Self-optimizing Invariants in Dynamic Optimization

Johannesdbkchke, Miroslav Fikar and Sigurd Skogestad

Abstract—In optimal control, the input trajectories are open-loop control policy, which gives the best perfor-

often solved numerically or analytically. This requires that mance over a range of disturbances. Generally it has
all variables which enter the optimality conditions are known to compromise performance to gain robustness

or measured. We use techniques from polynomial elimination . . L
theory to eliminate variables which are not known from 3) Neighboring extremal control [3], where the optimiza-

the optimality conditions. The result is an expression of the tion problem does not have to be re-solved completely
optimality conditions in known variables only, which can easily when a disturbance occurs. Instead, corrections to the
be evaluated and controlled by feedback. nominal input trajectory are found by solving a linear

approximation to the nonlinear problem.

) o o ) ) 4) The approach presented in this paper, where we use
Dynamic optimization problems are ubiquitous in science * mqqe| equations to eliminate the unknown or uncertain
and engineering. In process control, they are found in the | 5/iaples from the optimality conditions.

optimization of batch reactors or grade transitions in con-

tinuous processes. Most approaches in literature deal nggr dynamic optimization problems. The main contributien i

optimization based on a model. ) S
One of the oldest approaches is to find the optimal inpu Qe extension of concepts from steady state self-optimizin

using the Pontryagin minimum principle [3]. This is basigal EK(;ontrol [18] to a class of polynomial dynamic optimization
an open-loop approach and requires a simple model, wh "The idea is to formulate the optimality conditiortdy(= 0)

all parameters and variables are known (measured). o
o : . which include unknown parameters, and then use tools from
A second approach, which is very popular today, is honlin-

ear model predictive control. Here, the dynamic optimazati elimination theory [10], [7] for eliminating the unknown

. . T mnarameters to obtain optimal invariants in known (mea-
problem is converted to a nonlinear optimization proble

and solved repeatedly at given sample times [1], [8] [14J§ured) variables which can be controlled using feedback.

[17]. Measurements are used to update the process moeeunit/rg:g:? these invariants and the optimality condisds
states and parameters by e.g. moving horizon estimatiéiy ) .
In Section 1l we present the optimal control problem

[15]. Although this is conceptually an open-loop approachand state the optimality conditions. Section Ill describes

feedback is introduced by repeated optimization. pow to eliminate the adjoint variables from the optimality

A third approach is to use the modef off-line and explo onditions. In Section IV we introduce concepts from toric
the solution structure to find variables, which give optimaF. R . necep -
limination theory, and apply them in Section V to eliminate

or near-optimal operation, when kept at constant setpoin?s

using a feedback policy. This aporoach is followed in NC nknown parameters from the optimality conditions. Sectio
9 policy. This app | gives a case study of a fed batch reactor, and Section VII
tracking [20] and self-optimizing control [18].

Whenever a model is used, handling uncertainty is a maj8|rOses the paper with a short discussion and conclusion.

challenge. Uncertainty may arise from different sourceshs Il. OPTIMAL CONTROL
as incomplete information (unmeasured states), parametri
disturbances, and model structure error. There are sevefil

I. INTRODUCTION

Our work contributes to handling parametric uncertainty

roblems.

Problem Formulation

approaches to handle the uncertainty: We consider a class of dynamic optimization problems,
1) Estimate the unknown variables using a filter or movWhich can be written in following form:
ing horizon estimation [15], as done in model predic- mind(te) = J(x(t 1a
tive control. This approach is used frequently; however, u(t) (tr) (x(tr)) (1a)
it can be difficult to obtain converging estimates within s.t.x=F((x1)+G(x{t))u(t); x(0)=xo (1b)

reasonable time.
2) Use a robust control approach [23] or stochastic op-
timization approach [2]. Here we attempt to find arThe scalar function) denotes the terminal cost, and the
_ _ _ functionsu : [0, tf] — R™ andx : [0, t;] — R™ denote the
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ut < u(t) <u. (1c)



variablesu- and uY denote the time invariant lower and Unfortunately, we cannot contral,, to zero, because it
upper bounds for the inputs Note that the system is input generally contains unknown variables, including the adjoi
affine and we consider only input constraints. All functionariablesA. To eliminate the adjoint variables, we perform
are assumed to be sufficiently smooth and differentiable. successive time differentiations.

Definition 1 (Lie bracket, [16]):Given two vector fields

B. First order optimality conditions f,g: R" — R". The Lie bracket[f,g] is the vector field
Assumption 1:The optimal control problem (1) is feasible defined by
and has a unique solutiau(t). _ Jdg. of
. o [f.d] f : (7
We define the Hamiltonian ox  ox
H(x,u, A, i, 1Y) = AT(F(x) + G(x)u) Recursive bracketing is defined adfg = [f,ad‘"1g] , with
T T (2 ad’g=g.
L L U U f
Fu (U =) T (u—u'), It can be shown [20], [13], that tHeth time derivative of
where, b and uV are adjoint variables corresponding toHui ¢an be written as
the model, lower and upper input constraints, respectively o dWH, .
Theorem 1 (Pontryagin Minimum Principle [3], [11])f ngi) = dt<k)u' =AT (adlé(x)Gi(X)) :)\TALa (®)

the controlu is optimal, then there exist nontrivial vectors
of adjoint variablesA and u, such that the following
conditions are satisfied:

whereG;(x) denotes the-th column inG(x). Since for the
optimal solutionHy, = 0 holds at all times, its optimal time
derivatives must be zero at all times, too. We write the time

1) derivatives up to the, — 1-th derivative as
X — %, x(0)=xo  (3a) AT [P ALAY, . AL 4] =ATAT=0, ©)
T oH - aJ where all termsAy,, A}, A,,..., A, _; are collected in the
A= T ox’ A(t) = ) (3b) matrix A'. Eqg. (9) has a nontrivial solution fok only if
u'-T(u'- _u) =0, uUT(u B uU) 0 (30) detA') = 0. Therefore, controlling

. . G = detA") (10)
2) For allt € [to,t¢], the Hamiltonian has a global mini- _ _ _ _
mum with respect ta, i.e. to zero gives optimal operation. If we have several inputs,

L U Lo s we may collect allg into a vectorc = [Cy,...,Gi,...,Cn,]".
H(X*u" A% u-u- ) SHX,u, A%, u*,u=",u~")  The vectorc generally contains unknown variables, such as
(4) unmeasured states or unmeasured disturbatcEserefore

for all u- <u<uY andt € [to, ts]. it cannot be used for control directly.
3) If the final time is free, we have the transversality Since the optimal control system (1) is defined in polyno-
condition mial equations, and all calculations above preserve thg pol

. L U B nomial structure, we use results from elimination theory to
H(x(te)ult) At), (), 1o () =0 () gliminate unknowns in eaoty = det(A'), to obtain variables
I1l. ELIMINATING ADJOINT VARIABLES suitable for control.
The optimal solution of problem (1) consists of a sequence IV. TORIC ELIMINATION THEORY
of arcs (regions) which are defined in certain intervals. The We give a very short introduction to toric elimination

arcs are defined by the set of active constraints, and asigeory, for more detailed information we refer to [6], [7],
continuous and differentiable within each interval [3]. Wg9], [12], [22]. More specifically, we present the sparse

distinguish two types: resultant from algebraic geometry [7], [10] to eliminate th
1) Constrained arcs (boundary arcs): One or more inputiiknowns. Casually speaking, the resultant is a condition f
are at a constraint. an overdetermined system of polynomials to have a common

2) Unconstrained arcs: The inputs are all unconstrainedoot.

In the constrained arcs we simply keep the inputs at W& consider a system af+1 polynomials,
the active constraint. If there are unconstrained degrées o fo=-=f=0, (12)
freedom left, the remaining problem can be reformulated , T i
as an unconstrained problem by redefining the input sdfl N variablesx=[xi,...x|", and letC" denote the complex

Therefore, in the following, we consider only the case wherBUmbers without zeral* = C\ 0. Toric elimination theory
no constraint is active. considers solutions of the polynomials (11)(i6*)". Since

At the minimum of the Hamiltonian (4), we must havenone of the variables is allowed to be zero, the theory is
’ valid for Laurent polynomials inR[x,x 1 u,u!], that is,

H, = ‘;—*J = 0. Considering one input at a time, the condition ) - y! A
reads: polynomials with positive and negative integer exponents.

_0H Definition 2 (Monomial): We define a monomiaf® as the

Hu = au 0 i=1..ny (6) power produck?® = x21x5? ... xa, where(ay, &, ..., an) € Z".



Definition 3 (Support):Let the support & = C*. The sparse resultant for this system is calculated as the
{a1,...,aim} denote the set of exponent vectorsdeterminant of the Sylvester matrix

corresponding to monomials in a, ay 0
m; % (fo, f1) = det 0 ap an
fi= Z Cm‘Xa‘*j, Gi,j #£0. (12) A3 A an (20)
=1 2 2
We denote a§); = conv4}) the convex hull of the support = 817821 — Q12811822 + 8238 1.

of the polynomialf;. Note that we have eliminatedfrom (19), and the statement
Definition 4 (Affine variety):Considerfy,..., fy polyno-  Z(fo, f1) = 0 is identical to stating that there exist some
mials inC[Xy, ... Xn]. The affine variety/ (f1,.., fm) is defined such thatfy = f; = 0.
by the set The calculation of the sparse resultant for multivariate
polynomials is more involved. An algorithm is given in [5].
V(f1,..., fm) = {(X1, ;%) € C*: fi(X1, ..., %) = 0,0 = 1(12)} In this work, we use the softwareul ti res [4].
Definition 5 (Zariski closure):.Given a subsesC C™, the
smallest affine variety containin@ is called the Zariski  After introducing the sparse resultant, we can apply it

V. USING RESULTANTS IN OPTIMAL CONTROL

closure ofS and is denoted aS. to our optimal control problem. We collect all unknown
Let L(&) be the set of all polynomials that have exponent§unmeasured) variables in a vectirso we havee = ci(d),
in the support; and we write the model equations in the form

m(d) = 0, (21)

- ) _ ) where we have omitted to explicitly state the dependency on
Then the coefficients of a polynomial define a pointd®.  {he known variables.

Now let Assumption 2:The model equations are polynomials in
the polynomial ringR[d].
Z(&0,- -1 6n) C L(&p) x -+ x L(én) (15) Assumption 3:The [v}alrietyV(m(d)) is zero-dimensional,
that is,m(d) = 0 has a finite number of solutions.
Theorem 3 (Invariants for Control)If the number of un-
known variablesy is equal to the number of model equa-
tions ny,, and Assumptions 2 and 3 hold, controlling

L(&) = {Ci71Xa"~1 +-- +CimXai=mi oG € (C*}, (14)

be the Zariski closure of the set of dlfg,... f,), for which
(12) has a solution ifC*)". For an overdetermined system
of polynomials we then have this result.

Theorem 2 (Sparse resultant [12], [7])Assume that
Qi = conv &) is an dimensional polytope for =0,...,n. Z(ci(d),m(d)) =0 (22)
Then there is an irreducible polynomi#l in the coefficients

of the f such that is equivalent to controlling (10).
I

Proof: By assumption, the model equationgd) =0

(fo,... ) € Z(Eb,..., &) < R(fo,..f) =0.  (16) have a finite number of solutione,(d) = detA') is a poly-
nomial in the variablesl whose coefficients are functions of

In particular, if the system u, and thus can be manipulated. Arbitrary input valuesill
cause that;(d) = 0 does not have any solution. The sparse
fo=fi=--=f (17)  resultantZ(ci(d),m(d)) gives the necessary and sufficient
) condition for the combined system
has a solutiorn(xy,...,X,) € (C*)", then
m(d) =0 23
P(fr,... Ta) =0, (18) &(d)—=0 23)
We call Z the sparse resultant. to have a solution ifC*)". By Theorem 2, we have
Remark 1:There exist more general versions of Theorem c(d) = det(Ai) =04 %(ci(d),m) = 0. (24)
2, which do not require the convex hull of the supports to
be n-dimensional. [21]. However, for simplicity we chose to u
present this simplified version here. Controlling Z(ci(d), m;) = 0 is equivalent to controlling the
Example 1 (One variable)Consider the system optimality conditionsci(d) = 0, as long as the model is
satisfied. However, whereas tloggd) contains unmeasured
fo=a11+aix (19) variables, they have all been eliminated fra#{c;(d), m;).

Remark 2:Note that it is not necessary to be able to solve
the model equationsn(d) = 0 uniquely for d. The only
The supports of this system a# = {(0),(1)}, andé = condition is that the model equations have a finite number
{(0),(2),(2)}. Clearly, the convex hulls of the supports areof solutions.
the line segments0,1] and [0,2], which have dimension = Remark 3:Since the unknown variabled assume real
n= 1. For arbitrarya;j (19) does not have a solution in values in the process, the existence of complex solutions fo

f1 = ap1 + agoX + ap 3%°.



TABLE |

PARAMETERS AND INITIAL CONDITIONS
Symbol  Value Unit Description
kq 0.053 I/mol/min  parameter
ko 0.128 I/mol/min
cg 5 molll
t 250 min
Umin 0 I/min input constraint
Umax 0.001 I/min "
Cao 0.72 mol/l initial condition
Cgo 0.0614 mol/l "
Cco 0.0 mol/l
Cpo 0.0 mol/l
Vo 1 |

m(d) = 0 does not matter, because the Theorem 2 states that

¢ becomes zero whenever the resultant is zero.

V1. CASE STUDY. FED BATCH REACTOR
A. Model

TABLE I
SIMULATION CASES

Casel Case?2
Unmeasured state: ca o
Unmeasured disturbance: none k;

C. Nominal optimal solution

For the given initial conditions the system is uncon-
strained, and the optimal trajectory consists of one iateri
arc. The Hamiltonian is

H=A1 (—k]_CACB — CAU/V)
+ A2 (—kecaCs — 2kaCE + (cf — ca)u/V)
+ Asu.

(32)

Proceeding as in Section Il we get, = ATAg = 0 with
Po=[ —CalV (B-ce)V 1]".  (39)

The case study is taken from [13]. We consider a fed batolve continue with the first and second time derivatives

reactor with two reactions,

A+B—Cand B— D, (25)

whereC is the desired product ard is the undesired side
product. The objective is to maximize difference between th

amount ofC and the amount ob at the final batch timé.
We use a simple dynamic model,

Ca = —kiCaCg — caU/V
Cg = —kiCaCg — ZKZC% —(cs— Cg])u/v
V =u,

(26)

with the initial conditions:ca(0) = cap, cg(0) = cgp, and
V(0) = V. Initially the concentration of the products is zero,

)\TAl =0 and)\TAz = 0. Here,A; = [a11a12, alg]T with

ail = [—kch(CB — CE)]/V
= [—k]_C/.\(CB — C'g) — 2kocg(cg — ZC'F?)]/V (34)
a3 = 07

and A, = [azl, apo, a23]T, with
a1 = [CKeCAV (kyCa + 4koCa) + 2k Ca (Cg — ) U] /V/2
a2 = [CBV (4kycakaCg + 8K3CE +K2c3)
+2(cg — ) (kuCa + 2ka(cg — cf)u)] /V?

ax3=0.
(35)

Cco = Cpo = 0. All parameters and initial conditions are givenc; = det/A) becomes zero wheo= 0, with

in Table 1. From the mass balance, we hawg & cpo = 0)

cc(t) = % (CaoVo —ca(t)V) (27)
and
cp(t) = % [(CA + Cig — CB) V— (CAO + Cig — CBO) Vo] . (28)

B. Optimal control problem
The optimization problem is then formulated as

muinJ(tf) s.t. Xx=F(X)+G(x)u, (29)
where the objective is
J(tr) = (co(tr) —cc(te))V (tr). (30)

Further, we have the state and input vectors [Ca, Cs, V"
andu =u, and

—kicacs [ o
F(x)= | —kicacs—2koC3 |, G(x)= = o —cg
0 Vv

1)
The constraints for the system augin < U < Umax

C = 4koC5CV + 2cpallu— kyCaC3V + 2kicacihV oz — 2u(clh)2.
(36)

In optimal control literature, e.g. [3], this expression is

commonly solved foru, and implemented in the process.

However, this is not always possible, becawgsgenerally

contains unmeasured states and disturbances.

D. Eliminating unknown variables

We consider two different scenarios as summarized in
Table II.

1) Case 1: Unknown variables in algebraic equations:
Assume that the concentratiap is difficult or expensive to
measure. Then we have one unmeasured statéll other
variables inc from (36) are known. However, the unmeasured
state is present in the algebraic relationship (27). Thiegi
the measurement polynomial

My = Ve (t) — (caoVo — Ca(t)V) =0,
and we calculate the resultant
92(c,my) ==V Ggkacc + 2V GekaCh oo — 4V GBK2CE — 2cguce

+ ZCEQZU —2cg klcié‘ CcaoVo + C% ki1caoVo.

(37)

(38)
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Z(c,mp) does not contain the unmeasured state, and contrc
ling it to zero will by Theorem 3 result in optimal operation. [ tmouta]

8
7
2) Case 2: Unknown variables in the differential equa- £°] 1T
5
4

11

~_ | 1.05 q
tions: Now assume that we have an unknown disturbanc R —
ki, and that the concentratiory is unmeasured. Since the o o 00 0 20 20 L .

. . . . il I il i
reaction rate enters through a differential equation, wedne | 0.063

to eliminatek; from c¢ (36) using a differential equation, and 5 [—— Concenvationc, || [—— Concentration ¢

we need to use a change rate as a measured variable, t0 3 o5} —__

0.061

mol
/
mol/l

We assume that we can measure the concentraion o4 ] 0.06
together with an estimate of its time derivative,. If the % s w0 w0 a0 w0 ™0 s 10 w0 20 20
measurement afa is good (little or no noise), then we may fmetrmin] fmetrmin]
. . . . . . . . 0.4 0.2
use its past values to estimate its time derivative by filtgri o i oae [~ Concentaton ]|
or using finite differences, 5 02 - I 3o s
€a = (ca(t) — ca(t —1min))/(1min). (39) o c .
0 50 100 150 200 250 0 50 100 150 200 250
time[min] time[min]

This does not give the exact derivative, but the approxiomati
is considered good enough for our purposes.

To eliminate the unknownss andk; we use an additional
mass balance for componeBt

Fig. 1. Nominal optimal input, volume, and concentration ttjées

0.065

My = —cgV +CeoVo +Cf (V — Vo) — eV — 2cpV = 0, (40)

0.06

together with the implicit component balance fog from 0.055
(26),

0.05 . . . .
0 50 100 150 200 250
(41) time [min]

Mg = €AV +kicacgV +cau=0

and we eliminate the unknowns by calculating the resultant

. . Fig. 2. Disturbancek;
with respect to the unknown variablé&s and cg:

Z(c,mp,mg) = e -

, _ ) - a) Case 1.: Variable £ unmeasured - all other vari-
— 16V2cakoCicp +V2cata + 4V 2koclf ca? + 8V 2cakoCl ables known:Here we cannot controt = det(A) to zero,
FVuc? — 1€>\/ch2ci,§VocBo+ 1b\/chzci,§2V0 because we cannot evaluate it simgds not known. In;tead

o _ _ we control the resultantZ(c,m;) (38) to zero using a
+8VVoomokzcl” — 8V cakacl Vo + 16V cagVokecl oo P-controller. The trajectories are identical to the optima
+8VcAkzciETVocBo—8VcAcAoVokzciE’§ —8VcAoVokzci§2 ones from the previous section, and the objective value is

J =0.2717. This is as expected, because by Theorem 3,
controllingc andZ(c,my) are equivalent. The suboptimality,
+ CAVioCaoU + 16V2c3 koGl — 16V2cpkodl) — 2V cacpU which is introduced by the added P controller, does not
in in in3 in ) become visible when considering the first seven digits of the
+Veacgu— 4V opcgu— 8V cg kaVo —VVoCe Ea +V VoCaota objective function. However, whereas we need to know the
—V cagVoCa — CaCagVou — 2conoc}_£,‘u+8cAoV02k2cié12 value ofca to controlc, this is not necessary for controlling
2y, in 2_in3 in2 2_in3 Z(c,my) to zero.
+4(§9V9 kaC 4;4\/9 8 ko — 2;/0C3 u+avicg ko b) Case 2.: Variablesi cg unmeasured € estimated
—V“cg €A — 2V cpta — 8CaoVs KaCa Cao- and @ measured: In this case, the stateg and the pa-
(42)  rameterk; are not known (measured). Therefore we cannot
control ¢ directly. Instead we use a P-controller to control

This expression does not contain any of the unknown Var]@(gw,rm,), which contains neithek; nor cz. This expres-

ables, so it can be evaluated online and controlled to zefro . .

) sion can be evaluated using the available measurements and
using a P or PI controller. : . .

controlled to zero. In the nominal case the trajectoriex loo

exactly the same as in Fig. 1.

Next, we consider a change in the reaction kinetics, where

1) Nominal operation: The state and input trajectoriesk; rises 20%, Figure 2. The input and the states are given in
for nominal optimal operation are given in Figure 1. Thesgigure 3. The final profit when controlling?(c, mp,mg) to
trajectories are generated by applying the optimal inphe T zero isJ = 0.2970, while the profit using the optimal input is
final optimal cost is value i§ = 0.2717. Jopt = 0.2971. This difference comes from the approximation

2) Controlling the invariant: of ¢a in (39). Using the exact derivative, we obtaih=

. 2 . . .
— 8VZCrokaCll 4 AVZCE koGl + 2VoCroCli U — CaVochu

E. Simulation Results
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possible to eliminate variables, for which we do not have

" ] 11 a purely algebraic expression, and which enter through the
Eop . | differential equations only.
° ] In the procedure for eliminating the adjoint variables, we
%0 50 100 10 200 250 o s w0 10 20 20 have presented the common case of input affine systems.
. e o e If the model is not input affine, elimination of the adjoint
o8 [—— Concenvaiioncy]| 1 [—— Concentration ¢ variables comes at the cost of introducing time derivatives
Tos % oo of the input, which have to be measured.
04 T oose We used the resultant to eliminate the unknown variables.
e T z;tso 0058 Other techniques, such asdbner bases [6], could also have
timefmin] time[min] been applied. However, it is not easy to find appropriate
04 e 02 monomial orderings which eliminate the unknown variables,
_ P 1 while avoiding the trivial solution (the invariant is alway
gesr 1 &8~ | zero when the model equations are satisfied).
0[;, 50 100 150 200 250 00 50 100 150 200 250 R EFEREN C E S
fmefmin] fmefmin] [1] F. Allgower and A. Zheng, editors. Nonlinear Model Predictive
control Birkhauser Verlag Basel, 2000. _
Fig. 3. Inputs and concentrations for unmeasured change afftime 100 2] Bisz}e?;tﬁisneqléaé;g; dEr'mSchlrjer\é?socﬁgvsvt'io?kptgig_commI: The
[3] A. E. Bryson and Y.-C. HoApplied Obtimal Cont’rol, revised edition

0.2971, which is the same value as the optimal input gives[4]
If we had not eliminated; in Z(c,mp, mg), and just used
the nominal value, the objective value would be- 0.2873.  [¢]

VII. DISCUSSION AND CONCLUSION [71

We have shown that the concepts of finding invariant[s]
variable combinations can be extended to dynamic systems,
which are described by polynomial or rational equations. In
addition, by not explicitly solving for the inpui, we do
not have to be concerned whether the input appears in
because we use a P or PI controller to generate the optimal
inputs. This is a simple alternative to analytically finditg
optimal input by further differentiations.

Adding a controller to controk will often come at a
negligible loss. This is confirmed in our example, Wherén]
controlling the invariants using only a P controller giveg12]
virtually the same performance as when analytically sgjvin
for the optimal input. [13]

In this work, we considered only parametric uncertainties
and unmeasured states. The equally important issues of
model error and measurement noise are beyond the sc&;l)ﬂ
of this work and have to be studied in future work. [15]

We assumed that the uncertainty does not change the active
constraints. This is valid for small disturbances. Howef@r ;¢
larger disturbances, the new set of active constraints das[i7]
be determined.

Controlling the invariant can be used together with othepg
NCO tracking methods to handle model mismatch or termi-
nal constraints on a run-to-run basis, similar to [19]. Thug1®]
we consider our method as a part of a larger procedure for
implementing optimal batch performance. [20]

Beside “normal measurements” we have also allowed mea-
surements of their time derivatives. They may be estimatetgl]
by finite differences as above, or by using some filtering. If a
measurement is assumed to be reliable, then its change olf@t
. . X 3]
time should also be possible to estimate reasonably weﬁf
Introducing measurements of the time derivatives, makes it

(9]
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