Loss Method: A Static Estimator Applied for Product Composition Estimation From Distillation Column Temperature Profile

M. Ghadrdan<sup>1</sup> C. Grimholt<sup>1</sup> S. Skogestad<sup>1</sup> I.J. Halvorsen<sup>2</sup>

<sup>1</sup>Norwegian University of Science & Technology, Department of Chemical Engineering, 7491, Trondheim, Norway

<sup>2</sup>SINTEF ICT, Applied Cybernetics, 7465 Trondheim, Norway

AIChE Meeting, 2011

イロト イポト イヨト イヨト

### Motivation

- Some process variables can not be measured frequently
  - Example: Composition measurement using online analyzers (like Gas Chromatograph)
    - Large measurement delays
    - High investment/maintenance costs
    - Low reliability

### Motivation

- Some process variables can not be measured frequently
  - Example: Composition measurement using online analyzers (like Gas Chromatograph)
    - Large measurement delays
    - High investment/maintenance costs
    - Low reliability
- Sensors:
  - Temperature
  - Pressure
  - Flow rate
  - etc.

#### M. Ghadrdan, C. Grimholt, S. Skogestad,

#### Loss Method

## Motivation

- Some process variables can not be measured frequently
  - Example: Composition measurement using online analyzers (like Gas Chromatograph)
    - Large measurement delays
    - High investment/maintenance costs
    - Low reliability
- Sensors:
  - Temperature
  - Pressure
  - Flow rate
  - etc.

An estimator attempts to approximate the unknown parameters using the measurements

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

AIChE Meeting, 2011 2 / 27

# Outline

#### Introduction

- Estimation
- Partial Least Squares

#### Loss Method

- Optimal estimators for different scenarios
- Necessary data for the task of estimation

#### 3 Examples

#### Estimation

#### Estimators

Different categories: Static / Dynamic, Data-based / Model-based, Open-loop / Close-loop

• Static Estimators

#### Oynamic Estimators

p. 614-623

M. Ghadrdan, C. Grimholt, S. Skogestad,

 $<sup>^{1}</sup>$ R. Weber, C. Brosilow, The Use of Secondary Measurements to Improve Control, AIChE J., 18, 3,

#### Estimation

### Estimators

Different categories: Static / Dynamic, Data-based / Model-based, Open-loop / Close-loop

- Static Estimators
  - Model-based
    - Example: Brasilow estimator<sup>1</sup>
    - Our method is in this category
  - Data-based
    - Example: Partial Least Square (PLS)
- Dynamic Estimators

 $<sup>^{1}</sup>$ R. Weber, C. Brosilow, The Use of Secondary Measurements to Improve Control, AIChE J., 18, 3,

#### Estimation

### Estimators

Different categories: Static / Dynamic, Data-based / Model-based, Open-loop / Close-loop

- Static Estimators
  - Model-based
    - Example: Brasilow estimator<sup>1</sup>
    - Our method is in this category
  - Data-based
    - Example: Partial Least Square (PLS)
- Dynamic Estimators
  - Model-based
    - Example: Kalman filter
  - Data-based
    - Time variant reliability analysis of existing structures using data

 $^{1}$ R. Weber, C. Brosilow, The Use of Secondary Measurements to Improve Control, AIChE J., 18, 3,

p. 614-623

イロト イポト イヨト イヨト

### Partial Least Squares

- PC regression = weights are calculated from the covariance matrix of the predictors
- PLS = weights reflect the covariance structure between predictors and response mostly requires a complicated iterative algorithm



- Nipals and SIMPLS algorithms probably most common
- The goal is to maximize the correlation between the response(s) and component scores
- PLS can extends to multiple outcomes and allows for dimension reduction
- No collinearity Independence of observations not required

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method



$$\hat{Y} = BX$$

- PLS: is not optimal for any particular problem
- Loss method: optimal for certain well-defined problems

#### OBJECTIVE

The main objective is to find a linear combination of measurements such that keeping these constant indirectly leads to nearly accurate estimation with a small loss L in spite of unknown disturbances, d, and measurement noise,  $n^x$ .

$$\min_{\mathbf{H}} \|\boldsymbol{e}\|_2 = \|\mathbf{y} - \hat{\mathbf{y}}\|_2$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

AIChE Meeting, 2011 7 / 27

### Loss Method

- "Open-loop" (for the purpose of Monitoring):
  - No control (u is a free variable)
  - Primary variables y are controlled (u is used to keep y = y<sub>s</sub>).
  - Secondary variables z are controlled (u is used to keep z = z<sub>s</sub>).
- "Close-loop" (for the purpose of Control)



AIChE Meeting, 2011 8 / 27

Assumption: Linear models for the primary variables y, measurements  $\boldsymbol{x},$  and secondary variables  $\boldsymbol{z}$ 

$$\begin{split} \mathbf{y} &= \mathbf{G}_{y}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d} \qquad \mathbf{x} = \mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}^{d}\mathbf{d} \qquad \mathbf{z} = \mathbf{G}_{z}\mathbf{u} + \mathbf{G}_{z}^{d}\mathbf{d} \\ \mathbf{G}_{y} &= \begin{pmatrix} \frac{\partial y}{\partial u} \end{pmatrix}_{d}, \quad \mathbf{G}_{y}^{d} = \begin{pmatrix} \frac{\partial y}{\partial d} \end{pmatrix}_{u} \qquad \mathbf{G}_{x} = \begin{pmatrix} \frac{\partial x}{\partial u} \end{pmatrix}_{d}, \quad \mathbf{G}_{z}^{d} = \begin{pmatrix} \frac{\partial z}{\partial d} \end{pmatrix}_{u}, \quad \mathbf{G}_{z}^{d} = \begin{pmatrix} \frac{\partial z}{\partial d} \end{pmatrix}_{u} \\ \end{split}$$
The actual measurements  $\mathbf{x}_{m}$ , containing measurement noise  $\mathbf{n}^{x}$  is

$$\mathbf{x}_m = \mathbf{x} + \mathbf{n}^x$$

The linear estimator is of the form

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{x}_m$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

э

< □ > < □ > < □ > < □ > < □ > < □ >



M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

 ▲□ →
 ▲□ →
 ▲□ →
 ▲□

 AlChE Meeting, 2011
 1

#### Loss Method



M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

< □ > < □ > < □ > < ⊇ > < ⊇ >
 AlChE Meeting, 2011

Ξ.

# Optimal estimators for different scenarios (Loss Method)

"Open-loop" 1  

$$\mathbf{H}_{1} = \mathbf{Y}_{1}\mathbf{X}_{1}^{\dagger}$$

$$\mathbf{Y}_{1} = \begin{bmatrix} \mathbf{G}_{y}\mathbf{W}_{u} & \mathbf{G}_{y}^{d}\mathbf{W}_{d} & 0 \end{bmatrix}$$

$$\mathbf{X}_{1} = \begin{bmatrix} \mathbf{G}_{x}\mathbf{W}_{u} & \mathbf{G}_{x}^{d}\mathbf{W}_{d} & \mathbf{W}_{n^{x}} \end{bmatrix}$$

$$\mathbf{H}_{2} = \mathbf{Y}_{2}\mathbf{X}_{2}^{\top}$$
$$\mathbf{Y}_{2} = \begin{bmatrix} \mathbf{W}_{y_{s}} & 0 & 0 \end{bmatrix}$$
$$\mathbf{X}_{2} = \begin{bmatrix} \mathbf{G}_{x}^{cl}\mathbf{W}_{y_{s}} & \mathbf{F}\mathbf{W}_{d} & \mathbf{W}_{n^{x}} \end{bmatrix}$$

"Open-loop" 3  $\mathbf{H}_{3} = \mathbf{Y}_{3}\mathbf{X}_{3}^{\dagger}$   $\mathbf{Y}_{3} = \begin{bmatrix} \mathbf{G}_{y}^{cl}\mathbf{W}_{z_{s}} & \mathbf{F}_{y}^{\prime}\mathbf{W}_{d} & \mathbf{0} \end{bmatrix}$   $\mathbf{X}_{3} = \begin{bmatrix} \mathbf{G}_{x}^{cl}\mathbf{W}_{z_{s}} & \mathbf{F}_{x}^{\prime}\mathbf{W}_{d} & \mathbf{W}_{n^{x}} \end{bmatrix}$ 

"Closed-loop"  $\min_{\mathbf{H}} \|\mathbf{H} \begin{bmatrix} \mathbf{F} \mathbf{W}_d & \mathbf{W}_{n^x} \end{bmatrix}\|_F$ s.t.  $\mathbf{H} \mathbf{G}_x = \mathbf{G}_y$ 

\* All subject to the constraint of independent variables values

Loss Method

▲ ② ▶ < 3 ▶ < 3 ▶ 3 ≥ </p>
AIChE Meeting, 2011

### Optimal "open-loop" estimator, when y=ys (Loss Method)



itial u =  $\mathbf{G}_{y}^{-1}\mathbf{y}_{s} - \mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}$ is a  $\mathbf{G}_{y}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}^{d}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}\mathbf{d}$ is  $\mathbf{G}_{x}\mathbf{u}$ is  $\mathbf{G}_{x}\mathbf{u$ 

#### M. Ghadrdan, C. Grimholt, S. Skogestad

#### Loss Method

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

э

#### Optimal "open-loop" estimator, when y=ys (Loss Method)



Initial Equations  $y = \mathbf{G}_{y}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d}$   $\hat{y} = \mathbf{H}\left[\mathbf{G}_{x}\mathbf{G}_{y}^{-1}\mathbf{y}_{s} - \mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}\mathbf{d} + \mathbf{n}^{x}\right]$   $\hat{y} = \mathbf{H}\mathbf{x}_{m}$   $e = \underbrace{\left[\left(\mathbf{I} - \mathbf{H}\mathbf{G}_{x}^{c}\right)\mathbf{W}_{y_{s}} - \mathbf{H}\mathbf{F}\mathbf{W}_{d} - \mathbf{H}\mathbf{W}_{n^{x}}\right]}_{\mathbf{M}_{ol}(\mathbf{H})} \begin{bmatrix} \mathbf{y}_{s}^{*}\\ \mathbf{d}^{*}\\ \mathbf{n}^{x'} \end{bmatrix}$   $\|e(\mathbf{H})\|_{2} = \frac{1}{2}\|\mathbf{M}_{ol}(\mathbf{H})\|_{F}^{2}$ 

### Optimal "open-loop" estimator, when y=ys (Loss Method)



M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

 $\min \| \begin{bmatrix} \mathbf{W}_{y_s} & 0 & 0 \end{bmatrix} - \mathbf{H} \begin{bmatrix} \mathbf{G}_x^{cl} \mathbf{W}_{y_s} & \mathbf{F} \mathbf{W}_d & \mathbf{W}_{n^x} \end{bmatrix} \| = \min \| \mathbf{Y}_2 - \mathbf{H} \mathbf{X}_2 \|_{\mathbf{C}}$ 

AICh E Meeting, 2011 13 / 27

# Optimal "close-loop" estimator (Loss Method)



$$\min_{\mathbf{H}} \|\mathbf{H} \begin{bmatrix} \mathbf{F} \mathbf{W}_d & \mathbf{W}_{n^x} \end{bmatrix} \|_F$$
  
s.t.  $\mathbf{H} \mathbf{G}_x = \mathbf{G}_y$ 

Initial  
Equations  

$$y = \mathbf{G}_{y}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d}$$

$$x = \mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}^{d}\mathbf{d}$$

$$x = \mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}^{d}\mathbf{d}$$

$$x_{m} = x + n^{x}$$

$$\hat{y} = \mathbf{H}x_{m}$$

$$u = -(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left[\left(\mathbf{G}_{x}^{d}\mathbf{d} + n^{x}\right) + (\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}\right] + \mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

$$u = -(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left[\left(\underbrace{\mathbf{G}_{x}^{d}-\mathbf{G}_{x}\mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}}_{F}\right)\mathbf{d} + n^{x}\right] + \mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

$$u = -\mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left[\left(\underbrace{\mathbf{G}_{x}^{d}-\mathbf{G}_{x}\mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}}_{F}\right)\mathbf{d} + n^{x}\right] + \mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

$$u = -(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left[\underbrace{\mathbf{G}_{x}^{d}-\mathbf{G}_{x}\mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}}_{F}\right] + \mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

#### Loss Method

AIChE Meeting, 2011

э

## Optimal "close-loop" estimator (Loss Method)



$$\min_{\mathbf{H}} \left\| \mathbf{H} \begin{bmatrix} \mathbf{F} \mathbf{W}_{d} & \mathbf{W}_{n^{x}} \end{bmatrix} \right\|_{F}$$
 s.t.  $\mathbf{H} \mathbf{G}_{x} = \mathbf{G}_{y}$ 

Initial  
Equations  

$$y = \mathbf{G}_{y}\mathbf{u} + \mathbf{G}_{y}^{d}\mathbf{d}$$

$$x = \mathbf{G}_{x}\mathbf{u} + \mathbf{G}_{x}^{d}\mathbf{d}$$

$$x = \mathbf{x} + \mathbf{n}^{x}$$

$$\hat{y} = \mathbf{H}x_{m}$$

$$u = -(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left(\mathbf{G}_{x}^{d}\mathbf{d} + \mathbf{n}^{x}\right) + (\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

$$y = -\mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}\left[\left(\underbrace{\mathbf{G}_{x}^{d}-\mathbf{G}_{x}\mathbf{G}_{y}^{-1}\mathbf{G}_{y}^{d}}_{F}\right)\mathbf{d} + \mathbf{n}^{x}\right] + \mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{y}_{s}$$

$$e = y - \hat{y} = y - y_{s} = -\mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1}\mathbf{H}(\mathbf{F}\mathbf{d} + \mathbf{n}^{x}) + \left[\mathbf{G}_{y}(\mathbf{H}\mathbf{G}_{x})^{-1} - \mathbf{I}\right]y_{s}$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

AIChE Meeting, 2011

э

## Optimal "close-loop" estimator (contd.)

The prediction error e

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{y}_{s} = -\mathbf{G}_{y} (\mathbf{H}\mathbf{G}_{x})^{-1} \mathbf{H} (\mathbf{F}\mathbf{d} + \mathbf{n}^{x}) + \left[\mathbf{G}_{y} (\mathbf{H}\mathbf{G}_{x})^{-1} - \mathbf{I}\right] \mathbf{y}_{s}$$

Introducing the normalized variables:

$$\mathbf{e} = \underbrace{-\mathbf{G}_{y} (\mathbf{H}\mathbf{G}_{x})^{-1} \mathbf{H} \begin{bmatrix} \mathbf{F}\mathbf{W}_{d} & \mathbf{W}_{n^{x}} \end{bmatrix} \begin{bmatrix} \mathbf{d}' \\ \mathbf{n}^{x'} \end{bmatrix}}_{\mathbf{e}_{1}} + \underbrace{\left[ \mathbf{G}_{y} (\mathbf{H}\mathbf{G}_{x})^{-1} - \mathbf{I} \right] \mathbf{y}_{s}}_{\mathbf{e}_{2}}$$

Degree of Freedom

$$\mathbf{e}_1(\mathbf{H}) = \mathbf{e}_1(\mathbf{D}\mathbf{H})$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

AICh E Meeting, 2011 15 / 27

< ∃→

#### Optimal "close-loop" estimator (contd.)

If  $\tilde{F} = [FW_d \ W_{n^x}]$  is full rank, which is always the case if we include independent measurement noise, then <sup>2</sup>

$$\mathbf{H} = \mathbf{D} \left( \left( \mathbf{X}_{opt} \mathbf{X}_{opt}^{\mathsf{T}} \right)^{-1} \mathbf{G}_{x} \right)^{\mathsf{T}}$$

where

$$\mathbf{D} = \mathbf{G}_{y} \left( \mathbf{G}_{x}^{T} \left( \mathbf{X}_{opt} \mathbf{X}_{opt}^{T} \right)^{-1} \mathbf{G}_{x} \right)^{-1}$$

19 (1). 138-148

M. Ghadrdan, C. Grimholt, S. Skogestad,

 $<sup>^2</sup>$ Alstad et al. (2009), Optimal measurement combinations as controlled variables, J. Proc. Control,

Necessary data for the task of estimation (Model-based)

Model-Based Estimation  

$$\mathbf{Y}_{all} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_y & 0 \\ \mathbf{G}_x & \mathbf{X}_{opt} \end{bmatrix} \text{ where } \mathbf{X}_{opt} = \begin{bmatrix} \mathbf{FW}_d & \mathbf{W}_{n^x} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{opt} \text{ out } 0 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{non-opt} & \mathbf{X}_{opt} \end{bmatrix}$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

✓ □→ < ≥ > < ≥ >
 AlChE Meeting, 2011

#### Necessary data for the task of estimation (Data-based)

#### Theorem

Closed Loop Regressor (CLR) <sup>a</sup>. The data matrices can be transformed to the "optimal – non-optimal" structure by

- Performing a singular value decomposition on the data matrix Y
- Ø Multiplying the data matrices X and Y with the unitary matrix V

 $^a$ Skogestad et al (2011). Selected Topics on Constrained and Nonlinear Control Workbook

### Necessary data for the task of estimation (Data-based)

#### Theorem

Closed Loop Regressor (CLR) <sup>a</sup>. The data matrices can be transformed to the "optimal – non-optimal" structure by

- Performing a singular value decomposition on the data matrix Y
- Ø Multiplying the data matrices X and Y with the unitary matrix V

 $^a$ Skogestad et al (2011). Selected Topics on Constrained and Nonlinear Control Workbook

#### Proof.

Since **V** is unitary, so  $\|\mathbf{YV} - \mathbf{HXV}\|_F = \|\mathbf{Y} - \mathbf{HX}\|_F$ Writing the unitary matrix **U** in block form as  $\mathbf{U} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix}$ , we will have

$$\mathbf{Y}\mathbf{V} = \mathbf{U}\boldsymbol{\Sigma} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_1\boldsymbol{\Sigma}_1 & \mathbf{0} \end{bmatrix}$$

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

#### Example 1: Results

- Binary Distillation (Col. A), 41 trays, 8 measurements
- Secondary variables: Reflux, temperature in 25th tray

The mean prediction error of the model-based estimators applied to four operation scenarios

|                   | Validation Data |        |        |        |        |  |  |
|-------------------|-----------------|--------|--------|--------|--------|--|--|
| Caliberation Data |                 | S1     | S2     | S3     | S4     |  |  |
|                   | S1              | 0.0085 | 0.2749 | 0.0215 | 0.0506 |  |  |
|                   | S2              | 0.0591 | 0.0093 | 0.0104 | 0.0104 |  |  |
|                   | S3              | 0.0599 | 0.0166 | 0.0098 | 0.0132 |  |  |
|                   | S4              | 0.0099 | 0.0099 | 0.0099 | 0.0099 |  |  |

M. Ghadrdan, C. Grimholt, S. Skogestad,

A B A A B A

### Example 1: Results



Examples

## Example 2: Multi-component distillation



$$u = y = \begin{bmatrix} x_{C_3 inD} & x_{C_2 inB} \end{bmatrix}$$
$$G_y = I$$
$$G_x^d = F$$
$$G_y^d = 0$$

3.5 3

21 / 27

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

AIChE Meeting, 2011

# Example 2: Results

|     | F 0.0004 | 0.0014 - |            | 0.0002  | 0.0013  |
|-----|----------|----------|------------|---------|---------|
|     | 0.0081   | -0.0045  |            | 0.0087  | -0.0041 |
|     | -0.005   | 0.0074   |            | -0.006  | 0.0068  |
|     | -0.0047  | 0.0006   |            | -0.0051 | 0.0003  |
| H = | 0.0062   | -0.0104  | <b>B</b> = | 0.0077  | -0.0096 |
|     | -0.003   | 0.0126   |            | -0.0034 | 0.0124  |
|     | -0.0013  | 0.0051   |            | -0.0016 | 0.0049  |
|     | 0.0024   | -0.0162  |            | 0.0026  | -0.016  |
|     | 0.0028   | 0.0042   |            | 0.0031  | 0.004   |

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

 ≣ • େ २ ि 22 / 27

### Example 2: Results



(a) +5% disturbance in feed flow



(b) -1% disturbance in Feed composition  $z_{1,F}$  ( ), (b) -1% disturbance in Feed composition  $z_{1,F}$ 

M. Ghadrdan, C. Grimholt, S. Skogestad

Loss Method

#### Examples

## Example 3: Kaibel distillation column



$$DoF u = \begin{bmatrix} R_L & R_V & L & V & S_1 & S_2 \end{bmatrix}$$

Extra Degrees of Freedom:

- Vapor Split (R<sub>V</sub>)
- Liquid Split (R<sub>L</sub>)

#### Disturbances:

- Feed flowrate, composition and quality
- Column Pressure
- Setpoints for splits

M. Ghadrdan, C. Grimholt, S. Skogestad

Loss Method

AIChE Meeting, 2011

#### Examples

### Example 3: Results



Possible Improvement for Loss method: Structured  $H^3$ 

<sup>3</sup>Yelchuru et al., MIQP formulation for Controlled Variable Selection in Self Optimizing Control => 🗦 🦿 🔿 🗬

M. Ghadrdan, C. Grimholt, S. Skogestad,

Loss Method

# Conclusion

- Loss method is more systematic method to design soft-sensor compared to PLS
- For the example we showed, PLS and Loss method show almost the same result although two different approaches are used

3

#### Comment on PLS

Shrinkage properties<sup>4</sup>

$$MSE = E(b-\beta)'S(b-\beta) = \underbrace{\sum_{i}\lambda_{i}(Ea_{i}-\alpha_{i})^{2}}_{Bias \ term} + \sum_{i}\lambda_{i} Var(a_{i})$$

$$a_i = f(\lambda_i) a_i^0$$

 $f(\lambda_i) = 0 \text{ or } 1$  for OLS, PCR, Ridge Butler et al.: PLS is not a shrinkage method. PLSR nearly always can be improved

B 62 (2000) 585-593

M. Ghadrdan, C. Grimholt, S. Skogestad,

27 / 27

 $<sup>^{4}</sup>$ Butler et al. The peculier shrinkage properties of partial least squares regression, J. R. Stat. Soc.,