlled vari-
ables. Here, y includes all available measurements, and the goal
is to find a good selection or combination matrix H. In cases
where a higher-order curvature is present at the optimum,
the loss imposed by using linear measurement combinations
may  not be acceptable, and the controlled variables are not
self-optimizing.

It has been noted previously [10,11,5,12,13], that the gradi-
ent of the cost function with respect to the degrees of freedom u
would be the ideal controlled variable, c = Ju. However, the gradi-
ent Ju is usually not directly measurable, and analytical expressions
for the gradient generally contain variables which are unmea-
sured (unknown disturbances). The concepts from self-optimizing
control theory can be thought of as methods for identifying a mea-
surement or a measurement combination c(y), which approximates
the gradient (in some “best” way).

The main contribution of this work is to use polynomial elim-
ination theory to extend the ideas of self-optimizing control, in
particular the concept of the null-space method [6],  to constrained
systems described by multivariable polynomials. This results in
controlled variables which are polynomials in the measurements,
c(y).

A summary of the proposed procedure for achieving steady state
optimal operation is given in Table 1. In steps 1 and 2 we formu-
late the optimization problem and determine regions of constant
active constraints, also called critical regions. This is done by offline
calculations, for example, by gridding the disturbance space with a
sufficiently fine grid and optimizing the process for each grid point.
In step 3, for each critical region, (a) the optimality conditions are
formulated, and (b) the Lagrangian multipliers are eliminated. Then
(c) the unknown variables, i.e. the disturbances and the internal
state variables are eliminated from the optimality conditions to
obtain an invariant variable combination c(y) which contains only
measured variables and known parameters. Optimal operation is
achieved in each critical region by controlling the active constraints
and the invariant measurement combinations, step 4. Finally, we
monitor the active constraints and the invariants of the neighboring
regions to determine when to switch to a new region.

The rest of this paper is structured as follows: the next sec-
tion contains the problem formulation and derives an expression
for the optimality conditions which does not contain Lagrangian
multipliers. Sections 3 and 4 show how the unknown states and
disturbances can be eliminated from the optimality conditions
without explicitly solving for them. In Section 5 we give an example,
followed by a discussion on changing active constraints (Section
6). Section 7 presents a case study with changing active con-
straints, and our paper is closed with a discussion and conclusions
in Sections 8 and 9.

2. Optimal operation using the optimality conditions

2.1. Problem formulation

Steady state optimal operation is defined as minimizing a scalar
cost index J(u, x, d) subject to satisfying the model equations, g = 0,
and operational constraints, h ≤ 0:

min
u,x

J(u, x, d) s.t

{
g(u, x, d) = 0 (model)

h(u, x, d) ≤ 0 (constraint)
.  (1)

Here u ∈ R
nu , x ∈ R

nx , d ∈ R
nd denote the manipulated input

variables, the internal state variables, and the unmeasured distur-
bance variables, respectively. In this paper, the J is assumed to be
a polynomial in the polynomial ring R[u, x, d], that is, a polyno-
mial in the variables x, u and d with coefficients in R. Similarly, the
functions g and h are assumed to be vectors with elements in the
polynomial ring R[u, x, d].

In addition, we assume that we  have measurements y ∈ R
ny ,

which are polynomial functions of u, x and d, which provide infor-
mation about internal states, inputs, and disturbances. To handle
the measurements in a consistent way  when dealing with polyno-
mials, we write the measurement relations implicitly as

m(u, x, d, y) = 0, (2)

with m(u, x, d, y) ∈ R[u, x, d, y]. To simplify notation, we  combine
the state and input variables in a vector z ∈ R

nz ,

z =
[

u

x

]
. (3)

Problem (1) is similar to the one solved on-line at given sample
times when using real-time optimization (RTO). In this work, how-
ever, we  do not solve the optimization problem on-line; instead, we
analyze the problem using offline calculations in order to find good
controlled variables c(y), which yield optimal operation when con-
trolled at constant setpoints, even for a change in the disturbance
d.

Optimality conditions
Let z∗ be a feasible point of optimization problem (1), and

assume that all gradient vectors ∇zgi(z∗, d) and ∇zhi(z∗, d) associ-
ated with gi(z∗, d) = 0 (model) and hi(z∗, d) = 0 (active constraints),
are linearly independent (linear independence constraint qualifi-
cation (LICQ)).

If z∗ is locally optimal, then there exist Lagrangian multiplier
vectors � and �, such that the following conditions, known as the
KKT conditions, are satisfied [14,15]:

∇zJ(z∗, d) + [∇zg(z∗, d)]T� + [∇zh(z∗, d)]T� = 0

g(z∗, d) = 0

h(z∗, d) ≤ 0

[h(z∗, d)]T� = 0

� ≥ 0.

(4)

When optimizing nonlinear systems, such as polynomial sys-
tems, there are several complications which may  arise. The
optimality conditions (4) will in general not have a unique solution.
There may  be multiple maxima, minima and saddle points, so find-
ing the global minimum is not an easy task in itself. When a solution
to (4) is found, it has to be checked whether it indeed is the desired
solution (minimum). In addition, there may  be solutions which
are not physical (complex). Before controlling a controlled variable
which is based on the first-order optimality condition, it has to be
assured that the process actually is at the desired optimum.
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These and other issues from nonlinear and polynomial optimiza-
tion are not addressed in this work. The focus of this paper is rather
to present a method which gives a controlled variable c(y) which is
a function of measurements y, and which is zero at all points that
satisfy the KKT conditions, while it is nonzero whenever the KKT
conditions are not satisfied.

2.2. Partitioning into sets of active constraints

Generally, the set of inequality constraints hi(z, d) ≤ 0 that are
active varies with the value of the elements in d. The disturbance
space can hence be partitioned into regions which are characterized
by their individual set of active constraints. These regions will be
called critical regions.

The concept of critical regions allows one to decompose the orig-
inal optimization problem (1) into a set of equality constrained
optimization problems, which are valid in the corresponding
critical region. This idea is also applied in multi-parametric
programming [16]. However, we do not search for an explicit
expression for the inputs u∗, as in multi-parametric programming.
We rather use each subproblem to find good controlled variables c
for the corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and
2. a controlled variable must be controlled for each unconstrained

degree of freedom.

For independent constraints and model equations, the num-
ber of unconstrained degrees of freedom, nc = nDOF, is calculated
according to

nDOF = nz − ng − nh,active, (5)

where nz, ng, nh,active denote the number of variables z, the number
of model equations, g, and the number of constraints from h which
are active (hi = 0).

Remark 1. The presented method for finding the degrees of free-
dom is valid when the polynomials are algebraically independent.
A more rigorous way to determine the degrees of freedom would
be to examine the dimension of the variety defined by g and hactive
[17,18].

Remark 2. When the optimization problem (1) is composed of
polynomial equations, the critical regions are defined by semial-
gebraic sets in R

nu+nx+nd [19]. A semialgebraic set is defined as
the finite union of sets defined by a finite number of polynomial
equalities and inequalities,

gi(x, u, d) = 0, i = 1 . . . ng (6)

and

hj(x, u, d) ≤ 0, j = 1 . . . nh (7)

where gi and hj are polynomials in the variables x, u and d, with
coefficients in R. Loosely speaking, a semialgebraic set can be
thought of a set defined by a finite number of polynomial inequal-
ities. The interior of an ellipsoid, or the set of points on a curve in
the R

n are examples of semialgebraic sets.

In the rest of the paper, to simplify notation, all active con-
straints hi(z, d) = 0 are included in the equality constraint vector
g(z, d) = 0. Then in every critical region, optimization problem (1)
can be written as

min
z

J(z, d)

s.t.
g(z, d) = 0.

(8)

The KKT first-order optimality conditions (4) simplify for prob-
lem (8) to

∇zJ(z, d) + [∇zg(z, d)]T� = 0,
g(z, d) = 0.

(9)

These expressions cannot be used for control, because they still
contain unknown variables, x (in z = [u, x]), d, and �, which must
be eliminated.

2.3. Eliminating the Lagrangian multipliers �

In every critical region, a control structure that gives optimal
operation has to satisfy (9).

Theorem 1. Given optimization problem (8),  where we assume that
the LICQ hold, and let N(z, d) ∈ R

nz×(nz−ng) be a basis for the null space
of ∇zg(z, d). Controlling the active constraints g(z, d) = 0, and the vari-
able combination Jz,red = [N(z, d)]T ∇ zJ(z, d) = 0 then results in optimal
steady-state operation.

Proof. Select N(z, d) such that ∇zg(z, d)N(z, d) = 0. Since the LICQ
are satisfied, the constraint Jacobian ∇zg(z, d) has full row rank
and N(z, d) is well defined and does not change dimension within
the region. The first equation from the optimality conditions (9) is
premultiplied by [N(z, d)]T to yield

[N(z, d)]T(∇zJ(z, d)+[∇zg(z, d)]T�) = [N(z, d)]T∇zJ(z.d)+0�

= [N(z, d)]T∇zJ(z, d).
(10)

Since N(z, d) has full rank, we have that (9) are satisfied when-
ever g(z, d) = 0 and [N(z, d)]T ∇ zJ(z, d) = 0. �

We call Jz,red = [N(z, d)]T ∇ zJ(z, d) the reduced gradient. By
construction, the reduced gradient has nDOF = nz − ng elements.
Controlling

Jz,red = [N(z, d)]T∇zJ(z, d) = 0 (11)

together with the active constraints, g(z, d) = 0, fully specifies the
system at the optimum and is equivalent to controlling the first-
order optimality conditions (9).  However, Jz,red cannot generally
be used for control directly because it depends on the variables d
and x, which are usually unknown. Thus, we  would like to elimi-
nate the unknown disturbances d and the internal states x from the
expression (11). The simplest approach (Approach 1) is to solve the
measurement equations m(x, u, d, y) = 0 and the active constraints
g(z, d) = 0 for the unknowns in z and d, and substitute the solution
into Jz,red. To do this, we need as many equations as unknowns. As
we show next, this elimination method is straightforward in case
of linear equations, but it becomes significantly more complicated
when working with polynomials of higher degree.

Alternatively (Approach 2), we search for necessary and suf-
ficient conditions which guarantee that the measurement model
m(x, u, d, y) = 0, the active constraints and the model g(z, d) = 0,
and the reduced gradient Jz,red = 0 are satisfied at the same time.
We require that the necessary and sufficient condition is a function
of measurements y and known parameters, only. This more general
approach is discussed below for the linear quadratic case (Section
3) before it is generalized for the polynomial case (Section 4).
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3. Elimination for linear quadratic systems

The optimization problem we consider is

min
z

J(z, d) =
[

zT dT
][

Jzz Jzd

Jzd
T Jdd

]  [
z

d

]
s.t.

g(z) = Az − b = 0,

(12)

and the linear measurement model is

m(z, d, y) = y − [Gy Gy
d]

[
z

d

]
= 0

= y − G̃
y

[
z

d

]
= 0.

(13)

We consider [z , d]T as unknown and we assume that (12) has a
solution, Jzz > 0, and A has full rank. If a variable in z is measured,
we include it also in y.

The null space of the constraint gradient, N, is a constant matrix
which is independent of z, such that AN = 0. The first-order neces-
sary optimality conditions require that at the optimum

Jz,red = NT∇zJ(z, d) = NT
[

Jzz Jzd

][
z

d

]
= 0. (14)

Approach 1: If the number of independent measurements (ny) is
greater or equal to the number of unknown variables (nz + nd), the
measurement relations (13) can be solved for the unknowns,[

z

d

]
=

[
G̃y

]†
y, (15)

and substituted into the gradient expression (14) to obtain

c(y) = NT
[

Jzz Jzd

][
G̃y

]†
y. (16)

Here, (·)† denotes the pseudo-inverse of (·). Controlling c(y) = and
the active constraints Az − b to zero, then results in optimal oper-
ation.

When there are no constraints, we have that z = u, and this
method results in the null space method [6].  In this case, N may
be set to any nonsingular matrix, for example the identity matrix
N = I, and we get the same result as in [8],

c(y) =
[

Juu Jud

][
G̃y

]†
y. (17)

Approach 2: In the case of polynomial equations of higher
degrees it is generally difficult to solve for the unknown variables,
as done in (15). Therefore, we consider the problem from a slightly
different perspective.

We  assume for the moment that ny = nz + nd, and that G̃y =
[Gy Gy

d] is invertible. Consider the elements of the reduced gradi-
ent vector (14), one at a time, together with all the measurement
equations (13). Let the superscript (i) denote the i-th row of a matrix
or a vector. We  write the reduced gradient (14) together with the
measurement equations (13) as a sequence of square linear systems[

[NTJzz](i) [NTJzd](i) 0

Gy Gy
d y

]
︸ ︷︷  ︸

M(i)

⎡⎢⎣ z

d

−1

⎤⎥⎦ = 0 i = 1, . . . , nDOF . (18)

Here, the M(i) are square matrices of size (ny + 1). We  want to find a
particular output combination which satisfies (18). A unique solu-
tion for [z, d]T exists only if rank(M(i)) = ny = nz + nd. The submatrix
[Gy Gy

d y] already has rank ny, irrespective of the value of y (or the
control policy that generates the input u which in turn generates
y). This follows because [Gy Gy

d y] has more columns than rows, and
because rank([Gy Gy

d]) = ny. Therefore, the condition for a nontrivial
common solution is:

det(M(i)) = 0 forall i = 1, . . . , nDOF . (19)

This condition guarantees that a common solution to (18)
exists, so the elements of the controlled variable c are selected as
ci = det (M(i)).

It remains to show that controlling the determinants
ci = det (M(i)) gives the inputs which lead to the optimum. Since
the system is linear and the rank of the measurement equations
is ny, there is a unique linear invertible mapping between the
measurements y and the vector [z, d]T. Therefore every value of y
corresponds uniquely to some value in z.

In the case with more measurements, ny > nz + nd, any
subset of nz + nd measurements may  be chosen such that
rank([Gy Gy

d])=nz + nd.

Remark 3. For simplicity, we chose to use the measurements to
eliminate the internal states. In practice we  would use the con-
straint equations Az − b = 0 in addition to the measurements for
elimination in the matrices M(i). Then we  only need ny ≥ nu + nd
independent measurements, where we assume that the degrees
of freedom u are included in the measurement vector y. Thus we
need as many equations (measurements + constraints) as variables
to eliminate.

Example 1 (Linear model and quadratic objective). This example
demonstrates that the “determinant method” gives the same result
as the previously published null-space method [6].  Consider a sys-
tem from [20]. The quadratic cost to minimize is

J = (u − d)2, (20)

and the measurement relations are

y1 = Gy
1u + Gy

d,1d,

y2 = Gy
2u + Gy

d,2d. (21)

The values of the gains are given in Table 2. We  are searching for
a condition on the measurements y1 and y2 such that the optimal-
ity condition is satisfied. The gradient is ∇uJ = 2(u  − d) and Juu = 2,
Jud = − 2. It is easily verified that measurements are linearly inde-
pendent. Using (18), this gives an equation system of 3 equations
in 2 unknowns:

M

⎡⎢⎣ u

d

−1

⎤⎥⎦ = 0, (22)

where

M =

⎡⎢⎢⎢⎣
Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2

⎤⎥⎥⎥⎦ . (23)
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Table 2
Gain values for Example 1.

Variable Value

Gy
1 0.9

Gy
d,1

0.1
Gy

2 0.5
Gy

d,2
− 1.0

Eq. (22) has a nontrivial solution if and only if det (M)  = 0. There-
fore the necessary and sufficient condition for the existence of a
nontrivial solution is

c = det (M) = −y1(JuuGy
d,2 − Gy

2Jud) + y2(JuuGy
d,1 − Gy

1Jud)
= 0.

(24)

Inserting the parameter values from Table 2 gives

c = det(M) = y1 + 2y2. (25)

Thus, controlling c = y1 + 2y2 to zero yields optimal operation. This
is the same result as found by applying the null-space method in
[20].

Even though obtaining the invariants via the determinant
(Approach 2) may  seem cumbersome, it eliminates the neces-
sity of inverting the measurements and solving for the unknowns
(Approach 1). While this is of little advantage for systems of linear
equations, Approach 2 can be generalized for systems of polyno-
mial equations which cannot easily be solved for the right set of
unknowns .

4. Elimination for systems of polynomial equations

4.1. The problem

We consider the optimization problem (8),  where all functions
are polynomials in u, x and d. Let d̂ now denote the vector of all
unmeasured (unknown) variables,

d̂ =
[

x
d

]
, (26)

not only including disturbances d, but also unknown states x, and
let y include all measurements, including all inputs. Thus, every
variable belongs either to d̂ or y, and we write the optimality con-
ditions as

Jz,red(y, d̂) = 0
g(y, d̂) = 0,

(27)

and the measurement relations as

m(y, d̂) = 0. (28)

Remark 4. Note that in the elimination step, we  do not distinguish
between internal states variables x and external disturbances d. All
variables which are not available as measurements (that is, d̂ =
[x, d]T) have to be eliminated from the optimality conditions using
g and m.

For polynomial equations, eliminating the unknown variables
from Jz,red is not as straightforward as in the linear case, as we can-
not just solve the measurement equations for the unknowns and
insert them in to the expression of Jz,red (Approach 1). Even for the
case of a univariable polynomial of degree 5 and higher, for example
d5 − d + 1 = 0, there exist no general analytic solution formulas, as
was proven by [21]. Therefore we need to find another way  to elim-
inate the unknown variables d̂ from Jz,red(y, d̂)  = 0 without solving
g and m for them first. For linear systems, we used the determinant

in (18) (Approach 2). The generalization of the determinant to sys-
tems of polynomial equations is called the resultant. According to
[22],

“the resultant of an overconstrained polynomial system char-
acterizes the existence of common roots as a condition on the
input coefficients”.

4.2. Results from polynomial elimination theory

For the elimination procedure, we  consider multivariate poly-
nomials f ∈ R(y)[d̂], that is, polynomials in the variables d̂,  whose
coefficients are functions of y (that is, polynomials with variables y
and coefficients in R). Given an nd̂-tuple,

˛i,j = (˛i,j(1), ˛i,j(2),  . . . , ˛i,j(nd̂)), (29)

we use the shorthand notation

d̂
˛i,j = d̂

˛i,j(1)
1 d̂

˛i,j(2)
2 · · ·d̂˛i,j(nd̂

)
n

d̂
. (30)

Then we  can write a system of n polynomials in compact form

fi(y, d̂) =
ki∑

j=0

ai,j(y)d̂
˛i,j

, i = 1, . . . , n, (31)

where the coefficients aij(y) /= 0 are polynomials in R[y], that is,
polynomials in y with coefficients in R.

We consider the functions ai,j(y) as polynomial coefficients, and

d̂ as variables. For every polynomial fi, we collect the exponent vec-
tors in the set Ei = {˛i,1, . . . , ˛i,ki

}. This set is called support of the
polynomial fi.

The support of the polynomial f = d2
1 + d1d2 − 1, for example,

is E = {(2, 0),  (1,  1),  (0,  0)}.  We  denote as Qi = conv(Ei) the convex
hull of the support of a polynomial (that is the smallest convex set
in R

n
d̂ containing E).

Further, we  denote the set of complex numbers without zero as
C

∗ (C∗ = C  \ 0).
Next we present some basic concepts from algebraic geometry

taken from [23].

Definition 1 (Affine variety). Consider f1, . . .,  fn polynomials in
C[d̂1, . . . , d̂n

d̂
]. The affine variety defined by f1, . . .,  fn is the set

V(f1, · · ·,  fn) = {(d̂1, . . . , d̂n
d̂
) ∈ C

n
d̂ : fi(d̂1, . . . , d̂n

d̂
) = 0

i = 1, . . . , n} (32)

Casually speaking, the variety is the set of all solutions in C
n

d̂ .

Definition 2 (Zariski closure). Given a subset S ⊂ C
m, there is a

smallest affine variety S ⊂ C
m containing S. We  call S the Zariski

closure of S.

Let L(Ei) be the set of all polynomials whose terms all have expo-
nents in the support Ei:

L(Ei) =
{

ai,1d̂
˛i1 + · · · + ai,ki

d̂
˛iki : ai,j ∈ C

}
(33)

The coefficients ai,j of a given polynomial then define a point in C
ki .

Now let

Z(E1, . . . , En) ⊂ L(E1) × · · · × L(En) (34)

be the Zariski closure of the set of all (f1, . . .,  fn) for which (31)
has a solution in (C∗)n

d̂ (that is the Zariski closure of the points
defined by all coefficients ai,j ∈ C  for which (31) has a root). For an
overdetermined system of nd̂ + 1 polynomials in nd̂ variables we
have following result:
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Lemma  1 (Sparse resultant). Assume that Qi = conv (Ei) is an nd̂-
dimensional polytope for i = 1, . . . , nd̂ + 1. Then there is an irreducible
polynomial R in the coefficients of the fi such that

(f1, . . . , fn
d̂
+1) ∈ Z(E1, . . . , En

d̂
+1) ⇔ R(f1, . . . , fn

d̂
+1) = 0. (35)

In particular, if

f1(d1 . . . dn
d̂
) = . . . = fn

d̂
+1(d1 . . . dn

d̂
) = 0 (36)

has a solution (d̂1, . . . , d̂n
d̂
) in (C∗)n

d̂ , then

R(f1, . . . , fn
d̂
+1) = 0. (37)

For a proof and a detailed treatment of the sparse resultant, we
refer to e.g. [24,23].

Remark 5. The requirement that Qi has to be nd̂-dimensional is
no restriction and can be relaxed, [25]. However, for simplicity, we
chose to present this result here.

Depending on the allowed space for the roots, there are other
resultant types (e.g. Bezout resultants and Dixon resultants for sys-
tem of homogeneous polynomials), with different algorithms to
generate them. Generally, they will be conditions for roots in the
projective space with homogeneous (or homogenized) polynomi-
als. For more details on different resultants, we refer to [24,25,23].

We choose to use the sparse resultant, since most polynomial
systems encountered in practice are sparse in the supports. That
means, for example, a polynomial of degree 5 in two  variables x, y
will not contain all 21 possible combinations of monomials x5, y5,
x4y, xy4, . . .,  x4, y4, x3y, . . .,  y, x, 1. Just as in linear algebra, this sparse-
ness can be exploited for calculating the resultant. Another reason
for using the sparse resultant is that it gives the necessary and suffi-
cient conditions for toric roots, that is, roots in (C∗)n

d̂ , such that the
input polynomials need not be homogeneous (or homogenized),
as for other resultants. Finally, the sparse resultant enables us to
work with Laurent polynomials, that is, polynomials with positive
and negative integer exponents.

Usually, resultant algorithms set up a matrix in the coefficients
of the system. The determinant of this matrix is then the resultant
or a multiple of it. Generating the coefficient matrices and their
determinants efficiently is a subject to ongoing research, but there
are some useful algorithms freely available. An overview of dif-
ferent matrix constructions in elimination theory is given in [22].
In this work, we use the maple software package multires [26],
which can be downloaded from the internet.1 For more details on
the theory of sparse resultants, we refer to [24,22,27,28].

4.3. Finding invariant controlled variables for polynomial systems

We  are now ready to apply these concepts to the problem of
selecting controlled variables and self-optimizing control. As in
the linear case above, we assume that the active constraints and
the model equations, g(y, d̂) = 0, and the measurement relations,
m(y, d̂) = 0, are satisfied. To obtain the nc = nDOF controlled vari-
ables needed for the unconstrained degrees of freedom we have:

Theorem 2 (Nonlinear measurement combinations as controlled
variables). Given d̂ ∈ (R∗)n

d̂ , and ny + ng = nd̂, independent rela-

tions g(y, d̂) = m(y, d̂) = 0 such that the system

g(y, d̂) = 0
m(y, d̂) = 0

(38)

1 http://www-sop.inria.fr/galaad/logiciels/multires.

has finitely many solutions for d̂ ∈ (C∗)n
d̂ , and let J(i)

z,red
denote the ith

element in the reduced gradient expression. Let R(J(i)
z,red

, g, m), i =
1 . . . nc be the sparse resultants of the nc polynomial systems composed
of

J(i)
z,red

(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂)  = 0 i = 1, . . . , nc. (39)

Then controlling the active constraints, g(y, d̂) = 0, and the polyno-
mial invariants ci = R(J(i)

z,red
, g, m) = 0, i = 1, . . . , nc, yields optimal

operation to first order throughout the region.

Proof. The active constraints are controlled, thus g(y, d̂) = 0 and
m(y, d̂) = 0 are satisfied. The system g(y, d̂) = 0, m(y, d̂) = 0 has
only finitely many solutions for d̂, so the set of possible d̂ is fixed.
Moreover, we  know that a real solution d̂ to the subsystem g(y, d̂) =
m(y, d̂) = 0 exists, since it is the given disturbance d and the actual
state x.

From Lemma 1, the sparse resultant gives the necessary and suf-
ficient conditions for the existence of a solution d̂ ∈ (C∗)n

d̂ for (39).
Therefore, whenever J(i)

z,red
= 0, the resultant is zero (necessary con-

dition). On the other hand, if R(J(i)
z,red

, g, m) = 0 then (39) is satisfied
(sufficient condition).

This holds for any solution d̂ ∈ (C∗)n
d̂ , and in particular the

“actual” values of d̂. Because there are as many resultants as uncon-
strained degrees of freedom, controlling R(J(i)

z,red
, g, m) for i = 1, . . .,

nu satisfies the necessary conditions of optimality in the region. �

Remark 6. In cases where the d̂ /∈ (C∗)n
d̂ , we may apply a variable

transformation to formulate the problem such we get d̂ ∈ (C∗)n
d̂ .

For example a translation d = d̃ − 1.

Remark 7. We  assume that we have “well behaved” systems for
each region. In particular it is assumed that there are no base points
(values of ai,j(y), for which a polynomial in g or m vanishes for all

values of d̂).

Example 2 (Elimination). This simple example illustrates the com-
putation of the resultant for the case with one disturbance d and no
unmeasured states. Consider a system where we want to minimize
a cost J subject to one constraint. Assume the reduced gradient is
Jz,red = NT ∇ zJ(y, d) = a1,1(y) + a1,2(y)d, and the constraint is

g(y, d) = a2,1(y) + a2,2(y)d + a2,3(y)d2 = 0, (40)

where all coefficients ai,j(y) are known functions of the measure-
ments. At the optimum we  must have

Jz,red = a1,1(y) + a1,2(y)d = 0. (41)

For arbitrary coefficients a1,1, a1,2, a2,1, a2,2, a2,3, this system of
univariate polynomials in d does not have a common solution. How-
ever, if the sparse resultant is zero, then there exist a common
solution d /= 0 for (40) and (41). In the case of univariate poly-
nomials, the sparse resultant coincides with the classical resultant,
which is the determinant of the Sylvester matrix [18],

Syl =

⎡⎢⎣ a1,2(y) a1,1(y) 0

0 a1,2(y) a1,1(y)

a2,3(y) a2,2(y) a2,1(y)

⎤⎥⎦ . (42)

The resultant is (where we omit writing explicitly the dependence
on y)

R
(

Jz,red, g(y, d)
)

= det(Syl) = a2
1,2a2,1 − a1,2a1,1a2,2 + a2,3a2

1,1.

(43)

For a common root d* to exist, the polynomial in the coefficients
R(Jz,red, g(y, d)) must vanish. Since the constraints are satisfied, g(y,
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Fig. 1. Isothermal CSTR (case study I).

d) = 0 for any disturbance d ∈ R, controlling the resultant to zero is
the condition for the reduced gradient Jz,red to become zero. So for
any real d /= 0, the optimality conditions will be satisfied whenever
R(Jz,red, g(y, d)) = 0.

5. CSTR case study I

The purpose of this case study is to show on a small CSTR exam-
ple, that the proposed polynomial method can give polynomial
variable combinations that are suitable for practical implemen-
tation. Consider a CSTR (Fig. 1), with a feed stream F [m3/min]
containing mainly component A, and two first-order chemical reac-
tions,

A −→ B, r1 = k1cA

B −→ C, r2 = k2cB.
(44)

Component B is the desired product, while C is an undesired side
product. At steady state we have one degree of freedom, the feed
stream u = F, which can be adjusted to achieve optimal operation.
The operational objective is to maximize the production of compo-
nent B, which for a given feed rate F corresponds to maximizing the
concentration of B,

J = −cB. (45)

It is assumed that the unmeasured disturbances d are the rate
constants k1 and k2, which could vary due to catalyst decay, but also
imperfect temperature control in the reactor or unknown reaction
mechanisms, which have been approximated by first-order kinet-
ics. In addition, we assume that the concentration cB is too difficult
(or expensive) to measure online.

All variables and known parameters are shown in Table 3. The
task is to find a controlled variable c(y) which can be controlled

using the total flow rate u = F, and which maximizes the desired
concentration. We  use the procedure from Table 1.

Step 1: Formulate the optimization problem. We  collect the input
u = F and the states x = [cA, cB, cC]T into a vector

z = [F, cA, cB, cC ]T. (46)

Then, the optimization problem is

min
z

J = −cB

s.t.
g(z) = 0,

(47)

where the model equations g(z) = 0 are derived from the mass bal-
ances,

g1 = FcAF − FcA − k1cAV = 0

g2 = FcBF − FcB + k1cAV − k2cBV = 0

g3 = FcCF − FcC + k2cBV = 0.

(48)

Step 2: Find regions of active constraints.  In our example, there are
no other constraints than the model equations. Therefore we have
only one region of active constraints, which is defined by (48).
Since we  have four variables and three constraints, the number of
unconstrained degrees of freedom is

nDOF = nz − ng = 4 − 3 = 1, (49)

and thus the number of controlled variables which we want to find,
is nc = nDOF = 1.

Step 3a: Formulate optimality conditions.  Using z = [F, cA, cB, cC]T,
the first-order optimality conditions are

∇zJ(z) + [∇zg(z)]T� = 0,

g(z) = 0.
(50)

Step 3b: Eliminate Lagrangian multipliers.  We calculate the null-
space of the constraint Jacobian N = [n1, n2, n3, n4]T with

n1 = −F(F + k2V)(F + k1V) (51)

n2 = −(F + k2V)F(cAF − cA) (52)

n3 = F(−k1VcAF + k1cAV − FcBF − cBF k1V + FcB + cBk1V) (53)

n4 = k1[(−cBF + cB − cAF + cA − cCF + cC )V2k2 + V(−FcCF + FcC )]

+ (FcB − FcCF + FcC − FcBF )Vk2 + F2(cC − cCF ). (54)

The reduced gradient for our system is defined as
Jz,red = [N(z)]T ∇ zJ(z) = 0. Using ∇zJ(z) = [0, 0, − 1, 0]T we have
that

Jz,red = −n3
= −F(−k1VcAF + k1cAV − FcBF − cBF k1V + FcB + cBk1V).

(55)

Table 3
Variables for case study I.

Symbol Description Type Value Unit

F Feed flow rate Known input u Varying m3/min
cA Outlet concentration A Measurement y Varying kmol/m3

cC Outlet concentration C ” ” kmol/m3

V Tank volume Known parameter Fixed m3

cAF Feed concentration A ” ” kmol/m3

cBF Feed concentration B ” ” kmol/m3

cCF Feed concentration C ” ” kmol/m3

cB Concentration of product Unmeasured state x Varying kmol/m3

k1 Reaction constant 1 Disturbance d Varying 1/min
k2 Reaction constant 2 ” ” 1/min
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Step 3c: Eliminating unknowns k1, k2 and cB. We  have three model
equations g(z) = 0, (48), and three unknowns

d̂ =

⎡⎢⎣ cB

k1

k2

⎤⎥⎦ , (56)

which need to be eliminated from Jz,red. Before we apply Theorem
2, we check the assumptions:

1. Under normal operation (nonzero feed, etc.), when all other vari-
ables are given, g(z) = 0 has one solution for k1, k2, cB (finite
number of solutions).

2. Under normal operation we have that k1 /= 0, k2 /= 0 and cB /= 0.
Therefore we have that d ∈ (C∗)3.

Since all requirements are fulfilled, we can use the sparse resul-
tant R(Jz,red, g1, g2, g3) as controlled variable. We  use the software
multires [26] to calculate the sparse resultant and obtain for the
controlled variable

c = R(Jz,red, g1, g2, g3) = cAF cA + cAF cCF − cAF cC − c2
A. (57)

This variable combination is simple and should be well suited for
practical implementation.

Step 4: Control the invariant. Controlling the invariant such that

c = 0 (58)

yields optimal operation.

Remark 8. We  note with interest that the self-optimizing invari-
ant (57) is simpler than the expression for the reduced gradient
(55). This is good for implementation, in other cases, however, it
may  become more complicated. Generally it is difficult to make
statements about the form of the invariant a-priori.

6. Discussion: changes in active constraints.

In this section we present a brief discussion on a method for
detecting when a disturbance d causes changes in the active set.
Since we have derived a set of controlled variables, which is equiv-
alent to controlling the optimality conditions, the idea is to use
these controlled variables for detecting changes in the active set.

This important topic has received some attention in litera-
ture, for example Baotić et al. [29] worked on linear systems
with quadratic objectives, while [30] present an extremum seek-
ing method, which can handle changing active constraints. Other
references are [31–33].

From an optimization perspective, there is no difference
between a constraint and a controlled variable c(y), as the con-
trolled variable may  be simply seen as an active constraint, and,
similarly, an active constraint may  be considered a variable which is
controlled at its constant setpoint. From this perspective, there is no
difference between an active constraint and the model equations,
either.

However, from an implementation point of view, there are
differences between the model, the active constraints and the con-
trolled variables c(y). First of all, the active constraints and the
controlled variables c(y) = 0 are not satisfied automatically, that is
one must control them to their setpoints. Secondly, since their val-
ues are known (or calculated using known measurements) they
may  be used for detecting when to switch control structures. To do
this, we make following main assumptions:

Assumption 1. The regions are adjacent and only two regions
share a boundary.

Assumption 2. The disturbance moves the system continuously
from one region to another, and the system cannot jump over
regions.

Assumption 3. Controlling the invariant c(y) = 0 and the con-
straint g = 0 is equivalent to controlling the optimality conditions,
and the system is operated optimally in the current region (c = g = 0).
Moreover, we assume that controlling c = g = 0 minimizes the cost
J.

Assumption 4. The optimality conditions of two neighboring
regions are simultaneously satisfied only on the interface between
the regions.

In most practical cases, only one constraint will become active
or inactive at a time. However, it is also possible that several con-
straints become active or inactive simultaneously. Starting in the
correct region, we  use following rules to track the set of active
constraints:

1. (One or more new constraints become active) When a new con-
straint is hit, change the control structure to the corresponding
region.

2. (One or more constraints become inactive) As soon as the con-
trolled variable c in one of the neighboring regions becomes zero
(reaches its optimal setpoint), change the control structure to the
corresponding region.

The reasoning behind the rules is that we  start with an optimally
operated system in region 1, and that controlling the c1 = g1 = 0
is equivalent to controlling the optimality conditions in region 1
(Assumption 3). A slowly varying (quasi-steady-state) disturbance
will move the system gradually towards the boundary (Assumption
2). On the interface between two  regions, the optimality conditions
of both regions are satisfied. This is when the control structure is
switched because either c2 of the new region will become zero, or a
constraint of the new region g2 will become active (Assumption 4).
As the disturbance moves the system further into the new region,
the system stays optimal, because the optimality conditions of the
new region, c2 = 0 and g2 = 0, are controlled. Thus, if the boundary
is the only place where the optimality conditions of both regions
are satisfied simultaneously (Assumption 4), and if only two region
share a common boundary (Assumption 1), then we may  use the
controlled variables for determining when to switch regions.

Although the assumptions will not generally hold for all poly-
nomial systems, in many practical cases the rules can be used to
detect when the control structure should be switched. The prob-
ability of the system operating at steady state on the boundary is
zero (zero measure set), so this does not affect the controllability
of the whole system [33].

Similar to our approach, [30] present a method which detects
active set changes based on the optimality conditions. Their
approach will be applicable in the same cases as our approach.
However, there are significant differences between [30] and our
approach. We  separate the steady-state optimization problem and
the dynamic control problem, by using self-optimizing controlled
variables. Once the steady-state optimal regions of active con-
straints are known, and control structures are set up for each region,
we start with designing the dynamic controllers and an appropriate
switching law, which can handle the dynamic system and avoids
e.g. switching back and forth for high frequency disturbances. In
contrast, [30] aim at directly designing a dynamic (extremum seek-
ing) controller, which can detect changing active constraints.

The main focus of this work is to find steady-state optimal con-
trolled variables for different regions in the disturbance space. The
actual dynamic implementation with switching control structures
is beyond the scope of this paper and has to be studied separately.
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Fig. 2. CSTR with two reactions (case study II).

7. CSTR case study II

The purpose of this case study, taken from [34], is to show how
to find variable combinations for use as controlled variables in dif-
ferent regions of active constraints, and how to switch between
the regions. In this case the resulting polynomials are probably
too complicated for practical implementation. Nevertheless, we
illustrate by dynamic simulation that a simple feedback control
structure based on these variables gives optimal steady state oper-
ation.

We consider an isothermal CSTR with two parallel reactions, as
depicted in Fig. 2. The reactor is fed with two feed streams FA and FB

which contain the reactants A and B in the concentrations cA and cB.
In the main vessel, the two components react to the desired product
C, and the undesired side product D. The reactants A and B are not
consumed completely during the reaction, so the outflow contains
all four products. The CSTR is operated isothermally, and we assume
that perfect temperature control has been implemented.

The products C and D are formed by the reactions:

A + B
k1−→ C

2B
k2−→ D.

(59)

We  wish to maximize the amount of desired product (FA + FB)cC,
weighted by a yield factor (FA + FB)cC/(FAcA,in) [34]. The amount of
removed heat and the maximum flow rate are limited by the equip-
ment, and we  formulate the mathematical optimization problem as
follows [34]:

max
FA,FB

(FA + FB)cC

FAcAin

(FA + FB)cC (60)

subject to

FAcAin
− (FA + FB)cA − k1cAcBV = 0

FBcBin
− (FA + FB)cB − k1cAcBV − 2k2c2

BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB ≤ Fmax

k1cAcBV(−�H1) + 2k2c2
BV(−�H2) ≤ qmax.

(61)

Here, k1 and k2 are the rate constants for the two  reactions,
(− �H1) and (− �H2) are the reaction enthalpies, qmax the maxi-
mum allowed heat production, V the reactor volume, and Fmax the
maximum total flow rate. The measured variables (y), the manip-
ulated variables (u), the disturbance variables (d), and the internal
states (x) are given in Table 4, and the parameter values of the
system are listed in Table 5.

We write the combined vector of states x = [cA, cB, cC]T and
manipulated variables u = [FA, FB]T as

z =
[

cA, cB, cC, FA, FB

]T
. (62)

Table 4
Overview of variables (case study II).

Symbol Description Comment

FA Inflow stream A Measured input u
FB Inflow stream B ”
F total flow Measured variable y
q  Heat produced ”
cB Concentration of B ”
cA Concentration of A Unmeasured state x
cC Concentration of C ”
k1 Rate constant reaction 1 Unmeasured disturbance d

Table 5
Parameters (case study II).

Symbol Unit Value

k1 l/(mol h) 0.3–1.5
k2 l/(mol h) 0.0014
(−  �H1) J/mol 7 × 104

(− �H2) J/mol 5 × 104

cA,in mol/l 2
cB,in mol/l 1.5
V l  500
Fmax l/h 22
qmax kJ/h 1000
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Fig. 3. Optimal values of the constrained variables (case study II).

7.1. Identifying operational regions

Next, the system is optimized off-line for the range of possi-
ble disturbances, which is assumed to be the single disturbance
d = k1. Based on which constraints are active, the system can be
partitioned into three adjacent critical regions. The critical regions
are visualized in Fig. 3, where the normalized constraints are plot-
ted over the disturbance range. In the first region, for disturbances
below about k1 = 0.65 l/mol h, the flow constraint is the only active
constraint. The second critical region, for values between about
k1 = 0.65 l/mol h and k1 = 0.8 l/mol h, is characterized by two  active
constraints, i.e. both the flow constraint and the heat constraint are
active. Finally, in the third region, above about k1 = 0.8 l/mol h, only
the heat constraint remains.

7.2. Eliminating �

In each critical region, the set of controlled variables contains
the active constraints (we know that they should be controlled
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at the optimum). This leaves the unconstrained degrees of free-
dom, which is the difference between the number of manipulated
variables and the active constraints, nDOF = nz − ng. For each of
the unconstrained degrees of freedom one controlled variable is
needed.

In the first critical region this gives nDOF,1 = 5 − 4 = 1 uncon-
strained degrees of freedom, so apart from the active constraint,
which is the first controlled variable, we need to control one more
variable (invariant).

To obtain the reduced gradient, we calculate the null space of
Jacobian of the active set NT

z and multiply it with the gradient of the
objective function ∇zJ(z, d) to obtain Jz,red,1 = NT

z∇zJ. Depending on
the algorithm to compute the null space, this may  become a frac-
tional expression, but since we want to control the process at the
optimum, i.e. we  control Jz,red,1 to zero, it is sufficient to consider
only the numerator of Jz,red,1. This is possible because a fraction van-
ishes if the numerator is zero (provided the denominator is nonzero
which is the case here because ∇zg has full rank). For the critical
region 1, we obtain from (11) the reduced gradient

Jz,red,1 = −(FA + FB)2cC

[
−3cCF2

B FA − 3cCF2
A FB − 4cCcBF2

A k2V

−4cCk2V2k1c2
BFA − cCF3

A − cCF3
B − 4cCk2V2k1c2

BFB

−cCcBF2
A k1V − 4cCcBF2

B k2V − cCcBF2
B k1V − cCF2

A cAk1V

−cCF2
B cAk1V − 8cCFAcBFBk2V − 2cCFAcBFBk1V

−2cCFAFBcAk1V + 8FAk1V2cA,ink2c2
B + 2F2

A k1VcBcA,in

+2FAk1VFBcBcA,in − 2F2
A k1VcB,incA − 2FAk1VFBcB,incA

]
,

(63)

which should be controlled to zero. This expression may  be simpli-
fied slightly, since it is known that (FA + FB)2cC /= 0. It is therefore
sufficient to find an invariant which is equivalent to controlling the
factor in square brackets in (63).

Similarly, in the second critical region nDOF,2 = 5 − 5 = 0, and here
we simply control the active constraints, keeping q at qmax and F at
Fmax.

In the third critical region nDOF,3 = 5 − 4 = 1, and we use one of
the manipulated variables to control the active constraint (q = qmax)
while the other one is used to control the invariant derived from
Jz,red,3, which is an expression similar to (63).

7.3. Eliminating unknown variables

The reduced gradients for the first and the third critical region
Jz,red,1 and Jz,red,3 still contain unknown variables, namely k1, cA and
cC, and cannot be used for feedback control directly. To arrive at
variable combinations which can be used for control, we include
all known variables into y, and all unknown variables into d̂,  such
that d̂ = [k1, cA, cC ]T. Then we write the necessary conditions for
optimality for each region as

Jz,red(y, d̂) = 0

g(y, d̂) = 0.
(64)

Considering the known variables y as parameters of the system, we
want to find conditions on these parameters such that (64) is sat-
isfied. The system has nd̂ = 3 unknown variables, k1, cA and cC, of
which we know that they are not zero. This corresponds to solu-
tions [k1, cA, cC ] ∈ (C∗)3. According to Section 4 we have that (64)
is satisfied if and only if the sparse resultant is zero.

For the first region, we use the sparse resultant of the sys-
tem consisting of the invariant (63), the model equations (the first
three equality constraints in (61)) and the first (active) inequality

constraint in (61) to eliminate k1, cA, cC and FB and to calcu-
late the controlled variable combination. The computations were
performed using the multires software [26], and the controlled
variable for region 1 is

c1 = −c2
b,inF2

A − F2
A cA,incb,in + 6FAcA,ink2c2

b V + 2FAcA,inFmaxcb

− FAcA,inFmaxcb,in + F2
maxc2

b + c2
b,inF2

max + 4V2k2
2c4

b

− 2cb,inF2
maxcb − 4Vk2c2

b cb,inFmax + 4Vk2c3
b Fmax. (65)

Note that this invariant has become simpler than the reduced
gradient (63).

In the second critical region control is simple; the two  degrees
of freedom are used to control the two active constraints F = Fmax

and q = qmax.
The third critical region is controlled similar to the first one.

One degree of freedom is used to control the active constraint, and
the second degree of freedom is used to control the resultant. The
model equations (the first three equations together with the energy
constraint) in (61) and the reduced gradient are used to compute
the resultant. Thus, the unknown variables k1, cA, cC, and FB are
eliminated from the reduced gradient. The controlled variable for
region 3 is

c3 = −4Vc2
Bk2�H2FAcA,incB,inqmax�H1 + FAc2

B,inq2
max�H1

+ 4V2c4
Bk2

2�H2FAcA,incB,in�H2
1 − 4V2c4

Bk2
2�H2

2FAcA,incB,in�H1

− 2Vc2
Bk2FAcA,incB,in�H2

1qmax − 4Vc2
Bk2�H2FAc2

B,in�H1qmax

− 2Vc2
Bk2�H2F2

A cA,inc2
B,in�H2

1 + 8Vc3
Bk2�H2�H1FAcA,inqmax

− 8V2c4
Bk2

2�H2cB,in�H1qmax − 12V2c4
Bk2

2FA�H2
2c2

B,in�H1

− 8V2c5
Bk2

2�H2FAcA,in�H2
1 + 8V2c5

Bk2
2�H2

2�H1FAcA,in

+ 8V2c5
Bk2

2FA�H2
2cB,in�H1 − q3

maxcB,in + 2cBq3
max

− �H1cB,inFAcA,inq2
max + 2cBFAcA,inq2

max�H1

+ F2
A cA,inc2

B,in�H2
1qmax − 2cBFAcB,inq2

max�H1 + 8Vc3
Bk2�H2q2

max

+ 8V2c5
Bk2

2�H2
2qmax + 8V3c6

Bk3
2�H3

2cB,in

− 2cBF2
A cA,incB,in�H2

1qmax − 2Vc2
Bk2�H1q2

maxcB,in

− 2Vc2
Bk2�H2q2

maxcB,in + 4V2c4
Bk2

2�H2
2cB,inqmax

− 8V3c6
Bk3

2�H2
2cB,in�H1. (66)

Due to the structure of the polynomials in region 3, here
the invariant has become more complicated after eliminating the
unknown variables.

Although the expressions are quite complicated, they contain
only known quantities, and can be simply evaluated and used for
control. Before actually using the measurement combinations for
control, they are scaled so that the order of magnitude is similar.
That is, c1 is scaled (divided) by 10, and c3 is scaled by �H2

1�H2FAFB.

7.4. Using measurement invariants for control and region
identification

Having established the controlled variables for the three criti-
cal regions, it remains to determine when to switch between the
regions. Starting in the first critical region, the flow rate is controlled
such that FA + FB = Fmax, and the first measurement combination c1
is controlled to zero. As the value of the disturbance k1 rises, the
reaction rate increases as well as the required cooling to keep the
system isothermal, until maximum cooling is reached, Fig. 4. When
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Fig. 4. Optimal values of controlled variables (case study II).

the constraint is reached, the control structure is switched to the
next critical region, where the inputs are used to control q = qmax

and FA + FB = Fmax. While operating in the second region, the con-
trolled variables of the neighboring regions are monitored. As soon
as one of the variables c1 or c3 reaches its optimal setpoint (i.e. 0)
for its region the control structure is changed accordingly. Specif-
ically, when k1 is further increased, such that c3 = 0 is reached, we
must keep FA + FB < Fmax such to maintain the value c3 = 0.

7.5. Implementation and dynamic simulations

In the steady-state case, we have assumed that we have ideal
temperature and level control. In practice this has to be achieved
by control, so we modified the model (61) such that the reac-
tor holdup (level) and the temperature can vary dynamically. A
detailed description of the dynamic model with its parameters is
given in [35].

Control structure in region 1. All variables are controlled using
PI controllers. The control structure in region 1 is presented in
Fig. 5. The cooling duty q is used to control the temperature and
the feed flow FA is used to control the invariant c1. Further, we  use
the outflow F to control the level, and the feed FB to control the
throughput to F = Fmax. Since we are controlling a constraint with a
PI controller, we need some back-off in order not to become infeasi-
ble. We  assume that this has already been taken into consideration
when formulating the constraints, such that 0.1 l/h deviations from
Fmax = 22 l/h can be tolerated.

Fig. 5. Variable pairings for region 1 (case study II).

Fig. 6. Variable pairings for region 3 (case study II).

Control structure in region 2. In this region we simply keep F = Fmax

and q = qmax. Using PI controllers, the temperature is controlled by
manipulating the input FA, and the level is controlled by FB.

Control structure in region 3. All variables are controlled using
PI controllers. The selected pairing is shown in Fig. 6. The optimal
value for cooling, q = qmax is set in open loop. The feed flow FA is used
to control the invariant c3, and the feed flow FB is used to control
the temperature. As in region 1, the outflow F is used to stabilize
the level of the reactor.

In Fig. 7 we show the dynamic behavior of the system. Starting in
region 3, we control the heat constraint q = qmax and the invariant c3.
The disturbance decreases until the flow constraint becomes active.
When the constraint is hit, we  change the corresponding control
structure to region 2, where we  control F at Fmax and q at qmax. We
monitor the controlled variables of the neighboring regions, and as
the disturbance decreases further, we  switch the control structure
to region 1 when the controlled variable c1 becomes zero.

The simulations demonstrate nicely that it is possible to obtain
optimal operation by controlling the invariants using simple PI con-
trollers. Moreover we  see that the control structure including active
constraints can be changed based on monitoring the controlled
variables and the constraints.

8. Discussion

8.1. Applicability

Since the sparse resultants can give “large” expressions, our
method is best suited for small systems with not too many
constraints and measurement equations. This is further empha-
sized by the fact that calculating the analytical determinant
for large matrices is computationally demanding and that the
construction of the resultant matrices is based on the com-
putation of the mixed volume, which is a hard enumerative
problem [23]. However, large systems can often be decomposed
into smaller subsystems which can be considered (optimized)
independently. In those cases our method can be applied to a
subsystem.

Depending on the problem structure, the invariants may
become more complicated than the reduced gradient, as in region
3 of case study II, or much simpler, as in case study I and region 1
of case study II.

8.2. Alternative elimination of �

The elimination of the Lagrangian multipliers could also been
done simultaneously with the other unknown variables using
the resultant. Under the strict complementarity condition (�i is
nonzero whenever the corresponding constraint is active), the
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solutions for � lie in the toric variety, and therefore the sparse
resultant gives necessary and sufficient conditions on the known
variables so that the KKT system has a solution. We  chose to apply
the two-step procedure, where we first form the reduced gradi-
ent, and then eliminate the unknown variables using the resultant,
because this results in lower computational load when computing
the resultants.

8.3. Gröbner bases

As an alternative to using resultants, our initial approach was
to compute the controlled variable combinations by Gröbner bases
[18]. We calculated a Gröbner basis for the ideal generated by the
optimality conditions using a suitable elimination ordering. Then
we used a polynomial from the elimination ideal as controlled vari-
able. However, in this approach it is not straightforward to find an
ordering that eliminates the unknown variables while not yield-
ing the “trivial solution” (i.e. the invariant is always zero when the
constraints are satisfied). Another disadvantage with this Gröbner
basis approach is that the selected invariant may give rise to addi-
tional “artificial solutions” which are not solutions of the original
optimality conditions.

A similar approach is to calculate a Gröbner basis for the ideal
generated by the active constraints g(y, d̂)  and m(y, d̂) using some
elimination ordering, and to reduce NT ∇ zJ modulo the ideal.
This avoids the trivial solution, however, the problem of choos-
ing a monomial ordering which eliminates all unknown variables,
remains. Generally the Gröbner basis approach tends to give even
more complicated expressions than the sparse resultant approach
presented here.

8.4. Number of equations/measurements

If there are more polynomial equations than unknowns, the
engineer must choose a set of nd̂ polynomials to use for eliminat-
ing the unknowns. For different sets of polynomials, however, the
controlled variables will look quite different. The best (in terms
of simplicity) choice depends on the structure of the equations,
and is thus specific to the problem. However, as a general guide-
line, we  would advise to keep the degrees of the polynomials
low.

Although we can specify which nd̂ variables must be elimi-
nated from the reduced gradient, the number of variables which
remain depends strongly on the structure of the model equations
and the eliminated variables. In some cases all information about
the optimum is contained in very few variables, in other cases many
variables are needed to specify the optimum.

In the case where ny + ng ≤ nd̂, that is, fewer equations than
unknown variables, it is generally not possible to find invari-
ants, which are equivalent to controlling the optimality conditions.
Instead, we  need to find the best possible approximation in terms
of the cost. For linear systems with quadratic cost, the method in
[8] can be used. How this can be generalized to polynomial and
nonlinear systems is still an open problem.

8.5. Noise, plant-model mismatch

The resultant method, as presented in this paper, does not
take into account measurement noise or model error. One possi-
ble approach to compensate for plant-model mismatch could be
to use an experimental method such as NCO tracking [12] to adjust
the setpoints or other parameters in the invariants. However, this is
beyond the scope of this work; our goal was to generalize the null-
space method [6] and to demonstrate that the concept of finding
variables which remain constant at optimal operation is possible
also for polynomial systems.

8.6. Controllability

Since our approach separates the controlled variables selection
procedure and the controller design, it must be verified that the
measurement invariants are controllable using simple controllers.
That is, the controlled variables c must cross zero. Proving this is
not trivial, and beyond the scope of this paper. However, in our
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experience so far, the measurement invariants could be controlled
by simple controllers.

8.7. Relationship to NCO tracking

The presented method is based on the same idea as NCO tracking
[12,34]. However, in contrast to [12,34],  where the optimality con-
ditions are solved for the optimizing inputs,  this work focuses on
finding the right outputs which express the optimality conditions.
The problem of generating the inputs which control the outputs to
zero is dealt with separately. In most cases, inputs can be generated
by feedback control, e.g. PI controllers.

9. Conclusions

Previously, the concept of self-optimizing control was  only
treated in the framework of linear models with quadratic cost func-
tions. This paper contains the first contribution to extend the ideas
to the more general class of polynomial systems. Although further
work should be dedicated to handling the effect of noisy measure-
ments and finding ways to approximate the invariant using simple
and robust measurement polynomials, the polynomials obtained
by the sparse resultant can become quite simple for some systems,
and then they may  also be implemented in real processes.
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[29] M. Baotić, F. Borrelli, A. Bemporad, M. Morari, Efficient on-line computation
of  constrained optimal control, SIAM Journal on Control and Optimization 47
(2008) 2470–2489.

[30] L. Woodward, M.  Perrier, B. Srinivasan, Real-time optimization using a
jamming-free switching logic for gradient projection on active constraints,
Computers & Chemical Engineering 34 (11) (2010) 1863–1872.

[31] M.G. Jacobsen, S. Skogestad, Active constraint regions for optimal operation of
chemical processes – application to a reactor-separator-recycle system, Indus-
trial & Engineering Chemistry Research 50 (19) (2011) 11226–11236.

[32] H. Manum, Simple implementation of optimal control for process systems,
Ph.D. thesis, Norwegian University of Science and Technology, 2010.

[33] V. Lersbamrungsuk, T. Srinophakun, S. Narasimhan, S. Skogestad, Control struc-
ture design for optimal operation of heat exchanger networks, AIChE Journal
54  (1) (2008) 150–162.

[34] B. Srinivasan, L.T. Biegler, D. Bonvin, Tracking the necessary conditions of opti-
mality with changing set of active constraints using a barrier-penalty function,
Computers & Chemical Engineering 32 (2008) 279–572.

[35] J. Jäschke, Invariants for optimal operation of process systems, Ph.D. thesis,
Norwegian University of Science and Technology, 2011.


