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Abstract— In optimal control, the input trajectories are
often solved numerically or analytically. This requires that
all variables which enter the optimality conditions are known
or measured. We use techniques from polynomial elimination
theory to eliminate variables which are not known from
the optimality conditions. The result is an expression of the
optimality conditions in known variables only, which can easily
be evaluated and controlled by feedback.

I. I NTRODUCTION

Dynamic optimization problems are ubiquitous in science
and engineering. In process control, they are found in the
optimization of batch reactors or grade transitions in con-
tinuous processes. Most approaches in literature deal with
optimization based on a model.

One of the oldest approaches is to find the optimal inputs
using the Pontryagin minimum principle [3]. This is basically
an open-loop approach and requires a simple model, where
all parameters and variables are known (measured).

A second approach, which is very popular today, is nonlin-
ear model predictive control. Here, the dynamic optimization
problem is converted to a nonlinear optimization problem,
and solved repeatedly at given sample times [1], [8], [14],
[17]. Measurements are used to update the process model
states and parameters by e.g. moving horizon estimation
[15]. Although this is conceptually an open-loop approach,
feedback is introduced by repeated optimization.

A third approach is to use the model off-line and exploit
the solution structure to find variables, which give optimal
or near-optimal operation, when kept at constant setpoints
using a feedback policy. This approach is followed in NCO
tracking [20] and self-optimizing control [18].

Whenever a model is used, handling uncertainty is a major
challenge. Uncertainty may arise from different sources, such
as incomplete information (unmeasured states), parametric
disturbances, and model structure error. There are several
approaches to handle the uncertainty:

1) Estimate the unknown variables using a filter or mov-
ing horizon estimation [15], as done in model predic-
tive control. This approach is used frequently; however,
it can be difficult to obtain converging estimates within
reasonable time.

2) Use a robust control approach [23] or stochastic op-
timization approach [2]. Here we attempt to find an
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open-loop control policy, which gives the best perfor-
mance over a range of disturbances. Generally it has
to compromise performance to gain robustness.

3) Neighboring extremal control [3], where the optimiza-
tion problem does not have to be re-solved completely
when a disturbance occurs. Instead, corrections to the
nominal input trajectory are found by solving a linear
approximation to the nonlinear problem.

4) The approach presented in this paper, where we use
model equations to eliminate the unknown or uncertain
variables from the optimality conditions.

Our work contributes to handling parametric uncertainty
for dynamic optimization problems. The main contribution is
the extension of concepts from steady state self-optimizing
control [18] to a class of polynomial dynamic optimization
problems.

The idea is to formulate the optimality conditions (Hu = 0)
which include unknown parameters, and then use tools from
elimination theory [10], [7] for eliminating the unknown
parameters to obtain optimal invariants in known (mea-
sured) variables which can be controlled using feedback.
Controlling these invariants and the optimality conditions is
equivalent.

In Section II we present the optimal control problem
and state the optimality conditions. Section III describes
how to eliminate the adjoint variables from the optimality
conditions. In Section IV we introduce concepts from toric
elimination theory, and apply them in Section V to eliminate
unknown parameters from the optimality conditions. Section
VI gives a case study of a fed batch reactor, and Section VII
closes the paper with a short discussion and conclusion.

II. OPTIMAL CONTROL

A. Problem Formulation

We consider a class of dynamic optimization problems,
which can be written in following form:

min
u(t)

Φ(t f ) = J(x(t f )) (1a)

s.t. ẋ = F(x(t))+G(x(t))u(t); x(0) = x0 (1b)

uL ≤ u(t)≤ uU . (1c)

The scalar functionJ denotes the terminal cost, and the
functions u : [0, t f ] → R

nu and x : [0, t f ] → R
nx denote the

input and state functions, respectively.F(x) is a vector valued
function of dimensionnx, andG(x) is a matrix of dimension
nx ×nu. The elements ofF(x) andG(x) are polynomials in
the ringR[x], that is, every row inF(x) and G(x) contains
polynomials in the variablesx and coefficients inR. The



variablesuL and uU denote the time invariant lower and
upper bounds for the inputsu. Note that the system is input
affine and we consider only input constraints. All functions
are assumed to be sufficiently smooth and differentiable.

B. First order optimality conditions

Assumption 1:The optimal control problem (1) is feasible
and has a unique solutionu∗(t).
We define the Hamiltonian

H(x,u,λ ,µL,µU ) = λ T(F(x)+G(x)u)

+µLT
(uL −u)+µU T

(u−uU ),
(2)

whereλ , µL and µU are adjoint variables corresponding to
the model, lower and upper input constraints, respectively.

Theorem 1 (Pontryagin Minimum Principle [3], [11]):If
the controlu is optimal, then there exist nontrivial vectors
of adjoint variablesλ and µ , such that the following
conditions are satisfied:

1)

ẋ =
∂H
∂λ

, x(0) = x0 (3a)

λ̇ T =−
∂H
∂x

, λ T(t f ) =
∂J

x(t f )
(3b)

µLT
(uL −u) = 0, µU T

(u−uU ) = 0 (3c)

2) For all t ∈ [t0, t f ], the Hamiltonian has a global mini-
mum with respect tou, i.e.

H(x∗,u∗,λ ∗,µL∗,µU ∗
)≤ H(x∗,u,λ ∗,µ∗,µL∗,µU ∗

)
(4)

for all uL ≤ u ≤ uU and t ∈ [t0, t f ].
3) If the final time is free, we have the transversality

condition

H(x(t f ),u(t f )
∗,λ (t f ),µL(t f ),µU (t f )) = 0. (5)

III. E LIMINATING ADJOINT VARIABLES

The optimal solution of problem (1) consists of a sequence
of arcs (regions) which are defined in certain intervals. The
arcs are defined by the set of active constraints, and are
continuous and differentiable within each interval [3]. We
distinguish two types:

1) Constrained arcs (boundary arcs): One or more inputs
are at a constraint.

2) Unconstrained arcs: The inputs are all unconstrained.

In the constrained arcs we simply keep the inputs at
the active constraint. If there are unconstrained degrees of
freedom left, the remaining problem can be reformulated
as an unconstrained problem by redefining the input set.
Therefore, in the following, we consider only the case where
no constraint is active.

At the minimum of the Hamiltonian (4), we must have
Hu =

∂H
∂u = 0. Considering one input at a time, the condition

reads:

Hui =
∂H
∂ui

= 0, i = 1. . .nu (6)

Unfortunately, we cannot controlHui to zero, because it
generally contains unknown variables, including the adjoint
variablesλ . To eliminate the adjoint variables, we perform
successive time differentiations.

Definition 1 (Lie bracket, [16]):Given two vector fields
f ,g : R

n → R
n. The Lie bracket[ f ,g] is the vector field

defined by

[ f ,g] =
∂g
∂x

f −
∂ f
∂x

g. (7)

Recursive bracketing is defined asadk
f g= [ f ,adk−1

f g] , with
ad0

f g= g.
It can be shown [20], [13], that thek-th time derivative of

Hui can be written as

H(k)
ui =

d(k)Hui

dt(k)
= λ T

(

adk
F(x)Gi(x)

)

= λ TAi
k, (8)

whereGi(x) denotes thei-th column inG(x). Since for the
optimal solutionHui = 0 holds at all times, its optimal time
derivatives must be zero at all times, too. We write the time
derivatives up to thenx −1-th derivative as

λ T [Ai
0,A

i
1,A

i
2, . . .A

i
nx−1

]

= λ TA i = 0, (9)

where all termsAi
0, Ai

1, Ai
2,. . . , Ai

nx−1 are collected in the
matrix A i . Eq. (9) has a nontrivial solution forλ only if
det(A i) = 0. Therefore, controlling

ci = det(A i) (10)

to zero gives optimal operation. If we have several inputs,
we may collect allci into a vectorc= [c1, . . . ,ci , . . . ,cnu]

T .
The vectorc generally contains unknown variables, such as
unmeasured states or unmeasured disturbancesd. Therefore
it cannot be used for control directly.

Since the optimal control system (1) is defined in polyno-
mial equations, and all calculations above preserve the poly-
nomial structure, we use results from elimination theory to
eliminate unknowns in eachci = det(A i), to obtain variables
suitable for control.

IV. TORIC ELIMINATION THEORY

We give a very short introduction to toric elimination
theory, for more detailed information we refer to [6], [7],
[9], [12], [22]. More specifically, we present the sparse
resultant from algebraic geometry [7], [10] to eliminate the
unknowns. Casually speaking, the resultant is a condition for
an overdetermined system of polynomials to have a common
root.

We consider a system ofn+1 polynomials,

f0 = · · ·= fn = 0, (11)

in n variablesx= [x1, . . .xn]
T , and letC∗ denote the complex

numbers without zero,C∗ = C\0. Toric elimination theory
considers solutions of the polynomials (11) in(C∗)n. Since
none of the variables is allowed to be zero, the theory is
valid for Laurent polynomials inR[x,x−1,u,u−1], that is,
polynomials with positive and negative integer exponents.

Definition 2 (Monomial):We define a monomialxa as the
power productxa = xa1

1 xa2
2 . . .xan

n , where(a1,a2, . . . ,an)∈Z
n.



Definition 3 (Support):Let the support Ei =
{ai,1, . . . ,ai,mi} denote the set of exponent vectors
corresponding to monomials in

fi =
mi

∑
j=1

ci, jxai, j , ci, j 6= 0. (12)

We denote asQi = conv(Ei) the convex hull of the support
of the polynomial fi .

Definition 4 (Affine variety):Consider f1, . . . , fm polyno-
mials inC[x1, . . .xn]. The affine varietyV( f1, .., fm) is defined
by the set

V( f1, . . . , fm)= {(x1, ..,xn) ∈ C
s : fi(x1, ..,xn) = 0, i = 1. . .m} .

(13)
Definition 5 (Zariski closure):Given a subsetS⊂C

m, the
smallest affine variety containingS is called the Zariski
closure ofS and is denoted as̄S.

Let L(Ei) be the set of all polynomials that have exponents
in the supportEi

L(Ei) =
{

ci,1xai,1 + · · ·+ci,mi x
ai,mi : ci, j ∈ C

∗
}

, (14)

Then the coefficients of a polynomial define a point inC
mi .

Now let

Z(E0, . . . ,En)⊂ L(E0)×·· ·×L(En) (15)

be the Zariski closure of the set of all( f0, . . . fn), for which
(12) has a solution in(C∗)n. For an overdetermined system
of polynomials we then have this result.

Theorem 2 (Sparse resultant [12], [7]):Assume that
Qi = conv(Ei) is a n dimensional polytope fori = 0, . . . ,n.
Then there is an irreducible polynomialR in the coefficients
of the fi such that

( f0, .., fn) ∈ Z(E0, . . . ,En)⇔ R( f0, .. fn) = 0. (16)

In particular, if the system

f0 = f1 = · · ·= fn (17)

has a solution(x1, . . . ,xn) ∈ (C∗)n, then

R( f1, . . . , fn) = 0. (18)

We call R the sparse resultant.
Remark 1:There exist more general versions of Theorem

2, which do not require the convex hull of the supports to
be n-dimensional. [21]. However, for simplicity we chose to
present this simplified version here.

Example 1 (One variable):Consider the system

f0 = a11+a12x

f1 = a21+a22x+a2,3x2.
(19)

The supports of this system areE0 = {(0),(1)}, and E1 =
{(0),(1),(2)}. Clearly, the convex hulls of the supports are
the line segments[0,1] and [0,2], which have dimension
n = 1. For arbitraryai j (19) does not have a solution in

C
∗. The sparse resultant for this system is calculated as the

determinant of the Sylvester matrix

R( f0, f1) = det









a12 a11 0
0 a12 a11

a23 a22 a21









= a2
12a21−a12a11a22+a23a

2
11.

(20)

Note that we have eliminatedx from (19), and the statement
R( f0, f1) = 0 is identical to stating that there exist somex
such thatf0 = f1 = 0.

The calculation of the sparse resultant for multivariate
polynomials is more involved. An algorithm is given in [5].
In this work, we use the softwaremultires [4].

V. USING RESULTANTS IN OPTIMAL CONTROL

After introducing the sparse resultant, we can apply it
to our optimal control problem. We collect all unknown
(unmeasured) variables in a vectord, so we haveci = ci(d),
and we write the model equations in the form

m(d) = 0, (21)

where we have omitted to explicitly state the dependency on
the known variables.

Assumption 2:The model equations are polynomials in
the polynomial ringR[d].

Assumption 3:The varietyV(m(d)) is zero-dimensional,
that is,m(d) = 0 has a finite number of solutions.

Theorem 3 (Invariants for Control):If the number of un-
known variablesnd is equal to the number of model equa-
tions nm, and Assumptions 2 and 3 hold, controlling

R(ci(d),m(d)) = 0 (22)

is equivalent to controlling (10).
Proof: By assumption, the model equationsm(d) = 0

have a finite number of solutions.ci(d) = det(A i) is a poly-
nomial in the variablesd whose coefficients are functions of
u, and thus can be manipulated. Arbitrary input valuesu will
cause thatci(d) = 0 does not have any solution. The sparse
resultantR(ci(d),m(d)) gives the necessary and sufficient
condition for the combined system

m(d) = 0

ci(d) = 0
(23)

to have a solution in(C∗)nd . By Theorem 2, we have

ci(d) = det(A i) = 0⇔ R(ci(d),m) = 0. (24)

ControllingR(ci(d),mi) = 0 is equivalent to controlling the
optimality conditionsci(d) = 0, as long as the model is
satisfied. However, whereas theci(d) contains unmeasured
variables, they have all been eliminated fromR(ci(d),mi).

Remark 2:Note that it is not necessary to be able to solve
the model equationsm(d) = 0 uniquely for d. The only
condition is that the model equations have a finite number
of solutions.

Remark 3:Since the unknown variablesd assume real
values in the process, the existence of complex solutions for



TABLE I

PARAMETERS AND INITIAL CONDITIONS

Symbol Value Unit Description

k1 0.053 l/mol/min parameter
k2 0.128 l/mol/min ”
cin

B 5 mol/l ”
t f 250 min ”
umin 0 l/min input constraint
umax 0.001 l/min ”
cA0 0.72 mol/l initial condition
cB0 0.0614 mol/l ”
cC0 0.0 mol/l ”
cD0 0.0 mol/l ”
V0 1 l ”

m(d) = 0 does not matter, because the Theorem 2 states that
ci becomes zero whenever the resultant is zero.

VI. CASE STUDY: FED BATCH REACTOR

A. Model

The case study is taken from [13]. We consider a fed batch
reactor with two reactions,

A+B−→C and 2B−→ D, (25)

whereC is the desired product andD is the undesired side
product. The objective is to maximize difference between the
amount ofC and the amount ofD at the final batch timet f .
We use a simple dynamic model,

ċA =−k1cAcB−cAu/V

ċB =−k1cAcB−2k2c2
B− (cB−cin

B )u/V

V̇ = u,

(26)

with the initial conditions:cA(0) = cA0, cB(0) = cB0, and
V(0) =V0. Initially the concentration of the products is zero,
cC0 = cD0 = 0. All parameters and initial conditions are given
in Table I. From the mass balance, we have (cC0 = cD0 = 0)

cC(t) =
1
V
(cA0V0−cA(t)V) (27)

and

cD(t) =
1

2V

[(

cA+cin
B −cB

)

V −
(

cA0+cin
B −cB0

)

V0
]

. (28)

B. Optimal control problem

The optimization problem is then formulated as

min
u

J(t f ) s.t. ẋ = F(x)+G(x)u, (29)

where the objective is

J(t f ) = (cD(t f )−cC(t f ))V(t f ). (30)

Further, we have the state and input vectorsx = [cA, cB,V]T

andu = u, and

F(x) =





−k1cAcB

−k1cAcB−2k2c2
B

0



 , G(x) =
1
V





−cA

cin
B −cB

V



 .

(31)
The constraints for the system areumin ≤ u≤ umax.

TABLE II

SIMULATION CASES

Case 1 Case 2

Unmeasured state: cA cB
Unmeasured disturbance: none k1

C. Nominal optimal solution

For the given initial conditions the system is uncon-
strained, and the optimal trajectory consists of one interior
arc. The Hamiltonian is

H = λ1 (−k1cAcB−cAu/V)

+λ2
(

−k1cAcB−2k2c2
B+(cin

B −cB)u/V
)

+λ3u.

(32)

Proceeding as in Section II we getHu = λ TA0 = 0 with

A0 =
[

−cA/V (cin
B −cB)/V 1

]T
. (33)

We continue with the first and second time derivatives
λ TA1 = 0 andλ TA2 = 0. Here,A1 = [a11a12, a13]

T with

a11 = [−k1cA(cB−cin
B )]/V

a12 = [−k1cA(cB−cin
B )−2k2cB(cB−2cin

B )]/V

a13 = 0,

(34)

andA2 = [a21, a22, a23]
T , with

a21 = [cin
B k1cAV(k1cA+4k2cB)+2k1cA

(

cB−cin
B

)

u]/V2

a22 =
[

cin
BV

(

4k1cAk2cB+8k2
2c2

B+k2
1c2

A

)

+2
(

cB−cin
B

)(

k1cA+2k2(cB−cin
B )u

)]

/V2

a23 = 0.
(35)

ci = det(A) becomes zero whenc= 0, with

c= 4k2c2
Bcin

BV+2cBcin
B u−k1cAc2

BV+2k1cAcin
BVcB−2u(cin

B )
2.

(36)
In optimal control literature, e.g. [3], this expression is
commonly solved foru, and implemented in the process.
However, this is not always possible, becausec generally
contains unmeasured states and disturbances.

D. Eliminating unknown variables

We consider two different scenarios as summarized in
Table II.

1) Case 1: Unknown variables in algebraic equations:
Assume that the concentrationcA is difficult or expensive to
measure. Then we have one unmeasured state,cA. All other
variables inc from (36) are known. However, the unmeasured
state is present in the algebraic relationship (27). This gives
the measurement polynomial

m1 =VcC(t)− (cA0V0−cA(t)V) = 0, (37)

and we calculate the resultant

R(c,m1) =−Vc2
Bk1cC+2VcBk1cin

B cC−4Vc2
Bk2cin

B −2cin
B ucB

+2cin
B

2
u−2cBk1cin

B cA0V0+c2
Bk1cA0V0.

(38)



R(c,m1) does not contain the unmeasured state, and control-
ling it to zero will by Theorem 3 result in optimal operation.

2) Case 2: Unknown variables in the differential equa-
tions: Now assume that we have an unknown disturbance
k1, and that the concentrationcB is unmeasured. Since the
reaction rate enters through a differential equation, we need
to eliminatek1 from c (36) using a differential equation, and
we need to use a change rate as a measured variable, too.

We assume that we can measure the concentrationcA

together with an estimate of its time derivative, ˙cA. If the
measurement ofcA is good (little or no noise), then we may
use its past values to estimate its time derivative by filtering
or using finite differences,

ċA = (cA(t)−cA(t −1min))/(1min). (39)

This does not give the exact derivative, but the approximation
is considered good enough for our purposes.

To eliminate the unknownscB andk1 we use an additional
mass balance for componentB,

m2 =−cBV +cB0V0+cin
B (V −V0)−cCV −2cDV = 0, (40)

together with the implicit component balance forcA from
(26),

m3 = ċAV +k1cAcBV +cAu= 0 (41)

and we eliminate the unknowns by calculating the resultant
with respect to the unknown variablesk1 andcB:

R(c,m2,m3) =

−16V2cAk2cin
B cD +V2cAċA+4V2k2cin

B cA
2+8V2cAk2cin

B
2

+VucA
2−16VcDk2cin

BV0cB0+16VcDk2cin
B

2
V0

+8VV0cB0k2cin
B

2
−8VcAk2cin

B
2
V0+16VcA0V0k2cin

B cD

+8VcAk2cin
BV0cB0−8VcAcA0V0k2cin

B −8VcA0V0k2cin
B

2

−8V2
0 cB0k2cin

B
2
+4V2

0 c2
B0k2cin

B +2V0cB0cin
B u−cAV0cin

B u

+cAV0cB0u+16V2c2
Dk2cin

B −16V2cDk2cin
B

2
−2VcAcDu

+VcAcin
B u−4VcDcin

B u−8Vcin
B

3
k2V0−VV0cin

B ċA+VV0cB0ċA

−VcA0V0ċA−cAcA0V0u−2cA0V0cin
B u+8cA0V

2
0 k2cin

B
2

+4c2
A0V

2
0 k2cin

B +4V2
0 cin

B
3
k2−2V0cin

B
2
u+4V2cin

B
3
k2

−V2cin
B ċA−2V2cDċA−8cA0V

2
0 k2cin

B cB0.
(42)

This expression does not contain any of the unknown vari-
ables, so it can be evaluated online and controlled to zero
using a P or PI controller.

E. Simulation Results

1) Nominal operation: The state and input trajectories
for nominal optimal operation are given in Figure 1. These
trajectories are generated by applying the optimal input. The
final optimal cost is value isJ = 0.2717.

2) Controlling the invariant:
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Fig. 1. Nominal optimal input, volume, and concentration trajectories
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Fig. 2. Disturbancek1

a) Case 1.: Variable cA unmeasured - all other vari-
ables known:Here we cannot controlc = det(A) to zero,
because we cannot evaluate it sincecA is not known. Instead
we control the resultantR(c,m1) (38) to zero using a
P-controller. The trajectories are identical to the optimal
ones from the previous section, and the objective value is
J = 0.2717. This is as expected, because by Theorem 3,
controllingc andR(c,m1) are equivalent. The suboptimality,
which is introduced by the added P controller, does not
become visible when considering the first seven digits of the
objective function. However, whereas we need to know the
value ofcA to controlc, this is not necessary for controlling
R(c,m1) to zero.

b) Case 2.: Variables k1, cB unmeasured –̇cA estimated
and cA measured: In this case, the statecB and the pa-
rameterk1 are not known (measured). Therefore we cannot
control c directly. Instead we use a P-controller to control
R(c,m2,m3), which contains neitherk1 nor cB. This expres-
sion can be evaluated using the available measurements and
controlled to zero. In the nominal case the trajectories look
exactly the same as in Fig. 1.

Next, we consider a change in the reaction kinetics, where
k1 rises 20%, Figure 2. The input and the states are given in
Figure 3. The final profit when controllingR(c,m2,m3) to
zero isJ= 0.2970, while the profit using the optimal input is
Jopt = 0.2971. This difference comes from the approximation
of ċA in (39). Using the exact derivative, we obtainJ =
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Fig. 3. Inputs and concentrations for unmeasured change ofk1 at time 100

0.2971, which is the same value as the optimal input gives.
If we had not eliminatedk1 in R(c,m2,m3), and just used

the nominal value, the objective value would beJ = 0.2873.

VII. D ISCUSSION AND CONCLUSION

We have shown that the concepts of finding invariant
variable combinations can be extended to dynamic systems,
which are described by polynomial or rational equations. In
addition, by not explicitly solving for the inputu, we do
not have to be concerned whether the input appears inc,
because we use a P or PI controller to generate the optimal
inputs. This is a simple alternative to analytically findingthe
optimal input by further differentiations.

Adding a controller to controlc will often come at a
negligible loss. This is confirmed in our example, where
controlling the invariants using only a P controller gives
virtually the same performance as when analytically solving
for the optimal input.

In this work, we considered only parametric uncertainties
and unmeasured states. The equally important issues of
model error and measurement noise are beyond the scope
of this work and have to be studied in future work.

We assumed that the uncertainty does not change the active
constraints. This is valid for small disturbances. However, for
larger disturbances, the new set of active constraints has to
be determined.

Controlling the invariant can be used together with other
NCO tracking methods to handle model mismatch or termi-
nal constraints on a run-to-run basis, similar to [19]. Thus,
we consider our method as a part of a larger procedure for
implementing optimal batch performance.

Beside “normal measurements” we have also allowed mea-
surements of their time derivatives. They may be estimated
by finite differences as above, or by using some filtering. If a
measurement is assumed to be reliable, then its change over
time should also be possible to estimate reasonably well.
Introducing measurements of the time derivatives, makes it

possible to eliminate variables, for which we do not have
a purely algebraic expression, and which enter through the
differential equations only.

In the procedure for eliminating the adjoint variables, we
have presented the common case of input affine systems.
If the model is not input affine, elimination of the adjoint
variables comes at the cost of introducing time derivatives
of the input, which have to be measured.

We used the resultant to eliminate the unknown variables.
Other techniques, such as Gröbner bases [6], could also have
been applied. However, it is not easy to find appropriate
monomial orderings which eliminate the unknown variables,
while avoiding the trivial solution (the invariant is always
zero when the model equations are satisfied).
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MA, 1994.

[13] S. Gros, B. Srinivasan, B. Chachuat, and D. Bonvin. Neighbouring-
extremal control for singular dynamic optimisation problems. part i:
single-input systems.International Journal of Control, 82(6), 2009.

[14] M. Grötschel, S. O. Krumke, and J. Rambau, editors.Online
Optimization of Large Scale Systems. Springer, Sept. 2001.

[15] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock. A real-
time algorithm for moving horizon state and parameter estimation.
Computers & Chemical Engineering, 35(1):71 – 83, 2011.

[16] H. J. Marquez.Nonlinear Control Systems. John Wiley & Sons, 2003.
[17] M. Schlegel, K. Stockmann, T. Binder, and W. Marquardt. Dynamic

optimization using adaptive control vector parameterization. Comput-
ers & Chemical Engineering, 29(8):1731 – 1751, 2005.

[18] S. Skogestad. Plantwide control: The search for the self-optimizing
control structure.Journal of Process Control, 10:487–507, 2000.

[19] B. Srinivasan and D. Bonvin. Real-time optimization of batch
processes by tracking the necessary conditions of optimality. Industrial
& Engineering Chemistry Research, 46(2):492–504, 2007.

[20] B. Srinivasan, S. Palanki, and D. Bonvin. Dynamic optimization of
batch processes: I. characterization of the nominal solution. Computers
& Chemical Engineering, 27(1):1 – 26, 2003.

[21] B. Sturmfels. On the newton polytope of the resultant.Journal of
Algebraic Combinatorics, 3:207–236, 1994.

[22] B. Sturmfels. Solving systems of polynomial equations, 2002.
[23] P. Terwiesch, M. Agarwal, and D. W. T. Rippin. Batch unitoptimiza-

tion with imperfect modelling: a survey.Journal of Process Control,
4(4):238 – 258, 1994.


