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Abstract: Adding parallel process lines is a common way to increase the capacity of a chemical
plant. Generally, the process units will be similar, but not identical. The optimal distribution
of load between the lines will vary depending on the parameters and disturbances which affect
the individual units, and controlling the distribution optimally can lead to significant savings in
the operational costs. We derive a method for finding optimal controlled variables which involve
only measurements from two lines at a time. Controlling these variables to equal values leads to
the optimal load distribution, with no need to re-optimize online when disturbances occur. As
an example, we consider a system of parallel continuous stirred tank reactors with the general
reaction aA+ bB A cC + dD, which follows a polynomial reaction law.

Keywords: Parallel reactors, Optimal operation, Controlled variable selection, Real-time
optimization, Optimizing control, Optimization

1. INTRODUCTION

During the lifetime of a process plant, its capacity is often
increased due to a rising demand for products. Starting
at some initial capacity, a common solution to cater for
increased demand is to add one or more parallel process
lines. The resulting parallel plants will often be similar,
and in many cases share one common feed or product
stream, which is distributed between the different lines.

In practice, it cannot be expected that the optimal value
of the distribution remains constant. It is rather a function
of changing disturbances and operating conditions in each
line. To operate the process at maximum profitability, a
strategy is required for distributing the flow optimally
between the parallel lines.

In this work we consider the case where we have several
continuous stirred tank reactors (CSTR), which are op-
erated in parallel. This is often the case when reactors
are required which have a high ratio of heat transfer area
to volume [Luyben, 2007], or where deactivation of the
catalyst requires regular catalyst changes or reactivation.
In particular, we present a method for distributing the
load between the reactors, when the operating conditions
of the individual reactors differ from the nominal condi-
tions. The resulting unconstrained optima are relatively
flat, such that a suboptimal split will in general not im-
mediately show a drastic profit reduction. However, as
these processes are operated over a long time period, the
accumulated savings which come with adjusting the split
optimally become large in the long run.

The most common operational strategy in industrial prac-
tice is to determine a split between the lines, that gives
⋆ This work was supported in by the Norwegian Research Council.
1 Corresponding author

good performance for some nominal conditions, and to
keep the split constant at that value. This open loop
strategy has the advantage that it is very simple, but it will
give rise to economic losses when the operating conditions
differ from the nominal conditions.

A second approach is “real-time optimization” (RTO)
[Marlin and Hrymak, 1997]. It involves estimating and
updating the parameters and the states of a mathematical
process model for formulating an optimization problem.
Using the newest parameter and state estimates, this
optimization problem is solved on-line at given sample
times. If a dynamic model is used in the optimization,
this approach is referred to as dynamic RTO, [Diehl et al.,
2002]. The success of this approach depends strongly on
an adequate process model [Forbes et al., 1994], and the
ability to estimate the states [Kol̊as et al., 2008] correctly.
In addition, the resulting optimization problem needs to
be solved in a sufficiently short time, so that the obtained
solution can be used online. These factors generally make
RTO a relative expensive technology.

A third approach, which is followed in this paper, is to
determine a feedback control structure which keeps some
variables at constant setpoints. This strategy is very com-
mon in practice, for example controlling the same out-
put temperatures or the same compositions in all passes.
However, the design of the control structure is often done
based on engineering intuition and without systematically
including economic considerations. The goal of this paper
is therefore to systematically use results from optimization
and to show how one can obtain steady state optimal
controlled variables (CV) for parallel systems. Controlling
these variables at a constant setpoint value leads to steady
state optimal operation without the need to reoptimize
when the operating conditions change. Such variables are
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Fig. 1. Parallel reactor units

called “self-optimizing” controlled variables. According to
Skogestad [2000] self-optimizing control is achieved if:

“we can achieve an acceptable loss with con-
stant setpoint values for the controlled vari-
ables (without the need to reoptimize when
disturbances occur).”

We present first some general concepts for finding nonlin-
ear self-optimizing controlled variables for a class of par-
allel processes, and apply the ideas to a system of parallel
continuous stirred tank reactors (CSTR). We combine the
theory of “equal marginal utility” [Downs and Skogestad,
2011], with the ideas from Jäschke and Skogestad [2012],
where (1) the optimality conditions are formulated using
a simple model, (2) all unknown variables are eliminated
from the optimality conditions, and (3), the obtained ex-
pressions are used as controlled variables. In this work we
add an additional step, where we show that for the parallel
CSTRs in consideration, the resulting expressions can be
approximated by very simple measurements.

A big advantage of the nonlinear controlled variables is
that it is not necessary to determine or adjust their optimal
setpoint. As they are derived from the optimality condi-
tions, the optimal setpoint results from the derivation.

In the next section we present the problem formulation,
and in Section 3 we present some general results for parallel
processes, which are applied to a system of CSTRs in
Section 4. In Section 5 we illustrate our results with a
numerical case study, and the paper is closed with a
discussion and conclusions, Sections 6 and 7.

2. PROBLEM FORMULATION

We assume that we have N parallel process units, Fig. 1.
Each unit has an associated operating cost, and the overall
cost J is the sum of the N individual costs Ji,

J =

N
∑

i=1

Ji(Fi). (1)

Here Fi denotes the load allocated to the unit Fi. In the
rest of this paper, we will use the terms “load” and “flow”
interchangeably. It is assumed that the total load F is
fixed, that is, the total load is the sum of the individual
loads Fi through all lines:

F =

N
∑

i

Fi. (2)

Optimal operation can be formulated mathematically as

min
F1,...FN

J(F1 . . . FN ), (3)

where the flow rates Fi have to satisfy the constraint
N
∑

i=1

Fi − F = 0. (4)

This results in N − 1 degrees of freedom to optimize the
total cost J , namely the distribution of the flow rates
between the N units.

Under normal plant operation, the individual units are
subject to varying disturbances which can have either
positive or negative influence on the cost. To achieve
optimal operation, it is necessary to adjust the distribution
of the load (split) between the different units on-line. This
adjustment will be dependent on the type and magnitude
of the disturbance.

The aim of this work is to find variable combinations,
which can be controlled using the N − 1 degrees of
freedom, and which, when controlled at a constant set-
point, automatically lead to the optimal adjustments in
the load distribution between the individual units.

3. CONTROLLED VARIABLES FOR PARALLEL
PROCESSES

3.1 Optimality conditions

The first order necessary optimality conditions [Nocedal
and Wright, 2006] require that at the optimum

dJ

dFi

= 0. (5)

The flows Fi, however, are not completely independent,
but have to satisfy the relation (4). This results in N − 1
flows, which can be freely chosen, and one flow, which is
determined once the other N − 1 flows are fixed. In the
sequel, the subscript j will denote the dependent load,
while the subscript i will be used for loads which can be
freely chosen, so we will always assume

i 6= j. (6)

The total derivative of the cost (1) with respect to Fi can
then be written as

dJ

dFi

=
∂J

∂Fi

+
∂J

∂Fj

∂Fj

∂Fi

. (7)

Solving (4) for Fj gives

Fj = F −

j−1
∑

i=1

Fi −

N
∑

i=j+1

Fi, (8)

and differentiating with respect to an arbitrary Fi yields
∂Fj

∂Fi

= −1. (9)
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Inserting (9) into (7), the optimality condition can be
stated as:

dJ

dFi

=
∂J

∂Fi

−
∂J

∂Fj

= 0 for i 6= j. (10)

Under the assumption that the cost is the sum of the costs
for each unit, see (1), we have that

∂J

∂Fi

=
∂Ji
∂Fi

, (11)

and inserting into (11) into (10), we rewrite the optimality
condition as

∂Ji
∂Fi

=
∂Jj
∂Fj

for i 6= j. (12)

The interpretation of this equation is that at the optimum,
the gain (utility) resulting from an incremental increase of
flow rate Fi must result in an equal loss caused by the
decrease of flow rate Fj . The partial derivatives ∂Ji

∂Fi
are

also called “marginal costs” or “marginal utilities” [Lipsey
and Harbury, 1992], and at the optimum it is required to
have equal marginal utilities for all units.

Remark 1. This result on equal marginal costs (or utili-
ties) is not new, it has been suggested for process control
applications among others by Urbanczyk and Watten-
barger [1994], and Downs and Skogestad [2011]. However,
in most cases the marginal costs will not be directly
measurable, and have to be estimated. Urbanczyk and
Wattenbarger [1994] use simulations and finite difference
to estimate the marginal costs, which goes into the direc-
tion of NCO tracking [Srinivasan et al., 2008, Jäschke and
Skogestad, 2011] and extremum seeking control [Krstic
and Wang, 2000]. We however, following the approach of
Jäschke and Skogestad [2012], use a plant model to express
(or approximate) the marginal costs in terms of variables,
which can be easily measured online and used for feedback
control.

Eq. (12) has been derived for a given j, but since j can
be chosen arbitrarily, this has to hold for all pairs i and j.
Thus, the N − 1 splits between the process units should
be used to control

ci,j =
∂Ji
∂Fi

−
∂Jj
∂Fj

for all pairs i 6= j (13)

to zero,
ci,j = 0. (14)

Remark 2. The form of Eq. (13) has significant influence
on the implementation of optimal operation. It shows that
we can optimize the process by controlling differences in
the marginal costs pair-wise, that is we can restrict our
considerations on (or optimize) two parallel units at a
time.

Before we can use ci,j for control, we must express the
marginal costs in terms of known variables (measurements
only). This is done using simple models. Finding sim-
ple expressions for the marginal costs ∂Ji

∂Fi
is not always

easy, and depends heavily on the model structure and
complexity. However, in many cases it is possible to use
simplified models to find controlled variables which result
in performance with acceptable loss.

The expressions for the marginal costs ∂Ji

∂Fi
which are

obtained after eliminating the unmeasured disturbances

F1

F2

F = F1 + F2 given

k1V1

k2V2

cA1,in

cB1,in

cA2,in

cB2,in

Fig. 2. 2 CSTR operated in parallel

will be denoted as γi. Once we have obtained expressions
for γi, the optimal controlled variables based on (13)
become

cij = γi − γj . (15)

4. APPLICATION TO A GENERAL CSTR

In this section, we will show how to determine a good
variable combination which can be used for controlling the
split optimally for a system of reactors. Without loss of
generality we can consider a system of two CSTRs, Fig. 2.
In each of the reactors, we have the general reaction

aA+ bB A cC + dD, (16)

where the reaction rate of component l is calculated as
[Fogler, 2006]:

rl =
1

νl
kcαAc

β
B , (17)

where rl is the rate of reaction of species l, νl is the
stoichiometric coefficient, which is negative for the reac-
tants and positive for the products, k is the temperature
dependent reaction constant, and cA and cB are the con-
centrations of the reactants A and B, respectively.

The operational goal is to produce a given stream F = F1+
F2 with a maximum concentration of component C. That
is, the cost function to minimize is

J = Φ1 +Φ2 (18)

with
Φi = −pCFicCi, (19)

where pC denotes the revenue from selling product C, and
the variables Fi and cCi denote the flow rate, and the
concentration of valuable product in reactor i, respectively.
This kind of problem occurs often in industry when the
capacity of the subsequent separation is the bottleneck
of the process. Since the profit cannot be improved by
increasing F further (e.g. because of flooding in the distil-
lation column), we want to maximize the total production
of component C.

As disturbances which affect the reactors in our plant,
we consider the product of reaction constant and reactor
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volume kiVi and the feed compositions cAi,in and cBi,in

for each line:

di =

[

kiVi

cAi,in

cBi,in

]

i = 1, 2. (20)

To obtain an optimal controlled variable which is based on
the general optimality conditions for the parallel reactors
(12), we define a model which is used for setting up the
optimality conditions and eliminating the unknowns. Our
goal is to find an expression for the marginal costs ∂Ji/∂Fi

in terms of measurements and known parameters only,
that is, we want to eliminate disturbances di from the op-
timality conditions. Controlling the resulting expressions
γi to equal values leads to optimal operation in spite of
varying feed composition (cAi,in, cBi,in), catalyst decay or
reactor levels (kiVi).

As all variables of reactor i appear only in the marginal
cost ∂Ji

∂Fi
of reactor i, and all variables of the reactor j

appear only in
∂Jj

∂Fj
, we consider one reactor at a time.

For CSTR i, the mass balances for unit i yield

g1 = FicAi,in − FicAi − acαAic
β
BikiVi = 0 (21a)

g2 = FicBi,in − FicBi − bcαAic
β
BikiVi = 0 (21b)

g3 = −FicCi + ccαAic
β
BikiVi = 0 (21c)

g3 = −FicDi + dcαAic
β
BikiVi = 0. (21d)

Introducing xi = [cAi, cBi, cCi, cDi]
T , we write the model

in compact form as

gi(xi, Fi) = 0. (22)

The cost associated to this reactor is

Φi(xi, Fi) = −pxiFipC , (23)

where p = [0 0 1 0]. Using the compact notation, the
expression for the marginal cost becomes

∂Ji
∂Fi

=
dΦi

dFi

=
∂Φi

∂Fi

−
∂gi
∂Fi

(

∂gi
∂xi

)

−1
∂Φi

∂xi

.

(24)

where we have used the inverse function theorem to
incorporate the relationships given by the model.

Inserting the model (21a-21d) and the cost (23) into (24),
we obtain with help of maple

∂Ji

∂Fi

= pCccαAic
β

Bi
kiVi

cAicBi(α+ β)− αcAi,incBi − βcAicBi,in

cAicBiFi + αacBic
α
Ai

c
β

Bi
kiVi + βbcAic

α
Ai

c
β

Bi
kiVi

(25)

This expression cannot be controlled directly via feed-
back, because it contains the unmeasured disturbances
cAi,in, cBi,in, ki and Vi. Using the model equations (21a-
21c) to eliminate these unknowns and simplifying, yields

γi = −pCc
2
Ci

αacBi + βbcAi

ccAicBi + cCi(αacBi + βbcAi)
, (26)

which can be reformulated as

γi = cCi

−pC

1 +
(

ccAicBi

cCi(αacBi+βbcAi)

) . (27)

This variable combination contains only known (mea-
sured) variables, and can be evaluated online for each

reactor. Adjusting the feed flow rates for Reactor 1 and
Reactor 2 such that

c = γ1 − γ2 = 0 (28)

will result in optimal operation in spite of varying distur-
bances.

Inspecting (27) further, we find an even simpler near-
optimal controlled variable. When the term in parenthesis
is small, (which will be the case in many practical cases
when cAi and/or cBi is small) its contribution becomes
negligible, and since pC is equal for Reactor 1 and Reactor
2, a very simple strategy is to keep the outlet concentra-
tions of the valuable product in both reactors equal:

c = γ1 − γ2 ≈ (cC1 − cC2)pC (29)

This results in an extremely simple controlled variable,
which is very suitable for practical implementation. The
interpretation of this is that the main contribution to
disturbance rejection comes from controlling cC1 − cC2 to
zero. The factor

1

1 +
(

ccAicBi

cCi(αacBi+βbcAi)

) (30)

in (27) may be considered as “correction” factor, which
fine-tunes the performance.

5. NUMERICAL EXAMPLE

We consider two reactors in parallel with the reactions

A+ 2B A 2C +D. (31)

The same reaction takes place in both reactors, however,
due to imperfect temperature control or catalyst decay, the
reaction rate may differ between the two reactors, and the
feed composition is assumed to differ between the different
reactors, too.

As above, the goal is to produce a given amount of product
stream F , which contains a maximum amount of the
desired product C. We introduce the variable z ∈ (0, 1),
which is the defined as the fraction of the total flow F ,
which is produced in the first reactor, thus the load of
Reactor 1 is

F1 = zF (32)

and the load of Reactor 2 is

F2 = (1− z)F. (33)

It is assumed that the total product stream F is fixed
at 500 l/h due to capacity constraints in the subsequent
separation process. Nominally, the reactors are designed
identically with a nominal reaction constant of k1 = k2 = 8
l/(mol h)−1, and the resulting split should be z = 0.5, that
is the total load should be split equally between the two
lines. All parameter values are given in Table 1.

Two scenarios are studied. In the first scenario, the reac-
tion constant k2 of reactor 2 is decreasing. This may be
due to catalyst decay, but may also be caused by poor
temperature control. In the second scenario, we consider a
change in the feed composition of reactor 2.

5.1 Scenario 1: Varying reaction constant k2

Due to impurities in the feed, the catalytic activity of
reactor 2 is assumed to drop 50% (k2 = 0.5k1). In this case,
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Table 1. Parameter values for CSTR example

Symbol Description Value

Ftotal Total flow rate 500 l/h
k1 Reaction constant 4-8 l (mol h)−1

V Reactor volume 500 l
z Split ratio 0-1
cA,in Feed concentration of A 2 mol/l
cB,in Feed concentration of B 4 mol/l
pC Price for pure component C 1$/mol
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Fig. 3. Disturbance in k2: Profit, γ1, γ2, and concentration
of component C for different z

the new optimal split becomes 0.66, that is we produce
two thirds of the required product in reactor 1 and the
remaining third in reactor 2. If the rate constants ki could
be measured, it would be easy to adapt the split optimally
to the new optimal value. However in practice, the reaction
constant is generally not measurable. Since also the feed
conditions can vary, we use the controlled variable

c = γ1 − γ2, (34)

which is a function of measurements only, and which
results in the optimal split when controlled to zero.

Fig. 3 shows how the total profit, the profits of the
individual reactors, the invariants, and the concentrations
of component C change with the split z. At the optimum
(indicated by the vertical line), we see that γ1 = γ2. More
importantly, also the simple approximation, γ ≈ cC , is
equal at (or very close to) the optimum. So controlling

c = cC,1 − cC,2 (35)

to zero leads to a load ratio which is very close to the
optimum. The figure shows that the profit maximum is
relatively flat. This is good for control purposes, because
a small deviation from the optimal split does not affect
the cost very strongly. However, for processes which pro-
cess large amounts of material the savings resulting from
optimally adjusting the split can become large. Using a
product price of pC = 1$/mol, we obtain savings of 119892
per year (8760h). This corresponds to an increase of 1% in
annual profit.

5.2 Scenario 2: Varying feed composition

In this scenario we consider the case when the concentra-
tion of component B in the second reactor is increased by
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Fig. 4. Disturbance in feed composition: Profit, γ1, γ2, and
concentration of component C for different z

10%. The reaction constants ki and all other variables are
the same for both reactors.

Fig. 4 shows the behaviour of the system. In contrast to
Scenario 1, where controlling cC,1 − cC,2 to zero gave the
same performance as controlling γ1−γ2, in Scenario 2 the
concentration lines cross at a z-value which is slightly lower
than the optimum, but the difference is still very small.

6. DISCUSSION

One advantage with optimizing the split in parallel pro-
cesses is that it can be done “pair-wise”. That means,
the optimality conditions can be expressed pair wise. This
facilitates the derivation of controlled variables. Moreover,
since the only variable which couples the process lines is
the common feed or product stream, each unit can be
considered separately for formulating the marginal costs
and eliminating unknown disturbances. Thus, the overall
elimination problem is decomposed into smaller, easier
elimination problems.

When using controlled variables based on the marginal
costs, the optimal setpoint for the controlled variables is al-
ways zero. This is a clear advantage over other methods for
selecting controlled variables, where a.) a set of controlled
variables, and b.) the corresponding optimal setpoint has
to be determined.

Parallel systems have among others also been studied
by Woodward et al. [2009]. However, the scope of their
multiple unit (MU) approach is quite different from ours.
Their starting point is to have two identical units, and
to apply a slightly different input to each. Using finite
differences, the gradient is calculated and the inputs are
updated to force the gradient to zero. As the units gen-
erally are not identical, the system is additionally excited
with perturbations to obtain a usable gradient estimate.

In this work, however, the optimization variables are the
splits between the parallel units. We assume that the units
may be completely different, and that other degrees of
freedom as e.g. heating or cooling are treated separately.
To use the MU approach for a case with n degrees of
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freedom, we need n + 1 parallel systems. In the case
study presented above, this would mean two systems,
each containing two reactors in parallel, and where the
same set of disturbances disturbance acts on two reactors
simultaneously.

Although we used the same models for both lines in the
case study, the models need not be the same, because the
marginal costs ∂Ji/∂Fi are computed individually for each
line. However, in most cases the parallel units will be quite
similar, and we may use the same models for both lines.

Whether the analytical elimination of the disturbances
is possible depends very much on the model structure
and complexity. In many cases, however, simple models
may be used to obtain expressions which give satisfactory
performance. As the processes and the models become
more complicated, it is reasonable to expect, that the
optimal invariants also become more involved. Therefore,
it is advised to try and find simple models, which describe
the plant behavior well enough. And even if complicated
expressions are obtained, they may be approximated by
simpler controlled variables, as we have shown for the
CSTRs. Since at the optimum an increase of load in one
unit leads to an equal decrease of load in another unit, it
may happen that the effects of model error cancel out, and
that the error in one line compensates the model error in
another line.

In the case that there are cross-overs between the lines,
the presented approach will not work as easily, because the
marginal costs are coupled. Then it will not be possible to
consider one unit at a time to eliminate the unknowns. A
direction for future work may be to investigate if results
from graph-theory can be applied to this problem to give
simple invariants

In case of more than two parallel reactors, there are several
possibilities for the pairings of inputs (splits) and outputs
(cij) which may result in different dynamic performance.
A detailed treatment of implementation issues is outside
the scope of this paper; however, a starting point could
be to make all γi equal to γlargest, where γlargest is the
approximation of the marginal cost corresponding to the
nominally largest stream. Alternatively one may apply a
multivariable controller.

Compared to keeping the nominal split constant in open-
loop, it is possible to achieve significant savings over
time by just controlling a simple variable combination. It
may be argued that an online real-time optimizer might
perform equally or better. This is indeed true, however, it
is much more expensive to set up and maintain a real-time
optimizer than it is to simply control a simple function of
measurements using PI controllers.

7. CONCLUSION

We presented a systematic approach to finding controlled
variables for a class of industrially important problems.
The idea is to use the split to control a combination of
process variables at a constant setpoint. Controlling these
variables gives optimal operation in spite of unmeasured
disturbances. The resulting controlled variables are very
easy and cheap to implement in the real process.
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