Optimal PI-Control & Verification of the SIMC Tuning Rule

Sigurd Skogestad

Trondheim, Norway

Thanks to Chriss Grimholt
 IFAC-conference PID'12, Brescia, Italy, 29 March 2012

www.ntnu.no

1

Outline

- 1. Motivation: Ziegler-Nichols open-loop method
- 2. SIMC PI(D)-rule & derivation
- 3. Definition of optimality (performance & robustness)
- 4. Optimal PI control of first-order plus delay processes
- 5. Comparison of SIMC with optimal PI
- 6. Improved SIMC-PI for time-delay process
- 7. Further work and conclusion

Optimum Settings for Automatic Controllers

By J.G. ZIEGLER¹ and N. B. NICHOLS² • ROCHESTER, N. Y.

In this paper, the three principle control effects found in present controllers are examined and practical names and units of measurement are proposed for each effect. varying its output air pressure, repositions a diaphragm-operated valve. The controller may be measuring temperature, pressure, level, or any other variable, but we will completely divorce the

FIG. 8 REACTION CURVE

Reset-Rate Determination From Reaction Curve. Since the period of oscillation at the ultimate sensitivity proves to be 4 times the lag. A substitution of 4 L for P_u in previous equations for optimum reset rate gives an equation expressing this reset rate in terms of lag. For a controller with proportional and auto-maticreset responses, the optimum settings become My notation:

Sensitivity =
$$\frac{0.9}{R_1L}$$
 psi per in.
Reset Rate = $\frac{0.3}{L}$ per min

At these settings the period will be about 5.7L, having been increased, by both the lowering of sensitivity and the addition of automatic reset.

Disadvantages Ziegler-Nichols: 1.Rather aggressive settings & No tuning parameter 2.Uses only two pieces of information (k', θ) 3.Poor for processes with large time delay (θ)

 $k' = R, \ \theta = L$

 $K_c = \frac{0.9}{k'} \frac{1}{\theta}, \tau_I = 3.3\theta$

252

4

Internal Model Control. 4. PID Controller Design

Daniel E. Rivera, Manfred Morari,* and Sigurd Skogestad

Chemical Engineering, 206-41, California Institute of Technology, Pasadena, California 91125

For a large number of single input-single output (SISO) models typically used in the process industries, the Internal Model Control (IMC) design procedure is shown to lead to PID controllers, occasionally augmented with a first-order lag. These PID controllers have as their only tuning parameter the closed-loop time constant or, equivalently, the al PID controllers. As a

Table I.	IMC-Based PID Control	ller Parameters ^a				B I dead time are derived	
	model	$y/y_3 = \tilde{g}_s f$	controller	k _e k	<i>*</i> ,	*D	TF comments ustness is demonstrated.
А	$\frac{k}{\tau s + 1}$	$\frac{1}{cs+1}$	$\frac{1}{k} \frac{\tau s + 1}{\epsilon s}$	7 e	7	-	<u> </u>
в	$\frac{k}{(\tau_i s+1)(\tau_i s+1)}$	$\frac{1}{\epsilon s + 1}$	$\frac{(\tau_i s+1)(\tau_i s+1)}{kes}$	$\frac{\tau_1 + \tau_2}{c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1 + \tau_2}$	Table II. IMC-Based PID Parameters for $g(s) = ke^{-\theta s}/(\tau s + 1)$ and Practical Recommendations for ϵ/θ
с	$\frac{h}{\tau^2 s^2 + 2\xi \tau s + 1}$	1 (8 + 1	$\frac{\tau^2 s^2 + 2\xi \tau s + 1}{k \epsilon s}$	$\frac{2\xi\tau}{c}$	251	$\frac{r}{2t}$	recom-
D	$k\frac{-\beta s+1}{\tau s+1}$	$\frac{-\beta s+1}{\epsilon s+1}$	$\frac{\tau s+1}{k(\beta+\epsilon)s}$	$\frac{\tau}{\beta + \epsilon}$	7	-	ϵ/θ (> 0.1 τ/θ
Е	$k\frac{-\beta s+1}{\tau s+1}$	$\frac{-\beta s+1}{(\beta s+1)(\epsilon s+1)}$	$\frac{rs+1}{ks(\beta es+2\beta+e)}$	$\frac{\tau}{2\beta + \epsilon}$	7	-	controller kk_c $ au_1$ $ au_D$ $always)$
F	$\frac{-\beta s+1}{\tau^2 s^2+2 \sharp \tau+1}$	$\frac{-\beta s+1}{\epsilon s+1}$	$\frac{\tau^2 s^2 + 25\tau s + 1}{k(\beta + \epsilon)s}$	$\frac{2\varsigma\tau}{\beta+\epsilon}$	237	$\frac{\tau}{2\xi}$	PID $(2\tau + \theta)/(2\epsilon + \theta)$ $\tau + (\theta/2)$ $\tau\theta/(2\tau + \theta)$ >0.8 PI $\theta/\tau = 0.1$ 1.54 >1.7
G	$k rac{- ho s+1}{ au^2 s^2+2 z au s+1}$	$\frac{-\beta s+1}{(\beta s+1)(cs+1)}$	$\frac{\tau^2 s^2 + 2\xi \tau s + 1}{k(\beta \epsilon s + 2\beta + \epsilon)s}$	$\frac{2\xi\tau}{2\beta + \epsilon}$	25 τ	7 2ţ	improved $(2\tau + \theta)/2\epsilon$ $\tau + (\theta/2)$ >1.7
н	$\frac{k}{s}$	$\frac{1}{\epsilon s + 1}$	$\frac{1}{k\epsilon}$	1 c	-	-	ři –
I	k s	$\frac{2\epsilon+1}{(\epsilon s+1)^2}$	$\frac{2\epsilon s+1}{k\epsilon^2 s}$	$\frac{2}{\epsilon}$	2ϵ	-	- (6)
3	$\frac{k}{s(rs+1)}$	$\frac{1}{\epsilon s + 1}$	$\frac{\tau s + 1}{k\epsilon}$	$\frac{1}{\epsilon}$	-	r	
к	k	2es + 1	(78 + 1)(2c8 + 1)	$\frac{2e + \tau}{2}$	$2\epsilon + \tau$	2.07	- (6)

Disadvantages IMC-PID:

1.Many rules

2.Poor disturbance response for «slow»/integrating processes (with large τ_1/θ)

Science and Technology

Motivation for developing SIMC PID tuning rules (1998)

For teaching & easy practical use, rules should be:

- Model-based
- Analytically derived
- Simple and easy to memorize
- Work well on a wide range of processes

2. SIMC PI tuning rule

1. Approximate process as first-order with delay (e.g., use "half rule")

- k = process gain
- au_1 = process time constant
- θ = process delay
- 2. Derive SIMC tuning rule:

$$K_c = \frac{1}{k} \cdot \frac{\tau_1}{(\tau_c + \theta)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

 $\tau_{\rm c} \geq -\theta$: Desired closed-loop response time (tuning parameter)

 $\begin{array}{ll} \mathsf{IMC} \approx \mathsf{SIMC} \text{ for small } \tau_1 \ (\tau_I = \tau_1) \\ \mathsf{Ziegler-Nichols} \approx \mathsf{SIMC} \text{ for large } \tau_1 \text{ if we choose } \tau_c = 0 \\ (\text{aggressive!}) \qquad (K_c = \frac{0.9}{k} \frac{\tau_1}{\theta}, \ \tau_I = 3.3\theta) \end{array}$

Reference: S. Skogestad, "Simple analytic rules for model reduction and PID controller design", *J.Proc.Control*, Vol. 13, 291-309, 2003

Science and recinology

Derivation SIMC tuning rule (setpoints)

- Controller: $c(s) = \frac{1}{g(s)} \cdot \frac{1}{\frac{1}{(y/y_s)_{\text{desired}}} 1}$
- Consider second-order with delay plant: $g(s) = k \frac{e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$
- Desired first-order setpoint response:
- Gives a "Smith Predictor" controller:
- To get a PID-controller use $e^{-\theta s} \approx 1 \theta s$ and derive $c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c + \theta)s}$ IMC-rule uses Pade: $e^{-\theta s} \approx \frac{1 - \frac{\theta}{2}s}{1 + \frac{\theta}{2}s}$.
 Gives PID even for first-order process

 $\begin{pmatrix} \underline{y} \\ y_s \end{pmatrix}_{\text{desired}} = \frac{1}{\tau_c s + 1} e^{-\theta s}$ $c(s) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{k} \frac{1}{(\tau_c s + 1 - e^{-\theta s})}$ $- \theta \overset{\leftarrow}{s} \text{ and derive}$ $IMC\text{-rule uses Pade: } e^{-\theta s} \approx \frac{1 - \frac{\theta}{2} s}{1 + \frac{\theta}{2} s}.$ Gives PID even for first-order process

which is a cascade form PID-controller with

$$K_c = \frac{1}{k} \frac{\tau_1}{\tau_c + \theta}; \quad \tau_I = \tau_1; \quad \tau_D = \tau_2$$

First-order process $(\tau_2 = 0)$: Get PI-controller

> i ⊥ N U gian University of e and Technology

• τ_c is the sole tuning parameter

Effect of integral time on closed-loop response

Figure 2: Effect of changing the integral time τ_I for PI-control of "slow" process $g(s) = e^{-s}/(30s+1)$ with $K_c = 15$. Load disturbance of magnitude 10 occurs at t = 20.

Too large integral time: Poor disturbance rejection Too small integral time: Slow oscillations

Norwegian University of Science and Technology

SIMC: Integral time correction

- Setpoints: $\tau_I = \tau_1$ ("IMC-rule"). Want smaller integral time for disturbance rejection for "slow" processes (with large τ_1), but to avoid "slow oscillations" must require: $\tau_I > 4(\tau_C + \theta)$
- **Derivation:** $G(s) = k \frac{e^{-\theta s}}{\tau_{1}s+1} \approx \frac{k'}{s} \text{ where } k' = \frac{k}{\tau_{1}}; C(s) = K_{c} \left(1 + \frac{1}{\tau_{I}s}\right)$ Closed-loop poles: $1 + GC = 0 \Rightarrow 1 + \frac{k'}{s} K_{c} \left(1 + \frac{1}{\tau_{I}s}\right) = 0 \Rightarrow \tau_{I}s^{2} + k'K_{c}\tau_{I}s + k'K_{c} = 0$ To avoid oscillations we must not have complex poles s: $B^{2} - 4AC \ge 0 \Rightarrow k'^{2}K_{c}^{2}\tau_{I}^{2} - 4k'K_{c}\tau_{I} \ge 0 \Rightarrow k'K_{c}\tau_{I} \ge 4 \Rightarrow \tau_{I} \ge \frac{4}{k'K_{c}}$ Inserted SIMC-rule for $K_{c} = \frac{1}{k'} \frac{1}{\tau_{c}+\theta}$ then gives $\tau_{I} \ge 4(\tau_{c}+\theta)$
- Conclusion SIMC:

$$K_c = \frac{1}{k'} \cdot \frac{1}{(\tau_c + \theta)} \quad (\mathbf{k'} = \mathbf{k}/\tau_1)$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

Norwegian University of Science and Technology

SIMC PI tuning rule

$$K_c = \frac{1}{k} \cdot \frac{\tau_1}{(\tau_c + \theta)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

 $\tau_{c} \geq -\theta$: Desired closed-loop response time (tuning parameter) •For robustness select: $\tau_{c} \geq \theta$

Two questions:

- How good is really the SIMC rule?
- Can it be improved?

S. Skogestad, "Simple analytic rules for model reduction and PID controller design", *J.Proc.Control*, Vol. 13, 291-309, 2003 "Probably the best simple PID tuning rule in the world"

How good is really the SIMC PI-rule?

Want to compare with:

 Optimal PI-controller for class of first-order with delay processes

Norwegian University of Science and Technology

3. Optimal controller

- Multiobjective. Tradeoff between
 - Output performance
 - Robustness
 - Input usage
 - Noise sensitivity

High controller gain ("tight control")

Low controller gain ("smooth control")

- Quantification
 - Output performance:
 - Frequency domain: weighted sensitivity ||W_pS||
 - Time domain: IAE or ISE for setpoint/disturbance
 - Robustness: M_s, M_t, GM, PM, Delay margin, …
 - Input usage: ||KSG_d||, TV(u) for step response
 - Noise sensitivity: ||KS||, etc.

Our choice:

J = avg. IAE for Setpoint & disturbance

Norwegian University of Science and Technology

12

IAE output performance (J)

IAE = Integrated absolute error = $\int |y - y_s| dt$, for step change in y_s or d

$$J(c) = 0.5 \frac{IAE_{ys}(c)}{IAE_{ys}^{o}} + 0.5 \frac{IAE_{d}(c)}{IAE_{d}^{o}}$$

weight IAE_{ys}^o: PI-optimal for setpoint y_s (or d_{ys}) (M_s = 1.59)
weight IAE_d^o: PI-optimal for disturbance d(M_s = 1.59)

Cost J is independent of:

- 1. process gain (k)
- 2. setpoint (y_s or d_{ys}) and disturbance (d) magnitude NTNU
- 3. unit for time

orwegian University of cience and Technology

4. Optimal PI-controller: Minimize J for given M_s

$$\begin{split} \min_{c} J(c)|_{M_{s}=m} \\ \text{PI-controller: } c(s) &= K_{c} \left(1 + \frac{1}{\tau_{I}s}\right) \\ \text{First-order with delay processes: } g(s) &= \frac{k}{\tau_{1}s+1}e^{-\theta s} \\ \theta &= 1, \tau_{1}/\theta = [0, \infty] \\ m &= [..., 1.2, 1.59, 1.7, 2....] \end{split}$$

Norwegian University of Science and Technology

Optimal PI-controller

Optimal ant

Optimal PI-settings vs. process time constant (τ_1/θ)

Optimal PI-controller

Optimal IAE-performance (J) vs. M_s

Input usage (TV) increases with M_s

$$TV(u) = \int_0^\infty \left| \frac{du}{dt} \right| dt = \sum_{i=1}^\infty |u_i - u_{i-1}|$$

NTNU
 Norwegian University of
 Science and Technology

Setpoint / disturbance tradeoff

Setpoint / disturbance tradeoff

Table 1. Optimal PI-controllers ($M_s = 1.59$) and corresponding IAE-values for four processes.

	Setpoint			Inpu	Input disturbance				Optimal combined (minimize J)						
Process	K_c	$ au_I$	IAE_{ys}°	Kc	$ au_I$	$\operatorname{IAE}_d^\circ$		K_c	$ au_I$	IAE_{ys}	IAE_d	J	M_s		
e^{-s}	0.20	0.32	1.609	0.20	0.32	1.609		0.20	0.32	1.607	1.607	1	1.59		
$\frac{e^{-s}}{s+1}$	0.54	1.10	2.073	0.50	1.0	2.016		0.54	1.10	2.087	2.038	1.00	1.59		
$\frac{e^{-s}}{8s+1}$	4.0	8	2.171	3.34	3.7	1.134		3.46	4.0	3.096	1.164	1.23	1.59		
$\frac{e^{-s}}{s}$	0.50		2.174	0.40	5.8	15.09		0.41	6.3	4.318	15.38	1.50	1.59		

 IAE_{ys} is for a unit setpoint change. IAE_d is for a unit input disturbance.

Optimal for setpoint: $\tau_I = \tau_1$ (except time delay process) Integrating process ($\tau_1 = \infty$): No integral action

Tuning parameter: τ_c

Tight control with good robustness: Select $\tau_c = \theta$ (effective delay)

• Gives M_s between 1.59 and 1.7

What about SIMC-PI performance?

$$K_c = \frac{1}{k'} \cdot \frac{1}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

Evaluate performance (J) as a function of M_s (by varying τ_c) and compare with optimal

SIMC ant

²⁷Comparison of J vs. M_s for optimal and SIMC for 4 processes

Conclusion (so far): How good is really the SIMC rule?

- Varying τ_{C} gives (almost) Pareto-optimal tradeoff between performance (J) and robustness (M_s)
- $\tau_{\rm C} = \theta$ is a good "default" choice
- Not possible to do much better with any other PIcontroller!
- Exception: Time delay process

6. Can the SIMC-rule be improved?

Yes, possibly for time delay process

$$K_c = \frac{1}{k} \cdot \frac{\tau_1}{(\tau_c + \theta)}$$

$$\tau_I = \min(\tau_1, 4(\tau_c + \theta))$$

Time delay process, $g = ke^{-\theta s}$ $(\tau_1 = 0)$: SIMC-rule gives integrating controller: $K_c = 0, \ \tau_I = 0, \ K_I = \frac{K_c}{\tau_I} = \frac{1}{k(\tau_c + \theta)}$

Optimal PI-settings vs. process time constant (τ_1/θ)

Norwegian University of Science and Technology

Optimal PI-settings (small τ_1)

Improved SIMC-rule: Replace τ_1 by $\tau_1 + \theta/3$

$$K_c = \frac{1}{k} \cdot \frac{\tau_1 + \frac{\theta}{3}}{(\theta + \tau_c)}$$

$$\tau_I = \min(\tau_1 + \frac{\theta}{3}, 4(\tau_c + \theta))$$

Tuning parameter: τ_c

Time delay process $(\tau_1 = 0)$: $\tau_I = \frac{\theta}{3}$

Step response for time delay process

CONCLUSION: SIMC-improved almost «Pareto-optimal»

7. Further work

- More complex controllers than PI:
 - Definition of problem becomes more difficult
 - Not sufficient with only IAE (J) and M_s
 - input usage
 - noise sensitivity
 - robustness
- Optimal PID
 - And comparison with SIMC-PID rule
- Comparison with truly optimal controller
 - Including Smith Predictor controllers

8. Conclusion

Questions:

- 1. How good is really the SIMC-rule?
 - Answer: Pretty close to optimal, except for time delay process
- 2. Can it be improved?
 - Yes, to improve for time delay process: Replace τ_1 by τ_1 + θ /3 in rule to get "Improved-SIMC"
- "Probably the best <u>simple</u> PID tuning rule in the world"

extra

³⁸ Model from closed-loop response with P-controller

