
Chapter 2

Optimal Use of Measurements for
Control, Optimization and Estimation
using the Loss Method: Summary of
Existing Results and Some New

Sigurd Skogestad and Ramprasad Yelchuru and Johannes Jäschke

Abstract The objective of this chapter is to study the optimal use of mea-
surements and measurements combinations, c = Hy in optimization and
estimation based on the loss method.

2.1 Introduction

In this paper we consider a (steady-state) unconstrained quadratic optimiza-
tion problem with linear measurement relationships. The main objective is
to find a linear measurement combination, c = Hy, such that control of
these indirectly leads to close-to-optimal operation with a small loss L, in
spite of unknown disturbances, d, and measurement noise (error), ny. If the
original optimization problem is constrained, then we assume that any ac-
tive constraints are kept constant (controlled) and we consider the lower-
dimensional unconstrained subspace. Depending on the disturbance range
considered, there may be several constrained regions, and the procedure of
finding H needs to be repeated in each constrained region. Switching be-
tween the regions will then be needed, and we will show that monitoring the
controlled variables c = Hy in neighboring regions can be used for switching.
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What we here call the “loss method” is the same as what is called the
“exact local method” in these papers (Halvorsen et al (2003); Alstad et al
(2009)).

The new material in this summary paper is mainly related to using data
(Y ,X) as the basis, and for example, to use the “loss”method for regression,
see section 5, data approach 1 and 2.

2.2 Problem Formulation

2.2.1 Classification of Variables

• u - inputs (degrees of freedom) for optimization and control (it does not
actually matter what they are as long as they form an independent set)

• d - disturbances, including parameter changes.
• y - all available measurements (will later call a subset of these for x in ac-

cordance with statistics notation). The manipulated variables (MVs, often
the same as the inputs u) are generally included in the measurement set
y. This will allow, for example, for simple control policies where the inputs
are kept constant. Of course, the set y also includes measured disturbances
(dm, a subset of d).

• ny - measurement noise (error) for y, ym = y + ny.
• p - prices = weights that enter into cost function (do not affect y)

2.2.2 Cost Function

The objective is to choose the input u to minimize the quadratic cost function

J(u,d) = uTQ1u+ dTQ2d+ uTQ3d (2.1)

Note that for simplicity, we have not included linear terms in the cost func-
tion. Any linear term in u can be removed by shifting the zero point for u

to be at the optimal point. On the other hand, a linear term in d cannot be
counteracted by choosing the input u, so excluding it does not change the
solution. The same applies to any constant term in the cost.

If we compare (2.1), with a second-order Taylor series expansion of the
cost around a nominal point (u∗,d∗), then we have that

Q1 =
1

2
J∗

uu,Q2 = J∗
ud,Q3 =

1

2
J∗

dd
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and u represents deviation from the optimal point (u∗,d∗) = (0, 0) at which
J∗

u = 0.

2.2.3 Measurement Model

A linear model is assumed for the effect on u and d on measurements y

(deviation variables)

y = Gyu+G
y
dd = G̃

[
u

d

]
(2.2)

2.2.4 Assumptions

• No constraints (u spans unconstrained subspace)
• We want to find as many controlled variables as there are degrees of free-

dom, nc = dim(c) = dim (u) = nu. Then HGy is a square nu×nu matrix
• We use at least as many measurements as there are degrees of freedom,

ny ≥ nu = nc.

2.2.5 Expected Set of Disturbances and Noise

We write d = W d d′ where W d is a diagonal matrix giving the expected
magnitude of each disturbance and d′ is a normalization vector of unit mag-
nitude.

Similarly, ny = Wny ny′

where Wny is a diagonal matrix with the mag-
nitude of the noise for each measurement, and the vector ny′

is of unit mag-
nitude.

More precisely, the combined normalization vectors for disturbances and
measurement noise are assumed to have 2-norm less than 1,∣∣∣∣

∣∣∣∣d
′

ny′

∣∣∣∣
∣∣∣∣
2

≤ 1 (2.3)

The choice of the 2-norm (rather than, for example, the vector infinity-
norm) is discussed in the Appendix of Halvorsen et al (2003).
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2.2.6 Problem

Given that
H (y + ny)︸ ︷︷ ︸

ym

= cs (constant = 0 nominally) (2.4)

find the optimal H such that “magnitude” of the loss

L = J(u,d)− Jopt(d) (2.5)

is minimized for the “expected” d and ny.
The “expected” set of the disturbances and noise is defined above.
The “magnitude” of the loss still needs to be defined. Two possibilities are

considered.

• Worst-case loss, Lwc.
• Average loss, Lavg.

2.2.7 Examples of this Problem

1. Identify controlled variables, c = Hy (“squaring down”). Then use feed-
back control to adjust u such that cm = Hym = cs.

2. Find invariants for quadratic optimization problems.
3. Obtain estimate of primary variables, c = ŷ1 = Hy.

Problem: Given that ŷ1 = Hy find optimal H such that magnitude of
||y1 − ŷ1|| is minimized for the expected d’s and ny’s.

2.2.8 Comments on the Problem

1. The controlled variables are c = Hy and the objective is to find the
non-square nc × ny matrix H (note that nc = nu). In general, H is a
“full” combination matrix. However, it may also be interesting to consider
control of individual measurements, in which caseH is a“selection”matrix
with nu number of columns with single 1 and the rest of columns are zero
(mathematically HHT = I).

2. Minimizing (the magnitude of) the loss L is close to but not quite the same
as minimizing the cost J . In some cases they give identical results in terms
of the optimal H, for example, if we consider the average loss or cost for
given disturbances (because then the same cost function is subtracted).
So it seems it is the same for the 2-norm (Frobenius) of M (see below).
However, there will be some difference if we consider the worst-case loss
or cost.
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2.3 Solution to Problem: Preliminaries

The objective is to derive the solution to the above problem. It has been
previously been known as the “exact local method”, but we will here call it
the loss method. However, first we need some preliminaries

2.3.1 Expression for uopt(d)

We want to find the optimal input u for a given disturbance d. Expanding
the gradient Ju around the nominal point (u∗,d∗) = (0, 0) gives

Ju = J∗
u + J∗

uuu+ J∗
udd = J∗

u︸︷︷︸
=0

+ [J∗
uu J∗

ud]

[
u

d

]

where J∗
u = Ju(u

∗,d∗) = 0 because the nominal point is assumed to be
optimal. To remain optimal, u = uopt(d), we must have Ju = 0 and we
derive

uopt = −J−1
uuJudd (2.6)

where we have dropped the superscript ∗ (either because we consider small
deviations or because we assume that the problem is truly quadratic).

2.3.2 Expression for J around uopt(d)

Consider a given disturbance d. Then expanding the cost J around a“moving”
uopt(d) gives

J(u,d) = J(uopt(d),d)︸ ︷︷ ︸
Jopt(d)

+ Ju︸︷︷︸
=0

(u−uopt)+
1

2
(u−uopt)

TJuu(u−uopt) (2.7)

Here Ju = 0 (since we are expanding around an optimal point), so we get
the following expression for the loss

L(u, d) = J(u, d)− Jopt(d) =
1

2
zTz =

1

2
||z||22 (2.8)

where
z = J1/2

uu (u− uopt(d)) (2.9)
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2.3.3 Expression for Ju around Moving uopt(d)

A similar expansion, but now of the gradient gives

Ju = Ju(uopt)︸ ︷︷ ︸
=0

+Juu(u− uopt) = Juu(u− uopt) (2.10)

Combining this with (2.9) gives z = J−1/2
uu Ju and we have the “Johannes

expression” for the loss

L(u, d) = J(u, d)− Jopt(d) =
1

2

∣∣∣∣∣∣J−1/2
uu Ju

∣∣∣∣∣∣2
2

(2.11)

From these expressions we see that minimizing the loss L is equivalent to

minimizing ||z||2, which is equivalent to minimizing
∣∣∣∣∣∣J1/2

uu (u − uopt)
∣∣∣∣∣∣
2
or∣∣∣∣∣∣J− 1

2
uu Ju

∣∣∣∣∣∣
2
.

Thus, we have the important conclusion that minimizing the loss is equiv-
alent to minimizing the weighted 2-norm of the gradient Ju, with the weight
being given by the matrix J−1/2

uu . However, for the “normal” case when there
are no restrictions (like fixing some elements to zero) on the matrix H , we

will show below that the weight J−1/2
uu does not have any effect on the optimal

H.

2.3.4 Optimal Sensitivities

Note from (2.6) that we can write uopt = F ud where F u = −J−1
uuJud. More

generally, we can write
yopt = Fd (2.12)

where F is the optimal sensitivity of the outputs (measurements) with respect
to the disturbances. Here, F can be obtained using (2.2) and (2.6),

yopt = Gyuopt +G
y
dd = (−GyJ−1

uuJud +G
y
d)d

that is,
F = (−GyJ−1

uuJud +G
y
d) (2.13)

However, Juu can be difficult to obtain, especially if one relies on numerical
methods, and also taking the difference can introduce numerical inaccuracy.
Thus, for practical use it is often better to obtain F from its definition,
F = dyopt/dd, by numerically reoptimizing the model for the disturbances.
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2.4 The Loss Method

Now we are finally ready to derive the main results.

2.4.1 The Loss Variable z as a Function of
Disturbances and Noise

We start from the loss expression in (2.8) with ||z||22 where z = J1/2
uu (u−uopt).

We want to write z as a function of d and ny, The first step is to write u−uopt

as a function of c− copt. We have c = Hy, so

c = Hy = HGyu+HG
y
dd

copt = Hyopt = HGyuopt +HG
y
dd

Thus, c− copt = HGy(u− uopt), or

(u − uopt) = (HGy)−1(c− copt)

where G = HGy is the transfer function from u to c.
The next step is to express (c−copt) as a function of d and ny. From (2.4)

we have that H(y + ny) = cs (constant), or

c = Hy = −Hny + cs

Here, cs = 0, since we assume the nominal point is optimal. From (2.12)
we have that copt = HFd. Since the signs for ny and d do not matter for
the expressions we derive below (we can have both positive and negative
changes), we derive

c− copt = H(Fd+ny) = H(FW dd
′ +Wnyny′

) = H [FW d Wny ]

[
d′

ny′

]

Note that W d and Wny are usually diagonal matrices, representing the mag-
nitude of the disturbances and measurement noises, respectively.

2.4.2 Loss for Given H, Disturbance and Noise
(Analysis)

In summary, we have derived that for the given normalized disturbances d′

and for the given normalized measurement noises ny′

the loss is given by
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L =
1

2
zTz (2.14)

where

z = J1/2
uu (u − uopt) = J1/2

uu (HGy)−1HY︸ ︷︷ ︸
M(H)

[
d′

ny′

]
(2.15)

Y = [FW d Wny ] (2.16)

2.4.3 Worst-case and Average Loss for Given H

(Analysis)

The above expressions give the loss for the given d and ny′

, but the issue is
the find the “magnitude” of the loss for the set bounded as

∣∣∣∣
∣∣∣∣
[
d′

ny′

]∣∣∣∣
∣∣∣∣
2

≤ 1 (2.17)

Here “magnitude” can be defined in different ways, and the worst case loss
(Halvorsen et al, 2003) and average loss (Kariwala et al, 2008) for a given H

are given by

Lwc =
1

2
σ̄(M )2 (2.18)

Lavg =
1

6(ny + nd)
‖M‖2F (2.19)

where
M(H) = J1/2

uu (HGy)−1HY (2.20)

Here σ̄(M) denotes the singular value (induced 2-norm) of the matrixM(H),
and ‖M‖F denotes the Frobenius norm (normal 2-norm) of the matrix M .
Use of the norm ofM to analyze the loss is known as the“exact local method”.

2.4.4 Loss Method for Finding Optimal H

The optimal H can be found by minimizing either the worst-case loss (2.18)
or the average loss (2.19). Fortunately, (Kariwala et al, 2008) prove that the
H that minimizes the average loss in equation (2.19) is super optimal, in the
sense that the same H minimizes the worst case loss in (2.18). Hence, only
minimization of the Frobenius norm in (2.19) is considered in the rest of the
paper. The scaling factor 1

6(ny+nd)
does not have any effect on the solution
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of the equation (2.19) and hence it is omitted in the problem formulation.
Similarly, the square does not effect the optimal solution and can be omitted.

In summary, the problem is to find the combination matrix H that mini-
mizes the Frobenius norm of ||M || in (2.19), that is,

min
H

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥
F

(2.21)

where Y = [FW d Wny ]. We call this the minimum loss method for finding
optimal linear measurement combinations, c = Hy.

The objective in (2.21) is to find the nonsquare nu×ny matrixH (note that
nu = nc). In most cases it may be recast as a convex optimization problem
as given in (2.23) below. The exception is if H has a specified structure, for
example, H is a selection matrix, which is discussed in Section 2.6.

Further Comments

1. Using the norm of M to analyze the loss is known as the “exact local
method”and finding the optimalH is the“exact local method optimization
problem”. However, in this paper we simply call it the “loss method”.

2. To include changes in the weights in the cost function p (prices), we need
to find the optimal sensitivity to price changes, yopt = F pp The corrected
setpoint for the variables c = Hy is then

cs = Hyopt = HF pp (2.22)

3. The effect (transfer function) from cs to z is Mn = J1/2
uu (HGy)−1, and

from cs to u is G−1 = (HGy)−1. Since there are extra degrees of freedom
in H which are not set by the optimization problem, either of these (Mn

or G) can be selected freely; see below for details.

Exercise 2.1. Consider a scalar case (nu = nc = 1) with no disturbances
(F = 0) and assume that the measurements y have been scaled such
that Wny = I (noise of equal magnitude on all outputs). For the scalar

case, J1/2
uu does not matter for the optimization problem which becomes

minH
∣∣∣∣(HGy)−1H

∣∣∣∣2
F
and we want to find the optimal H .

(a) Consider the case with 2 measurements, so Gy =

[
g1
g2

]
(column vector)

and H = [h1 h2] (row vector), and solve the problem analytically. Also
compute the optimal norm, j =

∣∣∣∣(HGy)−1H
∣∣∣∣
F
.

(b) Derive the result more generally for the scalar case with any number of
measurements, by making use of the definition of the induced 2-norm (sin-

gular value), which for a vector gives, ||Gy||2 =
√
GyT

Gy = maxh
||Gyh||2
||h||2
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(note that for a vector the Frobenius norm (F )and 2-norm (2) are the
same).

(c) Use the analytical formula presented below, to derive the general result
for the multivariable case (nu = nc > 1).

Solution 2.1.

(a) Two measurements.

HGy = [h1h2]

[
g1
g2

]
= h1g1 + h2g2 (scalar)

j2 =
∣∣∣∣(HGy)−1H

∣∣∣∣ ||2F = (h2
1+h2

2)/(h1g1+h2g2)
2 = (1+x2)/(g1+xg2)

2

where x = h2/h1. Set d(j2)/dx = 0 to find the optimal x. After a lit-
tle simplification x − (1 + x2)g2/(g1 + xg2) = 0 which gives x = g2/g1.
Conclusion:

h2/h1 = g2/g1

that is, we prefer to control the measurements corresponding to large el-
ements in Gy. Also find: jopt = 1/

√
(g2

1 + g2
2) which we note is equal to

1/ ||Gy||F
(b) Any number of measurements: Let h = HT be a column vector. Gy is

already a column vector. Since HGy = hTGy is a scalar, it is equal to

its transpose and we have that HGy = GyT

h. Our optimization problem
then becomes

min
H

j = min
h

∣∣∣∣∣
∣∣∣∣∣ h

(GyT

h)

∣∣∣∣∣
∣∣∣∣∣
F

= 1/

⎛
⎝max

h

∣∣∣∣∣∣GyT

h

∣∣∣∣∣∣
2

||h||2

⎞
⎠ = 1/ ||Gy||2

We have here made use of the induced 2-norm and the fact that both the
Frobenius- and 2-norm are the same for a vector. Thus the optimal j is
the inverse of the 2-norm of Gy, which generalizes the solution found for
the case with two measurements. The optimal h = cGy (where c is any
scalar since only the relative magnitudes matter), that is,

HT = cGy

which generalizes the result above.
(c) Multivariable case (c is no longer required to be a scalar). From (2.25) we

derive with Y = I (F = 0 and measurement noise of magnitude 1 for all
outputs) that an optimal solution is

HT = Gy

which generalizes the results above. Thus, for the case where only mea-
surement noise is a concern, and all the measurements have the same noise
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magnitude, the optimal is to select the measurements according the gain
matrix Gy. This means that “sensitive”measurements, with large elements
in Gy are preferred for control.

2.5 Reformulation of Loss Method to Convex Problem
and Explicit Solution

We consider here the “normal” case where H is a “full” matrix (with no
structural constraints).

Theorem 2.1 (Reformulation as a convex problem). The problem in
equation (2.21) may seem non-convex, but for the normal case where H is
a “full” matrix (with no structural constraints), it can be reformulated as a
constrained quadratic programming problem (Alstad et al, 2009)

min
H

||HY ||F
s.t. HGy = J1/2

uu

(2.23)

Proof. From the original problem in equation (2.21), we have that the optimal
solution H is non-unique because if H is a solution then H1 = DH is also a
solution for any non-singular matrix D of size nc × nc. This follows because

J1/2
uu (H1G

y)−1H1Y = J1/2
uu (HGy)−1D−1DHY = J1/2

uu (HGy)−1HY

One implication is that we can freely choose G = HGy, which is a nc × nc

matrix representing the effect of u on c (c = Gu). Thus, in (2.21) we may
use the non-uniqueness of H to set the first part of the expression equal to
the identity matrix, which is equivalent to setting HGy = J1/2

uu . This identity
must then be added as a constraint in the optimization as shown in (2.23).
��

The reason for the non-uniqueness is that since ny ≥ nc, H is “fat”nc×ny

matrix (with more columns than rows).

Theorem 2.2 (Analytical solution). Under the assumption that Y Y T is
full rank, an analytical solution for the problem in (2.23) is (Alstad et al,
2009)

HT = (Y Y T )−1Gy(GyT

(Y Y T )−1Gy)−1J1/2
uu (2.24)

Proof. The result is proved in (Alstad et al, 2009) and is based on first vector-
izing the problem and then using standard results from constrained quadratic
optimization.

The analytical solution in Theorem 2.2, results in a H satisfying HGy =
J1/2

uu . However, recall that the optimal solution H is non-unique, and we may
use it to derive a simplified analytical solution.
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Theorem 2.3 (Simplified analytical solution). Under the assumption
that Y Y T is full rank, another analytical solution for the problem in (2.23)
is

HT = (Y Y T )−1Gy (2.25)

Proof. This follows trivially from Theorem 2.2, since if HT is a solution then

so is HT
1 = HTD and we simply select D = (GyT

(Y Y T )−1Gy)−1J1/2
uu =

J−1/2
uu GyT

(Y Y T )−1Gy, which is a nc × nc matrix. ��
Note that the analytical expressions in Theorems 2.2 and 2.3 require Y Y T

to be full rank. This implies that they generally do not apply to the case with
no measurement error, W ny = 0, but otherwise they apply for any number
of measurements. One exception (but not so common in practice), when the
analytical expressions for H do apply also for W y = 0, is when ny ≤ nd,

because Y Y T then remains full rank.

Corollary 2.1 (Important insight). Theorem 2.3 gives the very important
insight that Juu is not needed for finding the optimal H, provided we have
the normal case where H can be any nc × ny matrix.

This means that in (2.21) we can replace J1/2
uu by any non-singular matrix,

and still get an optimal H. This can greatly simplify practical calculations,
because Juu may be difficult to obtain numerically because it involves the
second derivative. On the other hand, we found that F , which enters in Y , is
relatively straightforward to obtain numerically. Although Juu is not needed
for finding the optimal H, it would be required for finding a numerical value
for the loss.

The analytical solutions are useful, in particular for their insights they
yield, but for practical calculations it is usually faster and more robust to
compute the optimal H by solving the convex quadratic optimization prob-
lems. In addition, the convex optimization problems do not need the require-
ment that Y Y T is non-singular. Based on the insight in Corollary 2.1, the
quadratic optimization in Theorem 2.1 (Alstad et al, 2009), can be further
reformulated to a more general form (Yelchuru and Skogestad, 2010)

Theorem 2.4 (Generalized convex formulation). An optimal H for the
problem in (2.23) is

min
H

||HY ||F
s.t. HGy = Q

(2.26)

where Q is any non-singular nc×nc matrix, for example, Q = I, but Q must
be fixed while minimizing ||HF ||F .
Proof. The result follows from Corollary 2.1, but can more generally be de-

rived as follows. The problem in (2.23) is to minimize

∥∥∥∥∥∥(J
1/2
uu (HGy)−1︸ ︷︷ ︸

X

HY )

∥∥∥∥∥∥
F

.
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The reason why we can omit the nc × nc matrix X, is that if H is an opti-
mal solution then so is H1 = DH where D is any nonsingular nc × nc (see
proof of Theorem 2.1). However, note that the matrix X, or equivalently the
matrix Q, must be fixed during the optimization, so it needs to be added as
a constraint. ��

The fact that Q can be chosen freely (Theorem 2.4) can be useful for
numerical reasons, or finding improved bounds for cases with constraints on
H (see below).

Once we have found an optimal H using any of the Theorems above,
we can use the non-uniqueness of optimal H to find another H1 = DH

with desired property or structure. For example, one can select D such that
G = HGy = I. Alternatively, one can specify selected elements in H1, for
example, H1 = [I K]. In the latter case, write H = [H lHr] and assume
H l is full rank, then H1 = [I K] = [DH l DHr], and we find db = H−1

l

and K = H−1
l Hr.

Required information

To find the optimal “full”H using the loss method we need four pieces of in-
formation. First, for the measurements we need the optimal disturbance sen-
sitivity (F ) and input sensitivity (Gy). These are obtained from the model.
Next, we must specify the disturbance magnitudes (Wd) and the noise magni-
tudes (Wny ). The matrix Juu is not needed except when there are structural
constraints, as discussed in the next section.

Note that changes (disturbances) in the prices (parameters) in the cost
function do not change the optimal H, based on the assumption that we still
have a quadratic optimization problem with constant weights. However, as
given in (2.22) the setpoint for c needs to be adjusted, cs = HF pp and for
this we need for the measurements the optimal price sensitivity (F p) which
can be obtained from the model.

2.6 Structural Constraints on H

In the previous section we considered the normal case where H may be any
“full” matrix. In terms of selecting controlled variables, c = Hy, this means
that any combination of measurements are allowed. However, in practice there
may be constraints on H, for example, one wants to use a subset of the
measurements or one want to use a decentralized structure for H .

We will consider the following special cases

Case 1. No restrictions on H. This is the case already considered where
Theorems 2.1– 2.4 hold.
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Note that key for deriving Theorems 2.1– 2.4 was that if H is a solution
then so is H1 = DH where D is any non-singular matrix.

Case 2. H contains a subset of the measurements but is otherwise full.
Theorems 2.1– 2.4 hold also in this case.
The reason is that H1 = DH will have the same structure as H for
any nonsingular D. This is because if H has columns equal to zero, then
these columns will remain zero in DH even if D is “full”. For example, if

H =

[
0 x 0 x x

0 x 0 x x

]
then we can still allow a full D =

[
x x

x x

]
(where x is

any number) and keep the structure of H in H1 = DH .
Case 3. H contains measurements from disjoint set, so H has a block

diagonal (decentralized) structure. Theorems 2.1– 2.4 do not hold in this
case.
The reason is that for H1 = DH to have the same structure, D must

have a structure similar to H . For example, let H =

[
x x x 0 0
0 0 0 x x

]
then

D =

[
x 0
0 x

]
(where x is any number) and if H =

[
x x x x x

0 0 0 x x

]
then

D =

[
x x

0 x

]
.

Thus, for case 3 we do not have a convex problem formulation, that is, we
need to solve the nonconvex problem in (2.21) (with additional constraints
on the structure of H). This is not surprising as decentralized control is
generally a nonconvex problem. Nevertheless, Theorems 2.1 and 2.4, with
additional constraints on the structure of H , give convex optimization
problems that provide upper bounds on the optimal H for case 3. In
particular, in Theorem 2.4 4 we may make use of the extra degree of
freedom provided by the matrix Q (Yelchuru and Skogestad, 2010).
Also note that, as opposed to cases 1 and 2, Juu is needed to find the
optimal solution for case 3. This may seem a bit surprising.

Case 4. Decentralized control using single measurements, that is nys = nc

where nys is the number of selected measurements). Theorems 2.1– 2.4
hold also in this case.
This is a special case of case 3 where we use the fewest number of measure-
ments. This case is different from case 2 in that H is a diagonal matrix.
The reason why Theorems 2.1– 2.4 hold in this case, is that we can still
keep D full because the “non-zero” part of H is square and we can to
change it to anything, so we can treat it a special case of “full H”.

2.7 Some Special Cases: Nullspace Method and
Maximum Gain Rule

The general optimization problem is
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min
H

∣∣∣∣∣∣J1/2
uu (HGy)−1HY )

∣∣∣∣∣∣
F

(2.27)

where Y = [FW dW ny ]. The objective is to find the nonsquare nc × ny

matrix H (note that nu = nc). We will here consider some special cases
of this problem, which historically were developed before the convex and
analytical solutions presented above.

2.7.1 No Measurement Noise: Nullspace Method (“full
H”)

For the special case with no measurement noise, W ny = 0, and with more
(independent) measurements than (independent) inputs and disturbances,
ny ≥ nu + nd, it is possible to find H such that

HF = 0 (2.28)

that is, the loss is zero. This is called the “nullspace method” (Alstad and
Skogestad, 2007) because H is in the nullspace of F . In this case, Gy and
W d do not matter for finding the optimal H .

The nullspace method is very simple and has been found to be very useful
in applications. Since the nullspace method neglects the effect of measurement
error, it is important to use preselect a subset of the measurements that are
expected to be insensitive to measurement errors.

Also, one cannot include too many disturbances, because otherwise one
cannot satisfy the requirement ny ≥ nu + nd.

One limitation with the analytical formulas in (2.24) and (2.25) is that
they do not give the nullspace method as a special case. This is because
Y = [FW d Wny ] at most has rank nd when W ny = 0. Thus, the ny × ny

matrix Y Y T at most has rank nd and is not invertible because this would
require the rank to be ny. However, the convex optimization problems in
Theorems 2.1 and 2.4 do give the nullspace method as a special case.

Comment: In general, with measurement noise included or with few mea-
surements (so ny < nu + nd), it is not possible to make HY zero.

Explicit Expression for H for Nullspace Method

The following explicit expression applies for H (Alstad and Skogestad, 2007):

H = [JuuJud](G̃
y
)−1 (2.29)

Proof. Here is a proof which is much simpler than that given in (Alstad and
Skogestad, 2007): Want to find c = Hy with zero loss.
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1. Measurement relationship: y = G̃
y
[
u

d

]
. Inverting this:

[
u

d

]
= (G̃

y
)−1y (2.30)

2. Optimality condition (NCO):

Ju = 0 (2.31)

3. First-order expansion of gradient:

Ju = J∗
u + J∗

uuu+ J∗
udd = [J∗

uu J∗
ud]

[
u

d

]

where we use Ju∗ = 0.

4. (2.30) and (2.31) then give: [Juu Jud]G̃
−1

y y = 0 and it follows that

H = [Juu Jud](G̃
y
)−1. ��

2.7.2 No Disturbances

The case with no disturbances has limited practical significance, but is nev-
ertheless and interesting limiting cases.

We assume there are no disturbances, W d = 0, and we scale the measure-
ments y so that they all have unity measurement noise, W ny = I. From the
analytical expression (2.25), we then have that an optimal solution is

HT = Gy (2.32)

This gives the important insight that we prefer sensitive measurements.

2.7.3 An Approximate Analysis Method for the
General Case: “Maximum Gain Rule”

The maximum gain rule is an approximate analysis method for a given H .
If we want to compare (analyze) alternative choices for H , for example, al-
ternative choices of individual measurements, then the “maximum gain rule”
is effective and gives considerable insight. The maximum gain rule has also
been used to find “optimal” H, especially for the case where one wants to
control individual measurements, and Yu and Kariwala have devised efficient
branch and bound methods for solving this problem.
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In the “maximum gain rule” one considers the scaled gain matrix G =
HGy from u to c. To derive the maximum gain rule, we return to the loss
expression

J =
1

2
zTz

where
z = J1/2

uu (u− uopt) = J1/2
uu G−1(c− copt)

c− copt = H(Fd+ ny)

G = HGy

Here, c − copt may be viewed as the “optimal” (or expected) variation in
the selected variables, c = Hy, caused by disturbances and measurement
noise. The magnitude of c − copt = HFd + Hny is obtained by adding
the magnitude of the contributions from HFd and Hny, and we assume
in the following that c − copt = W cc

′ where W c is a diagonal matrix for
the expected optimal variation (“optimal span”) in c and we assume that all

||c′||2 ≤ 1 are allowed. c−copt translates into changes in the inputs (u−uopt)

by the transformation u = G−1c and to a loss through the matrix J1/2
uu . We

want (u−uopt) small, so we want the norm of G−1 small. More specifically,
the largest (worst-case) value of ||z||2 for any allowed ||c′||2 ≤ 1 is equal to

σ̄(J1/2
uu G−1W c), and we want this as small as possible. From singular value

properties we have that the σ̄(A−1) = 1/σ(A), that is we want to maximize

smin(W−1
c GJ−1/2

uu ).
We have then derived the maximum gain rule: Under the assumption

that ||c′||2 ≤ 1 , the worst-case loss is given by Lmax = 1
2

1
σ2(Gs)

where

Gs = S1GS2 (2.33)

and
S1 = W−1

c = diag(1/|ci − copt,i|)
S2 = J−1/2

uu

Note that S1 includes the sum of the optimal variation (as given by the F -
matrix) and the expected measurement error. Thus, to minimize the loss we
should select c = Gu with a large minimum singular value of the scaled gain
matrix Gs.

The only “non-exact”step in deriving this rule comes from the assumption
that all ||c′||2 ≤ 1 are allowed, which means that we neglect some of the
variations in (c−copt) that are correlated. Nevertheless, since the presence of
measurement noise means that there is always some uncorrelated variation,
at least if we consider individual measurements, c = y, this implies that we
can safely exclude candidate c’s with a small gain, that is, with a small value
of σ(Gs).
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Note that Juu enters into the maximum gain rule, whereas it is actually not
required when H is the optimal full matrix, see (2.26). However, in general
Juu must be included, see case 3 in the discussion following (2.26).

• Do we need the maximum gain rule?

One can analyze the loss with alternatives choices for c using the “exact local
method”, so why do we need the maximum gain rule? The motivation for
using the maximum gain rule is at least threefold

1. It is simpler to compute.
2. It given insight, in particular that we want to control “sensitive” variables

with a large scaled gain: Select variables c where the “optimal variation”
(c − copt) (from disturbances, and including measurement noise) is small
compared to the “achievable variation”(c = Gu) (from inputs).

3. The scaled gain matrix is Gs = S1GS2. Here, the gain matrix G is ob-
tained by linearizing in a single operating point. To find the “scaling”
matrices S1 and S2 we need to reoptimize for the disturbances (to find
c − copt needed for S1) and to find the second derivative with respect to

the inputs (to find S2 = J−1/2
uu ), which can be rather involved calculations.

If this information missing, then one may often get good results by esti-
mating the optimal variations to find S1 (for example, based on operating
data) and by setting S2 = I (one should in this case scale the inputs so
that their expected effect on the cost is similar).

This maximum gain rule has also proven to work surprisingly well on
many applications. Nevertheless, if one has data for the optimal sensitivity
(F ), then our recommendation is to use the “exact local method” instead of
the maximum gain rule. This is because one can analyze alternative choices
for c (and H) more exactly by computing the norm (Frobenius norm or max.

singular value) of M =
[
J1/2

uu (HGy)−1HY
]
. Kariwala and Cao (2009) have

derived efficient branch and bound algorithms for finding the measurement
choice (optimal structured H) that minimize either the norm of M as well
as the scaled gain, σ(Gs). Although the computation times for minimizing
the latter are somewhat lower, the benefit is not sufficiently large to justify
using the maximum gain rule, provided we have the necessary information
available for the first method.

2.8 Indirect Control and Estimation of Primary Variable

These two problems are very similar, and can be written as a special case of
the loss method, involving the same matrices.
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2.8.1 Indirect Control of y1

The objective is to keep the primary output y1 close to its setpoint, so the
cost function is

J = (y1 − y1,s)
2

However, y1 is not measured, but we have to use some other measurements
y. Thus, we want to achieve indirect control of y1 by keeping c = Hy at a
given setpoint.

To find the optimal “full” H using the loss method we need four pieces
of information; F , Gy,Wd,Wny . In our case, the optimal sensitivity is F =
(dyopt/dd) = (dy/dd)y1

It may be obtained by simulations where we keep
y1 constant for the various disturbances. Instead of using simulations, we
may write y1 = G1u + Gd1d, and then (Hori et al, 2005) Juu = Gt

1G1,
Jud = GT

1 Gd1
, F = (−GyJ−1

uuJud +G
y
d) = (−GyG−1

1 Gd1
+G

y
d).

In addition, we need to handle setpoint changes for the primary variable,
y1,s, which requires changes in the setpoint for c. Note that y1,s only affects
the cost function and may be viewed as a price variable p, so from (2.22)
the required change in the setpoint is Δcs = HFpΔy1,s, where Fp may be
obtained from the model (exercise: derive the expression!).

2.8.2 Indirect Control of y1 Based on Estimator

Note that we still have not used the available degrees of freedom in H . To
simplify the setpoint adjustment, we may use the degrees of freedom in H

to make HFp = I, or equivalently, c = y1. This means that c should be
an estimate of y1. Note that y1 = G1u and c = HG1u (setting d = 0 for
simplicity). These two gains need to be identical, so we use the extra degrees
of freedom in H to make

HGy = G1 (2.34)

It is then easy to include changes in setpoint; we just control c at y1,s.

Some comments on this estimator

• What kind of estimator is this? If we look at the problem formulation, then
we see that it is be the optimal estimator in the following sense: When we
control y1 at the estimate (using the unconstrained degrees of freedom)
then this minimizes the deviation from the given value (setpoint), for the
expected range of disturbances and measurement noise.

• For practical purposes, when obtaining the model, it may be smart to let
the primary outputs be the degrees of freedom, u = y1 that is, to use
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“closed-loop data” (this may seem strange, but it is OK). Then we have
G1 = I.

2.9 Estimator for y1 Based on Data

The idea is to use the same approach as for the previous problem, but using
data instead of a model. The objective is to estimate y1 based on measure-
ments y (which we from now on will call x to follow statistics notation). That
is, we want to find

y1 = Hx

(where x = y). The available information is given by the data Y all =
[Y 1;X]. Note that the data must first be centered.

To use our method, we first need to know the expected optimal variation
Y . Here “optimal” means that y1 is constant. In addition, we also need to
obtain Gy and G1 from the data. This means that the data must contain
“non-optimal” variations in u, and not only contain optimal data where u =
uopt(d).

Comment: The setup is the same as for the previous problem, expect that
it is not clear how noise in y1 can be included. It is a bit similar to “imple-
mentation error”which has been neglected since we assumed integral action.

2.9.1 Data Approach 1

Here we assume that Y all is obtained from two different sources of data.

1. “Optimal” data with constant y1(X = Y opt): This is closed-loop data for
y with y1 constant for various disturbances (d) and also with noise. It
should be representative data for the expected operation. This directly
gives the matrix Y = Y opt (including the weights) needed in (2.26).

2. “Non-optimal” data with constant d: This is data for x and y1 collected
with varying u. From this data we directly obtainGy and G1. By selecting
u = y1, one may also here used closed-loop data (but with y1 varying), in
this case G1 = I.

3. Find optimal H using (2.26) with HGy = I.

2.9.2 Data Approach 2: Loss Regression

More generally, we do not have separate “optimal” and “non-optimal” data.
Instead, we have combined data Y all where y1 and x vary simultaneously.
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Note that we here use the notation from statistics/chemometrics and call the
measurements y for x.

We can then do a two-step procedure. In the first step, we “split up” the
data Y all data to find G1, G

y and Y opt, and in step 2 we proceed as“normal”
to find the optimal H .

Step 1A. We rearrange the data Y all such that the y1 values are in the
first rows, and the x = y-measurements are in the rest (called X),

Y all = [Y 1;X]

Step 1B. We now want to separate the data into “optimal” and “nonop-
timal” data. The data can generally be transformed by multiplying by a
(real) unitary matrix V , because ||[HY all]|| = ||[HY allV ]|| for the 2-
norm. Thus, we can use the SVD of

Y 1 = U1S1V
T
1

to transform the data to (“split up the data”)

Y allV 1 =

[
G1 0
Gy Xopt

]

Now, we have G1, G
y and Y = Xopt and can proceed as normal using

our derived formulas, see earlier.
Step 2. Find the optimal H by solving the convex optimization in (2.26)

with Y = Xopt and the constraint HGy = G1.

% Loss method

% step 1A

Yall = [Y1; X];

% step 1B

[u,s,v]=svd(Y1);

Yall1 = Yall*v;

[r1,c1]=size(Yall);

[r2,c2]=size(Y1);

ny=r2;

G1=Yall1(1:ny,1:ny);

Gy=Yall1(ny+1:r1,1:ny);

Xopt = Yall1(ny+1:r1,ny+1:c1);

% step 2,

%Hopt = (pinv(Xopt*Xopt’)*Gy)’; %analytical expression

[Hopt,loss]=soc_avg(Gy,Xopt);

D=Hopt*Gy*inv(G1);

Hoptloss=inv(D)*Hopt;
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Comments

• Alternatively in step 2, provided Y Y T has full rank, we may use the
analytical expression HT = (Y Y T )−1Gy in (2.25) and then “rescale”H
to get a new H1 = DH which satisfies H1G

y = G1, which gives H1 =
G1(HGy)−1H . If Y Y T does not have full tank one may use some pseudo
inverse (similar to PCR). This adds degrees of freedom to the method. It
has not been tested out but some preliminary results are promising.

• The method seems a bit similar to PLS in that we use the data for y1 to
affect the x-data (we get Xopt from X by using the SVD of Y 1, and also
use Gy when minimizing HXopt.

2.9.2.1 Modification for Case with Too Few Experiments (e.g.
Spectroscopic Data)

If we start with a model, then the data matrix Y = [FW d Wny ] is a “fat”
matrix; this is clear since the noise magnitude matrix Wny is a square matrix
(usually diagonal). Thus, there exists no matrix H such that HY = 0.

However, if we start with data and have many measurements (e.g., spec-
troscopic data), then Y = Xopt is likely a thin matrix, and there will exist an
(or actually, infinitely many) H such that HY = 0. Since the experimental
data Y contains measurement noise, this means that H is “fitting” the noise.
The proposed method will then be very similar to least squares, although
the constraint HGy = G1 can make it different (as seen from the numerical
examples below).

Extra step 1C. To fix this up, one may add“artificial”measurement noise
to get a better representation of the actual measurement noise. Since there
will always be some independent noise for each measurement, it is suggested
to add a diagonal matrix Wny to the original data

Xextended = [XoptWny ]

where Xopt was found in Step 1B above.
The problem is now to choose Wny . One approach is to estimate it from

the data using a preprocessing step. For example, one may do some prelimi-
nary regression and from this obtain an estimate of the noise.

A very simple approach, which is tested on some applications below, is to
assume that the measurements have been scaled (for example, by the norm
of the variation in each measurement), such that they have similar expected
magnitudes. Thus, we use Wny = wnY where wn is a scalar.

noise = wn*eye(rx);

Xoptnoise = [Xopt noise];

[Hopt,loss]=soc_avg(Gy,Xoptnoise);

% etc......
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wn is a tuning parameter but a systematic approach is the following: Plot
the singular values of Xopt and select wn such that the singular values of
Xextended follow the same trend.

2.9.3 Modification: Smoothening of Data

The loss regression method is based on the loss method where it is assumed
that a model is available. When we are using data, then the model has to
be extracted first (step 1), and this step of the method is not based on a
rigorous approach to the final objective, which is to use the model for future
predictions.

Therefore, it is likely that this step may be improved, One possible modi-
fications is suggested next, although it seems from the later numerical tests
that it actually may have no effect.

2.9.3.1 Smoothening of y1

The above procedure (including step 1) assumes that all the noise is in the
x = y. One way of dealing noise in y1 is to run through the procedure twice.

First, we go through the procedure (steps 1 and 2) and find the optimal
H0.

Next, we go through the procedure again, but with a modified step 1A
where use H0 to estimate the smoothened (fitted) values of y1 that corre-
spond to the measured X,

Y smooth
1 = H0X

and then we use this smoothened data in the other steps,

Y all = [Y smooth
1 ;X]

Y1smooth = Hoptloss*X;

% then redo step 1 and 2

Yallsmooth = [Y1smooth; X];

[u,s,v]=svd(Y1smooth);

% etc....

However, from the numerical examples this smoothening has no effect on
the results, which in some sense is good, but on the other hand it does not
offer any extra degrees of freedom.
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2.9.4 Numerical Tests

The Matlab files for these tests can be found at the home page of S. Skogestad,
and the commands are also listed in the Appendix.

The objective is to find H (called beta in PLS Matlab) such that y = Hx.
Note that PLS in all cases has an extra degree of freedom because it fits
y = Hx+h0 where h0 is nonzero. This may help for the fitting, but not for
validation. In any case, all the data is centered, so we can assume h0 is close
to 0.

2.9.5 Test 1. Gluten Test Example from Harald
Martens

Data: GlutenStarchNIR
1 y1 (gluten), 100 x (NIR absorbents), 100 data set).
This data has no noise on y1.
We first chose to use the 50 first data set for calibration and the 50 last

for validation. Table 2.1 shows the fit ||Y 1 −HX||F to calibration and val-
idation data. The best result for the traditional methods is PCR with 33

Table 2.1 Spectroscopic Example: Calibration and Validation data

Cal Val Method
0.0000 0.4758 Least squares (ls)
0.0738 0.3471 PCR-41 (tol=1.e-4)
0.1323 0.3142 PCR-33 (tol=2.e-4)
0.1890 0.4106 PCR-12 (tol=1.e-3)
0.0898 0.3608 PLS-8
0.0941 0.3445 PLS-7
0.1303 0.4987 PLS-6
0.0000 0.4735 min.loss
0.0000 0.4735 min.loss w/smooth y1
0.1442 0.3271 min.loss w/noise=5.e-4
0.1011 0.3115 min.loss w/noise=2.e-4

principal components (corresponding to a tolerance of 2e-4 when taking the
pseudo inverse), which gives a validation fit of 0.3142. PLS can use much
fewer components, but the fit is not as good (validation error is 0.3445) as
PCR. As expected, the minimum loss method given perfect fit to the data
and gives results identical to least squares. Thus, noise has to be added, and
a noise level of 2.e-4 gives an error to the validation data (0.3115) which is
even better than the best PCR

Use of smoothened y1-data has no effect, which is expected as the fit to
the calibration data is perfect.
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Table 2.2 Spectroscopic Example: Calibration and Validation data (with sets inter-
changed)

Cal Val Method
0.0000 0.6763 Least squares (ls)
0.1687 0.3873 PCR-12 (tol=5.e-4)
0.1652 0.2357 PLS-7
0.0000 0.6785 min.loss
0.1476 0.3798 min.loss w/noise=5.e-4

Table 2.3 Spectroscopic Example: Calibration (99 measurements) and Validation
data (1 rotating measurement)

Cal (avg.) Val Method
0.0000 3.0681 Least squares (ls) = min.loss
0.2689 0.3609 PCR (tol=5.e-4)
0.2769 0.3129 PLS-7
0.2471 0.3556 min.loss. w/noise=5.e-4

However, if we interchange the calibration and validation data set, then the
results are very different; see Table 2.2. The best is now PLS-7 (val=0.2357),
whereas minimum loss with noise is at 0.3798.

Finally, one data set was excluded at a time and used for validation. The
average norm of the calibration fit and the norm of the validation fit for the
100 runs are given in Table 2.3. Again the PLS method is best (val=0.3129),
whereas the minimum loss method with noise is the second best (val=0.2556).

2.9.6 Test 2. Wheat Test Example from Bjorn Alsberg
(Kalivas, 1997)

Data: wheat spectra
2 y1, 701 x, 100 data set.
The calibration data contains 50 measurements and the validation data

set 50 measurements (specified in files I received).
The results are shown in Table 2.4. The loss method is the best (validation

error 2.9 compared to 3.1 for the traditional methods), but the differences
are small.

The difference between the methods is small for this test case and in
this case the loss method gives better validation (2.9033) than least squares
(3.1092) in spite of the fact that the calibration fit is perfect in both cases.
This is a case where one would expect it to help to add artificial noise to the
loss method. The reason is that we have 701 x’s but only 50 data sets for
calibration, so the data would not be expected to contain sufficient informa-
tion about the expected noise. However, the numerical results do not confirm
this, and the fit gets worse when we add noise.
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Y 1 contains both the two y-variables (water and protein); presumably
better fit can be obtained by fitting one at a time.

Table showing the fit ||Y 1 −HX||F to calibration and validation data:

Table 2.4 Wheat Spectra Calibration and Validation data

Cal. Val. Method
0.0000 3.1092 least squares (= PCR -50)
0.3136 3.0871 PCR-47 (tol=1.1 e-3)
0.0052 3.1052 PLS-35
0.0000 2.9033 min.loss
0.0000 2.9033 min.loss + noise=1.e-8
0.0069 3.1099 min.loss + noise=1.e-4

Again, smoothening of y1 has no effect, which again is not surprising since
the fit was perfect.

2.9.7 Test 3. Our Own Example

The data contains 2 y1, 7 x, 2 d.

G1 =

[
1 0
0 1

]
Gd1

=

[
0 0
0 0

]
gy1

= [0.2034563] gy2
= [00.213489] Gy =

[gTy1
, gTy2

] gd1
= [004568− 9] gd2

= [00− 3− 55918] Gyd
= [gTd1

; gTd2
]

8 (or 32) noisy data set generated from ideal data [GyG
y
d] (4 data sets)

with 2 (or 8) different noise sets to get a total of 8 data sets. We here generate
the data by adding noise to data from a model (“calibration set”) and the
“validation set” is the noise-free data. To center the data I used opposite
sign when the data was “repeated”. The noise was generated using randn
command in Matlab.

It was found that when tested on a single example then almost any of the
methods could be the winner. To avoid this effect, the comparison was run
many times (with different random noise).

Table 2.5 shows the average value of ||Y 1 −HX||F for 8 data sets after
running 250 times. The best method is PCR (val=0.4931), PLS with 4 com-
ponents (val=0.5137) is the best PLS. This is not surprising since we know
that the data contains 4 directions. The new loss method is not doing so well
in this case (val=1.055), which is not so surprising since with only 8 data
sets there is limited information about the noise. Note that it is even worse
than least squares (val=0.9985). As expected, the improvement by adding
noise was significant (val=0.5850), but it is still not quite as good as PCR
and PLS.

Surprisingly, smoothening of y1 had absolutely no effect in this case, even
when I added noise on the y1-data (results not shown).
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Table 2.5 Our own example: 8 data sets in each run (average of 500 runs)

w/noise(cal) no noise(val) Method
0.2934 0.9985 LS (=PCR-8)
0.5496 0.4931 PCR (tol=1, most cases PCR-5)
0.5102 0.5137 PLS-4
0.3150 1.0552 loss method (no noise)
0.3150 1.0552 loss method (smooth y1)
0.4205 0.5850 loss method (noise=0.5)

Now, to show that the loss method does better when there is more data,
Table 2.6 shows the average value of ||Y 1 −HX||F for 32 data sets after
running 300 times.

Table 2.6 Our own example: 32 data sets in each run (average of 300 runs)

w/noise(cal) no noise(val) Method
1.4826 0.3560 LS (=PCR-8)
1.4970 0.3560 PCR (most cases PCR-6)
1.5256 0.3698 PLS-4
1.7700 0.2690 loss method (no noise)
1.7700 0.2690 loss method (smooth y1)
1.7703 0.2687 loss method (noise=0.5)

The loss method is the winner (val = 0.269) in spite of the fact that it has
no “tuning” parameters.

Here there is little effect of adding artificial noise with the loss method,
presumable because we have enough data.

2.9.8 Comparison with Normal Least Squares

Normal least square solution. Problem: Find H such that the magnitude of
||Y 1 −HY ||2 is minimized for the given set of data for Y 1 and Y .

Solution: H = Y 1pinv(Y ). This minimizes ||Y 1 −HY ||2 and, for cases
where this H is not unique, minimizes ||H ||2.

This is the same as finding H to minimize ||[I H ]Y all||, which we know
is not the optimal solution

Proof. The data matrix is Y all = [Y 1;Y ] Assume that we seek Hall to
minimize ||HallY all||2. We have degrees of freedom in Hall, so we set Hall =
[I −H]. Then we want to minimize ||Hall[Y 1;Y ]||2 = ||−Y 1 +HY || the
best solution is given by the pseudo inverse, H = Y 1pinv(Y ) which is the
usual least square solution. ��

So why is least squares not optimal?
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The “problem” (objectives function) for normal least squares is to get the
best match of the available data, ie., minimize ||Y 1 −HX||, and it does not
consider how the estimate y1 = Hx is going to be used in the future.

So why is the loss approach expected to be better?
In the loss approach, the problem is:
Given that ŷ1 = Hx, find an optimal H such that the average magnitude

of ||y1 − ŷ1||2 is minimized for the expected future ds and nys (which are
assumed 2-norm bounded).

Here, we use the data to obtain Y = Y opt, G
y and G1 (step 1). This step

may possibly be improved but it seems reasonable.
The main advantage is that in step 2, we obtain the estimate y1 = Hy that

will work best “on average” for the expected disturbances and measurement
noise (as are indirectly given by the data in Y opt, that is, we consider the
future use of the estimator and not just fitting of the data).

2.10 Discussion

2.10.1 Gradient Information

How can we use the proposed approach in practice, for example, to find the
optimal policy for a marathon runner. We need to be able to distinguish
between “optimal data” (Y opt) and “nonoptimal data” to find Gy and G1. A
simple approach is to set y1 = Ju (that is, we want to estimate the gradient).
Then we know that optimal data corresponds to y1 = Ju = 0 and we can
do exactly as above (Data approach 1 or 2). However, note that this means
that we need some non-optimal data where we know the value of Ju.

2.10.2 Relationship to NCO tracking

Finally, some ideas related to NCO tracking.
The NCO-idea is to set the Gradient= 0. An important difference com-

pared to the proposed loss approach, is that in NCO-tracking one tries to
find an expression for u (“open-loop implementation” similar to deadbeat
control).

On the other hand in the loss method (self-optimizing control), we “stop”
when we have the expression for the gradient c = Ju. the implementation to
find u that gives Ju = 0 is by feedback control!

From (2.10) and (2.11) we see that we want to minimize (u−uopt) or Ju

(but weighted by Juu). Recall here that in the full-H case, Juu is not needed.
Still, it remains unclear if this means that we can just minimize ||Ju||?
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Another problem with NCO idea to “Control gradient to zero” is that this
is not really possible since gradient can not be measured. Thus, it needs to be
estimated. For the case with no noise the estimate Ju is same as “nullspace
method”, so c = Hy = Ju!

For noisy case not so clear, but may as well use c = Hy.

2.11 Appendix

1

2 % This is file matlab-test-cases.m

3 % Load data from C:\Documents and Settings\skoge\My Documents\

MATLAB

4

5 % -------------------------------------------------

6 % Test case 1. Martens data:

7 load GlutenStarchNIR

8 % X: Variablene 13-112 er NIR absorbanser (log(1/T) fra

850-1048 nm).

9 % y1: Variabel 4 er kvantitiv analytt-konsentrasjon (gluten),

10 % Matrix: 100 rows 112 cols: regular MATLAB matrix

11 % VarLabels: 112 rows 17 cols: MATLAB character string

12 % ObjLabels: 100 rows 7 cols: MATLAB character string

13 Yall=Matrix’;

14 XX = Yall(13:112,:);

15 YY = Yall(4,:);

16 X = XX(:,1:50);

17 X0= XX(:,51:100);

18 Y1= YY(:,1:50);

19 Y10=YY(:,51:100);

20

21 % repeated Martens

22 % 100 times where I take out data each time

23 %for nsis=1:98

24 %X = XX(:,[1:nsis nsis+2:100]); X0 = XX(:,nsis+1);

25 %Y1 = YY(:,[1:nsis nsis+2:100]); Y10 = YY(:,nsis+1);

26 % Two end cases are handled separately

27 %nsis=0

28 %X = XX(:,[nsis+2:100]); X0 = XX(:,nsis+1);

29 %Y1 = YY(:,[nsis+2:100]); Y10 = YY(:,nsis+1);

30 %nsis=99

31 %X = XX(:,[1:nsis]); X0 = XX(:,nsis+1);

32 %Y1 = YY(:,[1:nsis]); Y10 = YY(:,nsis+1)

33
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34 % Jump to.. MATLAB code starts here

35

36 % -------------------------------------------------

37 % Test case 2.

38 % Bjørn Alsberg data (epost 15.11 2010)

39 load wheat_spectra

40 %Your variables are:

41 %X Y idxcal idxval moist protein

42 Xwheat=X’; Ywheat=Y’; % 2 y’s, 701 x’s, 100 data set

43 X =Xwheat(:,idxcal); Y1 =Ywheat(:,idxcal); % 50 calibration

sets

44 X0=Xwheat(:,idxval); Y10=Ywheat(:,idxval); % 50 validation sets

45 %X =Xwheat(:,idxval); Y1 =Ywheat(:,idxval); % 50 calibration

sets - switched

46 %X0=Xwheat(:,idxcal); Y10=Ywheat(:,idxcal); % 50 validation

sets - switched

47

48

49 % Jump to.. MATLAB code starts here

50

51 % -------------------------------------------------

52 % Test case 3. Own example

53

54 G1 = [1 0; 0 1]

55 Gd1= [0 0; 0 0]

56 gy1 =[0.2 0 3 4 5 6 3]

57 gy2 =[0 0.2 1 3 4 8 9]

58 Gy = [gy1’,gy2’]

59 gd1 =[0 0 4 5 6 8 -9]

60 gd2 =[0 0 -3 -5 5 9 18]

61 Gyd = [gd1’,gd2’]

62

63 Y10 = [G1 Gd1]

64 X0 = [Gy Gyd]

65

66 Y100=Y10;

67 na=0; aa=a*0;

68

69 % Run repeatedly from here for several cases

70

71 Y10=Y100;

72

73 % 8 data sets

74 Noise = 0.5*randn(7,8)

75 X = [X0 -X0] + Noise
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76 Y1 = [Y10 -Y10] % use Y10 and -Y10 to get centered data

77

78 %%32 data sets

79 %X = [X0 -X0]

80 %Noise = 0.5*randn(7,32)

81 %X = [X X X X] + Noise

82 %Y1 = [Y10 -Y10] % use Y10 and -Y10 to get centered data

83 %Y1 = [Y1 Y1 Y1 Y1]

84 %%NoiseY= 0.0*randn(2,32) % with 2 y1’s

85 %%Y1 = [Y1 Y1 Y1 Y1] + NoiseY

86 % 100 times where I take out data each time

87

88 %--------------------------------------------------

89 % MATLAB code starts here

90

91 % Least squares (= PCR with default tol)

92 method1=’���LS’;

93 Hls = Y1*pinv(X);

94 res=Hls*X;

95 res0=Hls*X0;

96 a11=norm(res-Y1);

97 a12=norm(res0-Y10);

98

99 % PCR (vary tol)

100 % PCR: To find cut-off to find no. of components, semilogy(svd(

X))

101 method6=’���PCR’;

102 tol=1.e-4

103 Hpcr = Y1*pinv(X,tol);

104 npcr=rank(pinv(X,tol)) % no. of components used in PCR

105 res=Hpcr*X;

106 res0=Hpcr*X0;

107 a61=norm(res-Y1);

108 a62=norm(res0-Y10);

109

110 % Weighted least squares (to get relative noise assumption

rather than additive noise)

111 method5=’���weightedLS’;

112 [rx,cx]=size(X);

113 mag=[];

114 for i = 1:rx

115 mag=[mag norm(X(i,:))]; % the magnitudes are about 0.8

116 end

117 Xs = inv(diag(mag))*X;

118 Hlss1 = Y1*pinv(Xs);
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119 Hlss = Hlss1*inv(diag(mag));

120 ress=Hlss*X;

121 ress0=Hlss*X0;

122 a51=norm(ress-Y1) ;

123 a52=norm(ress0-Y10) ;

124

125 % pls

126 npls=35

127 %npls=npcr

128 [XL,yl,XS,YS,beta,PCTVAR] = plsregress(X’,Y1’,npls);

129 % Note that PLS has an additional bias/centering parameter.

130 yfit = [ones(size(X’,1),1) X’]*beta;

131 yfit0 = [ones(size(X0’,1),1) X0’]*beta;

132 a71=norm(yfit-Y1’);

133 a72=norm(yfit0-Y10’);

134 method7=’����PLS’;

135

136 % Loss method

137 % step 1

138 Yall = [Y1; X];

139 [u,s,v]=svd(Y1);

140 Yall1 = Yall*v;

141 [r1,c1]=size(Yall);

142 [r2,c2]=size(Y1);

143 ny=r2;

144 G1=Yall1(1:ny,1:ny);

145 Gy=Yall1(ny+1:r1,1:ny);

146 Xopt = Yall1(ny+1:r1,ny+1:c1);

147

148 % step 2,

149 %Hopt = (pinv(Xopt*Xopt’)*Gy)’; %analytical expression

150 [Hopt,loss]=soc_avg(Gy,Xopt);

151 D=Hopt*Gy*inv(G1); %

152 Hopt4=inv(D)*Hopt;

153 resb=Hopt4*X;

154 resb0=Hopt4*X0 ;

155 a41=norm(resb-Y1) ;

156 a42=norm(resb0-Y10) ;

157 method4=’����loss�’;

158

159 % NEW modified loss method for case with noise on Y: redo step

1.

160 % New estimate of Y1.

161 Y1smooth = Hopt4*X;

162 % then redo step 1 and 2
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163 Yallsmooth = [Y1smooth; X];

164 [u,s,v]=svd(Y1smooth);

165 Yallsmooth = Yall*v;

166 G1smooth=Yallsmooth(1:ny,1:ny);

167 Gysmooth=Yallsmooth(ny+1:r1,1:ny);

168 Xsmooth = Yallsmooth(ny+1:r1,ny+1:c1);

169 % step 2

170 [Hopt,loss]=soc_avg(Gysmooth,Xsmooth);

171 D=Hopt*Gysmooth*inv(G1smooth); %

172 Hopt10=inv(D)*Hopt;

173 resa=Hopt10*X;

174 resa0=Hopt10*X0 ;

175 a101=norm(resa-Y1) ;

176 a102=norm(resa0-Y10) ;

177 method10=’���loss�w/smooth’;

178

179 % loss method: add artificial noise weights

180 noisemag=2.e-4

181 %noisemag=tol

182 % Noise Alt.1 just additive noise:

183 noise = noisemag*eye(rx);

184 Xoptnoise = [Xopt noise];

185 % Noise Alt2. Add noise proportional to variation in each

output

186 %[rx,cx]=size(Xopt);

187 %mag=[];

188 %for i = 1:rx

189 %mag=[mag norm(Xopt(i,:))]; % the magnitudes are about 0.8

190 %end

191 %noise = noisemag*diag(mag);

192 %Xoptnoise = [Xopt noise];

193

194 % step 2- with artificial noise

195 % semilogy(svd(X))

196 % semilogy(svd([X X0])

197 [Hopt,loss]=soc_avg(Gy,Xoptnoise);

198 D=Hopt*Gy*inv(G1); %

199 Hopt9=inv(D)*Hopt;

200 resb=Hopt9*X;

201 resb0=Hopt9*X0 ;

202 a91=norm(resb-Y1) ;

203 a92=norm(resb0-Y10) ;

204 method9=’����loss�w/noise’;

205

206 % Summary of results
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207 methods=[method1 method5 method6 method7 method4 method10

method9]

208 a =[a11 a12; a51 a52; a61 a62; a71 a72; ; a41 a42; a101 a102;

a91 a92]’

209

210 % For repeated case 1 and case 3:

211 na=na+1

212 aa=aa+a;

213 aaa=aa/na

214 % For repeated case 1

215 end
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