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Abstract: Optimal control structure selection is vital to operate the process plants optimally
in the presence of disturbances. In this paper we review the controlled variable selection,
c = Hy, where y includes all the measurements. The objective is to find the matrix H
such that steady-state operation is optimized while controlled variables c′s are kept constant
using inputs, when there are disturbances. Several cases are studied such as the optimal
individual measurements, the optimal combinations of fewer/all measurements and the optimal
combinations with structural constraints. The proposed methods are evaluated on a distillation
column case study with 41 trays.
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1. INTRODUCTION

Optimal operation of process plants aids in improved
profitability. Apporipriate control structure selection facil-
itates optimal operation. The decision on which variables
should be controlled, which variables to be measured,
which inputs to be manipulated and which links should be
made between them are called the controlled structure se-
lection. Generally, the control structure selection decisions
are done based on heuristic methods or on the intuition
of process engineers. These methods cannot guarantee
optimality and makes the analysis difficult to analyze and
improve the proposals.

In this paper we consider the selection of controlled vari-
ables (CVs) associated with the unconstrained degrees
of freedom. We assume that the CVs c′s are selected
as individual measurements or combinations of fewer/all
available measurements y. This can be written as

c = Hy where ny = nc;

ny: number of measurements; nc: number of CVs = num-
ber of unconstrained MVs = nu ; where the objective is
to find a good choice for the matrix H. In general, we also
include the inputs (MVs) in the available measurements
set y.

Assuming that the plant economics are primarily deter-
mined by the pseudo/steady state behavior, Skogestad
and coworkers (Skogestad, 2000) have proposed to use
the steady state process model to find “self-optimizing”
controlled variable as combinations of measurements. The
objective is to find H such that when the CVs are kept at
constant set points, the operation gives acceptable steady

⋆ This work was supported by the Faculty of Natural Sciences,
NTNU.

state loss from the optimal operation in the presence of
disturbances. The theory for self-optimizing control (SOC)
is well developed for quadratic optimization problems with
linear models. This may seem restrictive, but any un-
constrained optimization problem may locally be approxi-
mated suitably by this method. The “exact local method”
(Halvorsen et al., 2003) handles both disturbances and
implementation errors. Here after we call “exact local
method” as “minimum loss method”. The problem of find-
ing CVs as optimal variable combinations (c = Hy, where
H is a “full” matrix) was originally believed to be non-
convex and thus difficult to solve numerically (Halvorsen
et al., 2003), but later it has been shown that this problem
may be reformulated as a quadratic optimization problem
with linear constraints (Alstad et al., 2009). The problem
of selectingthe controlled variables as the individual mea-
surements, the combinations of best measurement subsets
is more difficult because of the combinatorial nature of the
problem. As the number of alternatives increase rapidly
with the process dimensions, resorting to exhaustive search
methods to find the optimal solution is computationally
intractable. Kariwala and Cao (Kariwala and Cao, 2009)
have derived effective branch and bound methods that
make use of the monotonicity property in the objective
function for these cases, but these cannot handle the
structural constraints. This motivates the need to develop
simple but still efficient methods to find the optimal solu-
tion H with structural constraints.

Structural constraints are needed to improve dynamic con-
trollability (i.e. fast response, control loop localization), to
reduce the time delay between the MVs to CVs. In this
paper, we consider the case where the c′s are obtained
as combinations of specified structures and the cases with
structural constraints. Unfortunately for these cases we
do not have a convex problem formulation, but we derive
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upper bounds to SOC problems with structural constraints
by formulating them as convex QP problems at each node
in MIQP formulation in 3 different approaches. We explore
one of the 3 approaches in this paper. As a precursor
to these approaches, we briefly review the methods of
finding the globally optimal H, when c′s are obtained as
optimal individual measurements, optimal combinations of
fewer/all measurements of the process plant in Mixed Inte-
ger Quadratic Programming (MIQP) framework (Yelchuru
et al., 2010; Yelchuru and Skogestad, 2010).

In summary, we consider two interesting problems related
to finding H:

(1) Selection of CVs as combination of measurements
with specified structures

(2) Selection of CVs as combination of measurement sub-
sets with specified structures using n measurements
and also obey few additional structural constraints.
Where n ∈ [nu, ny]

We consider the solution of these problems when applied
to the minimum loss method formulation of (Halvorsen
et al., 2003). Heldt (Heldt, 2009) has reported an itera-
tive approach to solve problem 1 with a unitary matrix
constraint method, but it is still non-convex and does not
guarantee global optimum. In this study we propose an
MIQP based approach to problem 1 and 2. Even though
the proposed methods cannot give a globally optimal H to
obtain optimal c′s as combinations of measurements with
specified structures, the bounds obtained in the proposed
method are of significant value from a practical point of
view. The developed methods are evaluated on a binary
distillation column with 41 trays, where c′s are combi-
nations of measurements with specified structures. The
developed MIQP methods for SOC are generic and can
easily be evaluated for any process plant.

2. MINIMUM LOSS METHOD

We here review the “minimum loss method” formulation
from Halvorsen et al. (2003) and its optimal solution from
Alstad et al. (2009) and present some new results (Theo-
rems 4,6). We then provide some new ideas for dealing with
the nonconvex case with structural constraints on H. We
denote measurements, inputs or manipulated variables,
disturbances by y,u and d respectively. The economic
cost function for the steady state operation is denoted
by J(u,d). In order to keep the operation optimal in the
presence of varying disturbances, the inputs u are updated
according to d using online optimization (real-time opti-
mization). We denote the optimal cost as Jopt(uopt(d),d).

A simple and effective alternative is to update u using a
feedback controller, which manipulates u to keep the CVs
c′s at their specified set points cs.

c = Hy (1)

where cs = Hyopt(d
∗), H is the combination matrix and

y are measurements.

Note that feedback introduces implementation error (noise)
nc. In the presence of integral action in feedback control
the implementation error nc = Hny. The difference be-
tween the cost functions of these two strategies is defined
as the loss (Skogestad and Postlethwaite, 2005).

L = J(u,d)− Jopt(uopt(d),d) (2)

Here “Self optimizing control” can be viewed as the
selection of optimal H in c = Hy and by keeping these
c′s at constant set point cs results in the minimal loss or
that gives acceptable loss from the optimal operation. The
set point cs are obtained from the optimal solution for the
nominal disturbance d.

In order to express the loss (L) as a function of dis-
turbances, implementation errors locally, the loss is ap-
proximated using a second order Taylors series expansion
around the “moving” optimal uopt(d). We assume that the
set of active constraints for the process does not change
with d and nc. The linearized (local) model in terms of
the deviation variables is written as

∆y = Gy∆u+G
y
d∆d (3)

∆c = G∆u+Gd∆d (4)

where G = HGyand Gd = HG
y
d. For a constant set point

policy (cs = 0) (Halvorsen et al., 2003).

It is assumed that the number of c′s is the same as the
number of unconstrained degrees of freedom u and that
G = HGy is invertible. This assumption is needed to
guarantee that the CVs are controlled at the specified set
points using a controller with integral action.

Theorem 1. (Alstad et al., 2009; Halvorsen et al., 2003;
Kariwala et al., 2008) Minimum loss method : To minimize
the average and worst case loss for expected noise and

disturbances,
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≤ 1, find the H that solves the

problem

min
H

∥
∥
∥J

1/2
uu (HGy)−1HY

∥
∥
∥
2,F

(5)

where Y = [FWdWn)]; F =
∂yopt

∂d = GyJ−1
uuJud − G

y
d;

the 2-norm (maximum singular value) is for worst case
loss, frobenius norm (F ) is for average loss.

In many cases it is easier to find the optimal disturbance
sensitivity matrix F numerically by reoptimizing for var-
ious disturbances. Kariwala et al. (Kariwala et al., 2008)
prove that the combination matrix H that minimizes the
average loss in (5) is super optimal and in the sense that
the same H minimizes the worst case loss in (5). Hence,
only optimization problem (5) involving the frobenius
norm (F ) is considered in the rest of the paper.

2.1 Finding full H without structural constraints

Theorem 2. (Reformulation as a convex problem). The
problem in equation (5) may seem non-convex (Alstad
et al., 2009), but for the standard case where H is a
full matrix (with no structural constraints), it can be
reformulated as a constrained quadratic programming
problem (Alstad et al., 2009)

min
H

||HY||F

s.t. HGy = J1/2
uu

(6)

Proof: From the original problem in equation (5) the
optimal solution H is non-unique. If H is a solution then

H1 = DH is also a solution as (J
1/2
uu (H1G

y)−1H1F) =

(J
1/2
uu (HGy)−1HF) for any non-singular matrix D of size
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nu × nu. This means the objective function is unaffected
by the choice of D. One implication is that HGy can be
chosen freely. We can thus make H unique by adding a

constraint, for example HGy = J
1/2
uu . More importantly

this simplifies the optimization problem in equation (5) to
optimization problem shown in equation (6). End Proof

Theorem 3. (Alstad et al. (2009)). An analytical solution
to (5) in Theorem 1 using Theorem 2 is

HT =
(
YYT

)
−1

Gy
(

GyT (
YYT

)
−1

Gy
)
−1

J
1/2
uu .

Theorem 4. (Simplified analytical solution). Another an-
alytical solution for the problem in (5) is

HT =
(
YYT

)−1
GyQ (7)

where Q is any non-singular matrix of nc × nc.

Proof. This follows trivially from Theorem 3, since if
HT is a solution then so is HT

1 = HTDT and we

simply select DT = (Q−1(GyT

(YYT )−1Gy)−1J
1/2
uu )−1 =

J
−1/2
uu GyT

(YYT )−1GyQ which is a nc × nc matrix.End
Proof.

Corollary 5. (Important insight). Theorem 4 gives the very
important insight that Juu is not needed for finding the
optimal H, provided we have the standard case where H
can be any nc × ny matrix.

This means that in (6) we can replace J
1/2
uu by any non-

singular matrix, and still get an optimal H. This can
greatly simplify practical calculations, because Juu may
be difficult to obtain numerically because it involves the
second derivative. On the other hand, we have that F,
which enters in Y, is relatively straightforward to obtain
numerically. Although Juu is not needed for finding the
optimal H, it would be required for finding a numerical
value for the loss.

Theorem 6. (Generalized convex formulation). An optimal
H for the problem (5) can be written as in (8) using
Theorem 4, where Q is any non-singular matrix of nc×nc.

min
H

||HY||F

s.t. HGy = Q
(8)

Proof. The result follows from Corollary 5, but can more
generally be derived as follows. The problem in (6) is to

minimize

∥
∥
∥
∥
∥
∥

(J1/2
uu (HGy)−1

︸ ︷︷ ︸

X

HY)

∥
∥
∥
∥
∥
∥
F

. The reason why we can

omit the nc × nc matrix X, is that if H is an optimal
solution then so is H1 = DH where D is any nonsingular
nc × nc (see proof of Theorem 2). However, note that the
matrix X, or equivalently the matrix Q, must be fixed
during the optimization, so it needs to be added as a
constraint. End Proof.

Numerical evidence show that replacing the equality con-
straint in (8) with inequality constraint in the QP also give
the solution to (5). This is also a convex formulation as

min
H

||HY||F

s.t. HGy ≤ Q
(9)

Here Q can be any non-singular matrix, but to find a
non-trivial solution; Q is chosen to have non-negative

elements in each row. Note that (6),(8),(9) are convex
reformulations of the SOC problem in (5) only for a given
measurement set. But we could not find any mathematical
proof for the equivalence of the formulations in (5) to (9).

2.2 Dealing with structural constraints on H

For practical reasons, it may be interesting to obtain
the c′s as combinations of measurements with a specified
structure.

min
H

∣
∣
∣

∣
∣
∣J

1/2
uu (HGy)−1HY

∣
∣
∣

∣
∣
∣

2

F

s.t.H = [specified structure]
(10)

We will consider the following special cases:

Case 1. Selecting subset of measurements (some
columns in H are zero)
(a) Fixed subset. For example,

H =

[
0 h12 0 h14 h15

0 h22 0 h24 h25

]

. In such cases, both Theo-

rem 2 and 6 hold. This implies Juu is not needed.
This is quite obvious since it corresponds to deleting
some measurements.

(b) Optimal subset. where the objective is to select
measurements (e.g. 3 out of 5). In this case, only
Theorem 2 hold and we need Juu. This is because

in Theorem 2, HGy = J
1/2
uu and the ordering of the

loss in (5) and ||HF||F is the same for all possible
subsets.

Case 2. Specified structure (specified elements are
zero in addition to some columns in H are zero)
(I) Decentralized structure. For example, If a pro-

cess has 2 inputs and 5 measurements with 2 disjoint
measurement sets {1,2,3},{4,5}; then the structure

is HI =

[
h11 h12 h13 0 0
0 0 0 h24 h25

]

(II) Triangular structure. For example, If a process
has 2 inputs and 5 measurements with partially
disjoint measurement sets as {1, 2, 3, 4, 5} for one
CV and {4, 5} for another CV, then the structure is

HII =

[
h11 h12 h13 h14 h15

0 0 0 h34 h35

]

Theorem 2 do not hold in case 2. The reason is that to
have same structure as H in H1 = DH, D must have a

structure DI =

[
d11 0
0 d22

]

, DII =

[
d11 d12

0 d22

]

respectively

so D is not a full matrix as assumed when deriving
Theorem 2.

Case 3. Selecting the best individual measure-
ments for decentralized control, for example, H =
[
h11 0 0 0 0
0 0 0 h24 0

]

. This is a special case of case 2 (I), but

Theorem 2 holds as it can also be viewed as case 1(b)
as the selection of the best nu measurements. Then the
non-zero part of H is a square matrix and later we can
choose D as inverse of this square full matrix to arrive
at a decentralized diagonal H.

2.3 Dealing with specified structures

Controlled variables c′s as combinations of measurements
with specified structures. This is Case 2 for H (section
2.2), Here we consider 2 specified structures;
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(1) to have separate control of individual process units,
the structure of H “disjoint” will be

H =







H1 0 · · · 0
0 H2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · Hniu







(11)

where each Hi corresponds to measurements and
inputs of process unit i. Where niu is number of
individual process units in the plant.

(2) certain controlled variable c′s can be combinations of
all measurements, but other c′s should be combina-
tions of only a measurement subset (H “triangular”)
as in

H =







H11 H12 · · · H1niu

0 H22 · · · · · ·

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · Hniuniu







(12)

For these specified structures (case 2 in section 2.3),
Theorem 2, 6 does not apply. Note that, as opposed to
cases 1 (a), Juu is needed to find the optimal solution for
case 2. So we do not have a convex problem formulation,
that is, we need to solve the nonconvex problem in (5)
(with additional constraints on the structure of H as in
(10)). Nevertheless, using the ideas from Theorems 2 and
6, with additional constraints on the structure of H, give
convex optimization problems that provide upper bounds
on the optimal H for case 2. In particular, in Theorem 6
we may make use of the extra degree of freedom provided
by the matrix Q (Yelchuru and Skogestad, 2010).

The idea is to exclude the matrix J
1/2
uu (HGy)−1 in front

of HF in (10). However, when H has a specified structure,
we do not generally have enough degrees of freedom to

make J
1/2
uu (HGy)−1 = I. To proceed, we have considered

the following 3 options :

(1) Use the non-zero (nnz) elements in D to match any

nnz number of elements in HGy to J
1/2
uu (Yelchuru

and Skogestad, 2011).
(2) Introduce a constraint HGy ≤ Q as in (9), this

provides extra freedom to choose optimal structured
H. Q must be chosen to have negative elements in
each row to obviate the trivial solution.

(3) Use a constraint to let J
1/2
uu (HGy)−1 have a structure

similar to the D that preserves the structure in
H,DH and minimize ||HF||F .

Numerical evidence shows that option 1 (Yelchuru and
Skogestad, 2011), option 2 (current work) and option 3
provide good upper bounds to the problem in (10). We
present details of option 2 in this paper.

The inequality constraint in option 2 is the halfspace of the
affine constraint HGy = Q and this results in a simplified
convex formulation (10)

min
H

||HY||F

s.t. HGy ≤ Q

H = [specified structure]

(13)

and (13) is vectorized (Yelchuru et al., 2010) to result in a
formulation in equation (14). Solving equation (14) results
in controlled variables c′s as combinations of measure-

ments with specified structures. This provides the upper
bound for problem in equation (10).

min
xδ

xT
δ Fδxδ

s.t. GyT

δ xδ ≤ Qδ

set of eqns xδ(ind) = 0

ind is associated to 0 elements in H

(14)

where XT
δ

=
[
xT
1
xT
2
. . .xT

nu

]
; QT

δ
=

[
QT

1
QT

2
. . .QT

nu

]
and

large matrices G
T
δ

=







G
yT

0 0 · · ·

0 G
yT

0 · · ·

.

.

.

.

.

.

.

.

.

.
.
.

0 0 . . . G
yT







Yδ =






Y 0 0 · · ·

0 Y 0 · · ·

.

.

.

.

.

.

.

.

.

.
.
.

0 0 . . . Y






Fδ = YδYδ . where Xδ,Qδ,G
T
δ ,Fδ are of size (nuny) ×

1, (nunu) × 1, (nunu) × (nynu), (nuny) × (nuny) respec-
tively.

3. MIQP FORMULATIONS

3.1 CVs as combinations of the best measurement sets

The best measurement subset selection problem is to find
c′s as best combinations of measurement subsets. This is
Case 1 for H for which Lemma 1 holds. Some solution
approaches are

• partial branch and bound methods (Kariwala and
Cao, 2010)

• generalized singular value decomposition methods
(Heldt, 2009)

• MIQP based formulations (Yelchuru et al., 2010;
Yelchuru and Skogestad, 2010).

We discuss only the MIQP formulations here. Starting
from (6), the best measurement subset selection problem
can be formulated in (15) as a Mixed Integer Quadratic
Programming (MIQP) problem where the non-singular
Q matrix and the “big M” parameter are used as extra
degrees of freedom to reduce the computational time
in solving the MIQP problem (Yelchuru and Skogestad,
2010).

min
xaug

xT
augFaugxaug

st. GyT

newxaug = Qδ

Pxaug = n

(15)






−M 0 0 · · ·

0 −M 0 · · ·

.

.

.

.

.

.

.

.

.

.
.
.

0 0 . . . −M




 σi ≤






xi

xny+i

.

.

.

x(nu−1)nu+i




 ≤






M 0 0 · · ·

0 M 0 · · ·

.

.

.

.

.

.

.

.

.

.
.
.

0 0 . . . M




 σi

σi ∈ 0, 1 ∀i = 1, 2, · · · , ny

where XT
δ =

[
xT
δ σ1 σ2 . . . σny

]
; and Faug =

[Fδ0]; G
yT

new =
[
GT

δ 0nuny×ny

]
; P = [01] where n is the

measurement subset size, Xδ,Faug,P are of size (nuny +
ny) × 1, (nuny + ny) × (nuny + ny), 1 × (nuny + ny)
respectively.

3.2 CVs as combinations of all measurements with specified
structure

We considered two specified structures as “disjoint” and
“triangular” structures as in Case 2 in section 2.2. The
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problem in equation (10) with these structures (Case 2 for
H) is non-convex, and, unfortunately, Theorem 2 cannot
be used to get a convex QP because of the structural
constraints in H. But we derive a convex QP that provides
a good upper bound (section 2.3) to find H with specified
structures.

3.3 CVs as combinations of fewer measurements sets with
the specified structure

It is easy to extend the problem formulation in (14) to
find CVs as best combinations of fewer measurements
with the specified structure by introducing ny new binary
variables σ1, σ2, · · · , σny

∈ {0, 1}. The MIQP problem is
the same as (15) with a change in equality constraint

GyT

newxaug = Qδ to GyT

newxaug ≤ Qδ and a few additional
constraints associated to the decentralized structure.

set of eqns

nyk∑

l=1

σ(ny(k−1)
(k−1)+l) = nuk

nyk∑

m=1

σ(ny(k−1)
(k−1)+m) = nk

∀k = 1, 2, . . . ,number of blocks

set of eqns xaug(ind) = 0

ind is associated to 0 elements in H

(16)

where nuk
, nyk

and nk are the numbers of inputs, mea-
surements and measurements to be selected in each set k
as per the specified structure.

4. RESULTS

The MIQP formulations for obtaining CVs with specified
structures are evaluated on binary distillation column case
study (Skogestad, 1997), where reflux L and boilup V are
the remaining steady-state degrees of freedom (u). The 41
stage temperatures are taken as candidate measurements.
Note that we do not include the inputs in the candidate
measurements for this case study. The economic objective
J for the indirect composition control problem is

J =

(
xH
top − xH

top,s

xH
top,s

)2

+

(
xL
btm

− xL
btm,s

xL
btm,s

)2

(17)

where J is the relative steady state composition devia-
tion. xH

top,x
L
btm,xH

top,s,x
L
btm,s, L,and H denote the heavy

component composition in top tray, light component com-
position in bottom tray, specification of heavy component
composition in top tray, specification of light component
composition in bottom tray, light and heavy key compo-
nents respectively. The MIQP is implemented (section 3.1)
for the distillation column with 41 trays to find the 2 CVs
as the combinations of 41 tray temperatures. An MIQP is
set up for this distillation column with the choice M = 1
for the big-M constraints in equation (15). We solved
the MIQP to find the CVs as the combinations of best
measurement subset size from 2 to 41. The CPLX solver
in IBM ILOG Optimizer was used in YALMIP toolbox
(Lofberg, 2004) to solve the MIQP problem (IBM, 2010).
We also study the cases with specified structures (11),(12)
of H; with the “disjoint” H (11), one c for the top and
one c for the bottom part of the distillation column. This
structure is desirable mainly for dynamic reasons; to select
one combined measurement c1 from the top section (trays
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Fig. 1. The loss vs. the number of included measurements
where the c′s are combinations of (i) all measurements
(solid), (ii) disjoint measurements sets (11) (top and
bottom of column), (iii) specified structure of H in
(12)
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Fig. 2. CPU time requirement for computations in Fig. 1

21 to 41) and one combined measurement c2 from the
bottom section (trays 1 to 20). The “triangular” struc-
ture (12) is desirable as controlling the combinations of
top section measurements c1 with reflux (L) and using
the combinations of all measurements (trays 1 to 41) c2
with boilup (V) is better dynamically. As including the
bottom tray temperatures in c1 results in large delays
between c1 and L. For this distillation column case study

Table 1. The self optimizing variables c′s as
(i) combinations of measurements (ii) speci-
fied structure of H (12) (iii) combinations of
disjoint measurement subsets (11) with their

associated losses

Meas Structure Controlled variables (c′s) Loss

2 Full H
c1 = T12

c2 = T30

0.036517

2 Triangular H††
c1 = T12

c2 = T30

0.036517

2 Disjoint H†
c1 = T12

c2 = T29

0.036868∗∗

3 Full H
c1 = T11

c2 = T30 + 0.0446T31

0.024583

3 Triangular H††
c1 = T30 + 0.9887T31

c2 = T11 + 0.7365T30 + 0.7812T31

0.025775∗

3 Disjoint H†
c1 = T30 + 0.9887T31

c2 = T12

0.024593∗∗

4 Full H
c1 = T11 + 11.2295T30 + 11.5251T31

c2 = T12 − 11.5844T30 + 11.5251T31

0.016365

4 Triangular H††
c1 = T30 + 0.9887T31

c2 = T10 + 1.0060T11 + 0.6901T30 + 0.7739T31

0.016803∗

4 Disjoint H†
c1 = T30 + 0.9887T31

c2 = T11 + 0.992T12

0.016385∗∗

†“disjoint” H,††“triangular” H (Case 2 for H); ∗ clearly not optimal
because optimal solution with “triangular” H is at least as good as
“disjoint” H; ∗∗ clearly not optimal because this is Case 3 for H and
all structures must give same solution;
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with 41 trays, in addition to the structures mentioned
in (11), (12), the following structural constraints are also
incorporated. To select n number of measurements, ⌊n/2⌋
number of measurements should be selected from top trays
⌊ny/2 + 1 : ny⌋, and rest of the measurements should be
selected from {1 : ⌊ny/2⌋};

(1) to select 2 measurements, ⌊n/2⌋ = 1 measurement
should be selected from top trays 21 to 41 temper-
ature measurements and other 1 measurement from
bottom trays 1 to 20 temperature measurements

(2) to select 9 measurements, ⌊ny/2⌋ = 4 measurements
should be selected from top trays 21 to 41 temper-
atures, and rest of the measurements from bottom
trays 1 to 20 temperatures.

The loss associated to these (11), (12) and these structural
constraints is also shown in Fig. 1. Figure 1 show that
the loss in terms of the relative composition deviation
(17), decreases as the number of included measurements
increases from 2 to 41. For each number of measurements,
the actual measurements set is determined as part of the
MIQP solution. The actual optimal controlled variables
(measurement combination H) for the cases with 2, 3 and
4 measurements are shown in Table 4. For the case with 2
measurements, we just give the measurement, and not the
combination, because we can always choose the D matrix
to make H = I (identity).

From Figure 1, we see that the losses with the specified
structures are very close to the loss with c′s as combina-
tions of all the included measurements. For “triangular”
H, the optimal solution should at least be as good as
“disjoint” H, but in Table 4 the loss with “triangular” is
higher than “disjoint” case. The reason is that we are only
minimizing the in convex formulation (13) for the given H

structure and at the optimal solution, ||HF||
2
F is smaller

for “triangular” H, but when we evaluate the original loss
∣
∣
∣

∣
∣
∣J

1/2
uu (HGy)−1HF

∣
∣
∣

∣
∣
∣

2

F
the “disjoint” H has smaller loss.

For “triangular” H there is sudden increase in loss from 4
to 5. This may be due to numerical issues associated to the
cplex algorithm. The computational time required to find
the optimalH with “full”, “disjoint” (11) and “triangular”
(12) structures are shown in Figure 2. From Figure 2,
we see that computational time taken to obtain the c′s
as combinations H with “disjoint” (11), “traingular” (12)
structures with additional structural constraints are 1.8,
2.6 orders faster than “full” H case respectively.

For the case with 2 measurements, the optimal measure-
ment set is {T12, T29}. However, for the disjoint measure-
ment case, the convex formulation in (13) only gives an
upper bound and it gives a non-optimal set {T12, T30}
and the loss is increased slightly from 0.0365 to 0.0369.
Whereas the measurements and loss are same with special
structure on H as in (12).

Interestingly, the optimal measurement sets are same for
both “full”H and “disjoint”H cases when the measure-
ment subset size is 3 and 4 (Table 4). However, since we
are restricted in how we can combine measurements in the
“disjoint” case, there is a small difference in the associ-
ated losses. Thus, although the method (16) developed for
obtaining c′s with structural constraints are not exact, it

serves as a tight upper bound for the true optimal solution
for the problem in (10).

5. CONCLUSION

The minimum loss method of self optimizing control for
optimal control structure selection with economic cost
function as criterion is addressed. The MIQP based for-
mulations to find controlled variables as best individual
measurements, as best combinations of fewer/all measure-
ments are reviewed. To improve dynamic controllability
the controlled variables are only allowed to be combi-
nations of measurements with specified structures. The
proposed methods are not exact, but provides very close
upper bound to the exact solution of c′s as combinations
of measurements with specified structures, which is of
significant value from a practical point of view. For the
distillation column case study the loss increases only by a
small value for the two specified structures considered.
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