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ABSTRACT 

The balanced truncation method for reducing the size of a model was originally developed 

for linear systems. When extended to nonlinear systems, some considerations need to be 

faced. First of all, the calculation of the balancing transformation matrix is not unique. This 

may results in non-physical values for the reconstructed states, which may lead to failure, 

for example, in thermodynamic routines. To reduce this problem, it is recommended to 

include all the states in the balancing outputs. To further reduce the effect of nonlinearties 

in the original model, it is recommended to use a linearising static transformation of the 

states, if available. In this paper, distillation column models are used as a case study, and in 

this case a logarithmic transformation of the compositions is beneficial. 
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1. INTRODUCTION 

As discussed in the literature, model simplification and reduction are important areas in 

process system engineering, and also in control theory 1-3. Simplified and reduced models 

are used both to gain insight into the process behaviour and to ease the computational 

efforts of simulation and analysis 4. For distillation columns, several model reduction and 

simplification methods have been developed 3,5-11. In this paper, the balanced truncation 

method is considered. 

Balanced truncation is a popular model reduction technique that was introduced in the 

early 1980’s 12, and has also been applied to nonlinear distillation column models 13. The 

method consists of two steps: 

1. Application of a coordinate change (a variable transformation) so that each new 

state is equally controllable and observable (balanced system); 

2. Reduction of the model by truncating the new states that show the weakest input-

output dependency.  

 

Alternatively, balanced residualisation can be used in step 2, but in this case the dynamic 

equations corresponding to the new states with relatively weak input-output behaviour are 

transformed into algebraic equations. This reduces the number of dynamic states, but it 

does not reduce the sum of the number of the dynamic and algebraic states. This may not 

give any computational simplification for nonlinear systems, so balanced residualisation is 

not considered in this paper.  
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1.1. Balanced truncation of linear models 

Let us first analyse a linear model (for sake of simplicity, a stable linear system with 

constant coefficients) given in terms of deviation variables from a nominal steady-state: 

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) , ( ) , ( )n l m

t t t
t t t
t t t

x Ax Bu
y Cx Du
x u yR R R

  (1) 

 

The associated controllability and observability Gramians CW  and OW  are found by 

solving the Lyapunov’s equations : 
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  (2) 

 

A balanced form of the system in (1) is obtained through a transformation matrix T , see 

equation (3), such that the resulting Gramians of the transformed system CW  and OW  are 

equal, and on the simple form given in equation (4), 
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Here i ’s are the Hankel singular values, ordered according to: 

 

 1 2 3 0n   (5) 

 

The input-output behaviour of (3) is identical to the input-output behaviour of (1). 

Let 
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Then, one approach to model reduction is balanced truncation, where the states ( )II tz  that 

correspond to small Hankel singular values are deleted. 

Considering a case with n  states and with , one can write the 

matrices lT  and rT  as nonsquare submatrices of T  and 1T  respectively, as:  

 

ˆ1,1 1, 1,

ˆ ˆ ˆ ˆ,1 , ,

ˆ,1 , ,

n n

n n n n n

n n n n n

l

T T T

T T T

T T T

T

T   (7) 
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r
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T T T

T
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Truncation of the system in (3) gives: 
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where ( )ty  is the vector of the outputs of the reduced-order model and ( )tx  are the 

reconstructed states. 

This reduction method results in a good approximation of the original system over the 

whole frequency range 13. One disadvantage of this approach is that it does not preserve the 

steady-state behaviour of the original system and therefore will result in offset 14. The 

method guarantees preserved stability and comes with an a priori error bound 13-21. 

 

1.2. Balanced truncation of nonlinear models 

When extending the balanced truncation method to nonlinear systems, some considerations 

must be made 13, 18, 22-30. 

Similar to equation (1), a nonlinear system can be written in the form (10): 
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Using the linear approximation to obtain the transformation matrices lT  and rT ,  see (3)-

(8), the balanced truncated form of (10) becomes: 

 

 

( ) ( ), ( )

( ) ( ), ( )
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where  ( ) ( )r It tx T z  are the reconstructed states used when evaluating the functions f  and 

g . 

If the nonlinear model in (10) is written in deviation variables, the elimination of the states 

( )II tz  of the balanced system will still preserve the matching of the full and the reduced 

model at the starting steady-state point, as in the linear case. 

On the other hand, one may sometimes choose to not write the nonlinear model in 

deviation variables. This case is studied by Hahn and Edgar 13 and to match the initial 

steady-state, the balanced truncated approximation can be written (even without deviation 

variables) as: 
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For more details, see the Appendix. 

1.3. The issue of the choice of outputs for balancing (reconstruction of the states) 

A feature of the balanced truncation method, both for linear and nonlinear models, is that 

the method focuses on the behaviour between the inputs u  and the outputs y . The 

dynamic behaviour of the states ( )tx  may be not accurately described and can in some 

cases assume values completely different from the full model’s behaviour. This happens 

mainly because of the non-unique (and therefore non-exact) reconstruction ( )tx  of the 

original states. 

For a numerical example, let use the linear model quoted by Hahn and Edgar 13, where the 

reactions A B C  takes place in a continuously stirred-tank reactor. The system has 

one input, three states and one output: 
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  (13) 

 

The original states ( )tx  represent the concentration of the three species, in deviation 

variables. The inlet concentration of A ( 1x )  can  be  manipulated  ( 1u x ) and the 

concentration of C ( 3x ) at the outlet can be measured ( 3y x ).  

This simple system is stable, observable and controllable. If just the state 3x  is considered 

as the output for balancing (which is the optimal in terms of input-output behaviour), the 

transformation balancing the linear system (13) is as follows: 

 

 

0.07729 0.1845 2.530
0.08866 0.08595 2.776
0.04344 0.1528 1.343

T   (14) 

 

and the resulting balanced Gramians are 
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0.05939 0.0 0.0
0.0 0.01525 0.0
0.0 0.0 0.001316

C OW W   (15) 

 

It can be seen that the third balanced state of the balanced system contributes much less to 

the input-output behaviour than the other two, because its Hankel singular value is more 

than one order of magnitude smaller than the other ones. Eliminating this state, the 

truncated transformation matrices become: 

 

 

2.7615 5.6741
0.07729 0.1845 2.530

; 2.1436 0.0546
0.08866 0.08595 2.776

0.1546 0.1773
l rT T   (16) 

 

lT  and rT  are the topmost rows and leftmost columns of T  and 1T , respectively, as in 

equations (7) and (8). 

The truncated balanced system is therefore: 
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  (17) 
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As predicted by theory, the truncated system preserves well the input-output behaviour of 

the full model. However, the reconstruction of the states x  can be poor for t>t0. Just as an 

example, assume that at a certain time *t  the actual concentrations (in deviation variables) 

are: 

 

 

*
1

* *
2

*
3

( ) 0.05
( ) ( ) 0.25

( ) 0.2

x t
t x t

x t
x   (18) 

 

Transforming the vector in equation (18) into the corresponding reduced-order z 

coordinates gives: 

 

 

*
1*

* *1
2*

*2
3

( )
0.4637( )

( ) ( )
0.5722( )

( )
I l

x t
z t

t x t
z t

x t
z T   (19) 

 

One looses some information about the states, and, reconstructing the state vector from the 

truncated model, gives: 
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*
1 *

* * 1
2 *

* 2
3

( ) 1.9666
( )

( ) ( ) 0.9631
( )

( ) 0.1732
r

x t
z t

t x t
z t

x t
x T   (20) 

 

The vector of the relative errors is: 

 

 
* *

*

4033%
( ) ( ) 485%

( )
13%

i i
rel

i

x t x t
x t   (21) 

 

As expected, the third state is the closest to the original value (13% error), because it was 

chosen as the output y . But the reconstruction of the two other states is completely wrong. 

This problem does not affect the success of the balanced truncated method in linear 

systems, because the reconstructed states are not needed for the computations. On the other 

hand in nonlinear systems, the error, for example resulting in a negative concentration, 

may have catastrophic effects, because the reconstructed states ( )tx  are used when 

evaluating the functions f  and g . 
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1.4. Choice of the balancing transformation matrix for nonlinear systems 

For a nonlinear system it is not unique how to obtain the transformation matrix T , its 

truncation and its inverse. 

The simplest approach is to linearise the model at a single nominal steady-state (in this 

paper called the “simple method”) and to calculate the matrix T  from the linearised model. 

The advantages of using a single point are the simplicity of the procedure and the fact that 

the linearised model is guaranteed to be consistent in the linearisation point. As an 

alternative, Hahn, Edgar and co-workers 13, 22-24 suggest  to  calculate  the  balancing  

transformation matrix T  through empirical Gramians. Here state data are collected while 

impulse input signals of relatively large magnitude are injected in different directions. 

Matlab routines to calculate the empirical Gramians are available on the Internet 31. 

 

2. IMPROVING THE BALANCED TRUNCATION OF NONLINEAR SYSTEMS 

In this section we attempt to provide solutions to some of the problems in extending the 

balanced truncation method to nonlinear systems. 

 

2.1. Choice of outputs for balancing (reconstruction of the states) 

For  nonlinear  systems,  large  errors  in  the  state  reconstruction  may  be  fatal  for  the  

simulation of the reduced-order models, because they may result, for example, in negative 

compositions, which result in failure in some routines (such as thermodynamic packages). 



 

15 

 

To reduce this problem, and thus to give more robustness to the truncation, we propose to 

augment the vector of outputs y  with  all  (or,  generally,  a  weighted  set  of  all)  the  

integration states x . Since the balanced truncation method is developed to maintain the 

input-output behaviour, this will guarantee that the reconstructed states x  are not too 

different from x . 

For example, consider again the linear continuously stirred-tank reactor model in (13). We 

use  all  the  states  as  outputs  ( 1 2 3
Tx x xy ), and not just x3 as in Section 1.3. The 

transformation balancing the linear system is 

 

 

0.6227 0.5675 0.0473
0.4663 1.0114 0.2046

0.0897 0.4635 5.5819
T   (22) 

 

and the resulting balanced Gramians are 

 

 

0.7119 0.0 0.0
0.0 0.2191 0.0
0.0 0.0 0.0157

C OW W   (23) 
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Again, the truncation of the last balanced state is justifiable from (23), and, from (7) and 

(8), the matrices lT  and rT  are: 

 

 

1.1326 0.6294
0.6227 0.5675 0.0473

; 0.5172 0.6850
0.4663 1.0114 0.2046

0.0247 0.0670
l rT T   (24) 

 

Once again, assume that at a certain time instant *t  the actual concentrations (in deviation 

variables) are like in (18). From (24), the corresponding reduced states are:  

 

 

*
1*

* *1
2*

*2
3

( ) 0.05
0.1013( )

( ) ( ) 0.25
0.2352( )

( ) 0.2
I l l

x t
z t

t x t
z t

x t
z T T   (25) 

 

Reconstructing from (26) the original states gives:  

 

*
1 *

* * 1
2 *

* 2
3

( ) 0.0333
( )

( ) ( ) 0.2135
( )

( ) 0.0183
r

x t
z t

t x t
z t

x t
x T   (26) 

 

The relative error between the original and reconstructed states is: 
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* *

*

33%
( ) ( ) 15%

( )
109%

i i
rel

i

x t x t
x t   (27) 

 

The largest errors are much smaller than in (21). However, the third reconstructed state 3x  

now has a relative larger deviation. To improve on this, one may introduce a weighting 

matrix, y Cx , where  

 

 

1

2

0 0
0 0

0 0 n

C   (28) 

 

The ’s are tuning factors, which give more or less weight to a state. 

 

2.2. Reducing nonlinearities 

To improve the robustness of the balanced truncation of nonlinear systems, one should 

reduce the nonlinearities of the model by using static variable transformations in order to 

change the state space before applying the model reduction. This is often feasible because 

the dominant nonlinearities are often at steady-state.  
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Below, this is illustrated on the distillation case study, where the logarithmic 

transformation has been used to linearise the behaviour. 

 

3. THE CASE STUDY 

To study the extension of balanced truncation to nonlinear systems, we analyse a simple 

nonlinear distillation model, namely Skogestad’s “Column A” 32. A simple Matlab code of 

Column A is available on the Internet 33. The main assumptions for the model are:  

 binary mixture; 

 constant pressure;  

 constant relative volatility; 

 equilibrium on all stages; 

 total condenser; 

 constant molar flows; 

 no vapour holdup;  

 linearised liquid dynamics.  

 

These assumptions and simplifications may seem restrictive, but they capture the main 

effects important for dynamics and control.  

The column has 40 theoretical stages plus a total condenser and separates a binary mixture 

with relative volatility of 1.5  into products of 99% purity. 
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The dynamic total and light component material balances are, for a generic stage i 

(counting from the bottom and up) 2: 

 

 1 1
i

i i i i

Mi
f

dM L L V V
dt   (29)

  

 1 1 1 1
i i

i i i i i i i i

xif

d M x
L x L x V y V y

dt   (30)

  

where from the vapour-liquid equilibrium 

 

 1 ( 1)
i

i
i

xy
x   (31) 

 

and with the assumption of linearised liquid flow dynamics 

 

 
0 0( ) ( )i i i i iL t L k M t M   (32) 

  
                                                   
2  Here ix  is the mole fraction of light component in the liquid phase, and iy  in the 
gas phase 
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The vapour flows are assumed constant up the column ( 1i iV V ). 

For the reboiler, condenser and feed tray the balances are slightly different, but still show 

the same characteristics as (29) and (30). The total number of dynamic states of this ODE 

(Ordinary Differential Equations) model is 82. 

The column levels are stabilised using the LV control structure 34-36 with proportional 

controllers for the reboiler and condenser levels. 

Writing the model as in equation (10) and in terms of input-output representation, the states 

x  are the mass holdups and the liquid compositions of each distillation stage. The two 

process control outputs of the systems are the top vapour and bottom liquid compositions, 

41Dy x  and 1Bx x . The vector of independent variables u is composed of reflux stream 

L, boilup V, feed rate F and feed composition Fz  (the last two are actually disturbances). 

 

4. SIMULATION RESULTS 

In this section we report the results obtained on “Column A” simulated in open-loop mode 

with level control included and with boilup V  and reflux L  as inputs. 

The model is not written in deviation variables; so to avoid the offset at time 0t  between 

the full model and the balanced truncated models, Hahn’s and Edgar’s suggestions reported 

in equation (12) are used.  
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In the simulations, we are mainly interested in the dynamic response of the top and bottom 

compositions ( Dy  and Bx ).  The  low-order  balanced  truncated  model  is  in  the  form (12).  

The 82 reconstructed states 1 41 1 41, , , , ,
T

x x M Mx  are used to evaluate the functions 

in (29)-(30). The main nonlinearities come from the vapour-liquid equilibrium (31).  

At time 0t 100 minutes, a step input change (10% disturbance respect the nominal value) 

is applied in the feed rate, with all the other input variables kept constant (open-loop 

operation). The CPU times to simulate the reduced models between 100 and 1300 minutes 

are recorded. The computer used is a laptop Intel® CoreTM 2 Duo CPU, 2.00 GHz, 2.00 GB 

of RAM.  

 

4.1. Cases studied 

The distillation case study is used to evaluate the following options that can be chosen 

when applying balanced truncation to nonlinear systems. 

1. Choice of method for the calculation of the transformation matrix T : 

a. “Simple method” (linearisation in the nominal point); 

b. Empirical Gramians 31. 

2. Choice of outputs for balancing: 

a. Only the control outputs ( Dy  and Bx ); 

b. All the states x , equally weighted; 
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c. All the states x , with Dy  and Bx  weighted 100 times more than the other 

states, see (28). 

3. Use of static state transformations: 

a. No transformations; 

b. Logarithmic transformation for all liquid compositions (half of the state 

vector), to make the response of distillation models more linear 32, 37-38. On 

stage i  

 

 
,

,

ln L i
i

H i

x
X

x    (33) 

 

In (33), the subscripts L  and H  denote the light and heavy components, 

respectively. This transformation linearises the steady-state and dynamic 

responses of the column 39. Since we are dealing with a binary mixture, (33) 

simplifies to: 

 

 ln
1

i
i

i

xX
x    (34) 

 

where ix  is the liquid concentration (mole fraction) of the light component. 

The backwards transformation is 
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1

i

i

X

i X

ex
e

   (35) 

 

The logarithmic compositions guarantee that the actual compositions (mole 

fractions) are never negative. The transformation back from and to 

logarithmic compositions must be made each time we evaluate the functions 

iMf  and ixf , and this will increase the computation time. 

4. Choice of number of states in the truncated system. 

 

4.2. Results 

The main results are summarised in Table 1. The methods of “simple” transformation 

based on linearising in a single point is compared with the “empirical Gramians” based on 

the average Gramians found over several operating points13.  For each of these we compare 

transformations using only the outputs, all the states (unweighted) and all the states with 

the outputs weighted extra. In addition we consider with and without using a nonlinear 

output transformation (“log compositions”) given a total of 12 cases. In order to ease the 

discussion, the table is limited to one set of truncated (reduced-order) models, namely 

those with 9 states out of 82. 
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Table 1. Summary of results for reduced distillation models with 9 states. 

CASE Method for 
obtaining T 

Outputs for 
balancing 

Output 
transformation 

Results for 9 states 

Relative error in 
responses [%] CPU time 

[ms] 
yD xB sum 

full model             
183 

(82 states) 

case 1 simple yD and xB none fails with less than 72 states 

case 2 simple all states, 
unweighted none 0.71 19.85 20.56 46 

case 3 simple all states, weighted 
yD and xB 

none 18.15 18.98 37.12 46 

case 4 simple yD and xB log compositions 12.38 19.37 31.75 76 

case 5 simple all states, 
unweighted log compositions 9.61 12.86 22.47 94 

case 6 simple all states, weighted 
yD and xB 

log compositions 12.49 19.46 31.95 77 

case 7 empirical 
Gramians yD and xB none fails with less than 15 states  

case 8 empirical 
Gramians 

all states, 
unweighted none 8.70 1.34 10.04 28 

case 9 empirical 
Gramians 

all states, weighted 
yD and xB 

none 0.29 2.20 2.49 24 

case 10 empirical 
Gramians yD and xB log compositions 2.62 1.05 3.67 37 

case 11 empirical 
Gramians 

all states, 
unweighted log compositions 7.02 8.10 15.11 37 

case 12 empirical 
Gramians 

all states, weighted 
yD and xB 

log compositions 0.69 0.40 1.09 33 
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The different cases in Table 1 are here compared and evaluated in terms of CPU time, 

robustness and precision to reproduce the full model. The parameter to evaluate the 

precision is sum
rel . The relative errors are defined as: 

 

 
0

( ) ( )
( ) ( )

D

red full
y D D
rel full full

D D

y t y t
y t y t   (36) 

 

 
0

( ) ( )
( ) ( )

B

red full
x B B
rel full full

B B

x t x t
x t x t   (37) 

 

 D By xsum
rel rel rel   (38) 

 

Before discussing the results, let us briefly consider the distribution of the Hankel singular 

values. 
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Figure 1. Hankel singular values with only yD and xB as balancing outputs (case 1). 

 

In Figure 1 are shown the Hankel singular values of the system balanced using the nominal 

linear model (“simple method”), and considering only Dy  and Bx  as balancing outputs 

(case 1). The Hankel singular values are very different, varying from about 3810  to 1, 

which offers a large potential for truncating the system. However, as mentioned above, 

using only Dy  and Bx  as balancing outputs may lead to non-physical reconstructed states, 

and to avoid this problem one may use all the states as balancing outputs. In Figure 2 are 

shown the Hankel singular values for this case (case 2). 
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Figure 2. Hankel singular values with all the states as balancing outputs (case 2). 

 

The spread of the Hankel singular values is much less in this case, which is expected. 

However, the spread is still very large ( 1310  to 100), and thus a large potential for model 

reduction is offered. 

 

5. DISCUSSION OF THE RESULTS 

5.1. Choice of method for the calculation of the transformation matrix 

Compared to the empirical Gramians, the linearisation in the nominal point (“simple 

method”) has the advantage of simpler computations of the transformation matrix T . 

However, the use of the empirical Gramians was found to be better in most cases. First 
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consider the case with only the control outputs ( Dy  and Bx ) as balancing outputs. The 

“simple method” fails when reducing to 71 states or less (case 1), whereas the use of the 

empirical Gramians is more robust and fails with 14 states or less (case 7). 

Next, consider the results with all states as balancing outputs and/or logarithmic 

compositions. When reduced to 9 states we see from Table 1 that the empirical Gramians 

give a smaller error and a shorter CPU time for the simulation (compare cases 2-6 with 

cases 8-12). The recommendation is therefore to use the empirical Gramians for the 

calculation of the transformation matrix T  (recommendation 1). 

 

5.2. Choice of outputs for balancing 

The data in Table 1 show that including all the states as balancing outputs makes the model 

reduction more robust. Truncations that are not possible with only Dy  and Bx  as outputs 

(case 1, for example), are feasible with all the states included in the output vector (case 2). 

On the other hand, the critical states (the control outputs Dy  and Bx ) may loose precision 

(compare cases 10 and 11). The weighting factors for Dy  and Bx  can be tuned to give 

smaller relative errors in Dy  and Bx ; for example, a factor 100 is helpful when the 

empirical  Gramians  are  used  (cases  9  and  12).  If  the  “simple  method”  is  adopted,  then  a  

more careful tuning of the weighting factors must be made to improve the responses of the 

reduced models. For example, if we change in case 3 the weighting factor for Dy  from 100 

to 10, then the sum of the relative errors is reduced from 37.1% to 17.5%. The tuning of 
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the weighting factors can be made more systematic by an optimisation procedure (not 

considered in this paper). 

The computation time appears relatively independent on the choice of the balancing 

outputs. 

In conclusion, the recommendation is to include all the states in the balancing outputs 

(recommendation 2).  This  may  sacrifice  the  precision  in  some  cases,  but  will  give  more  

robustness to the model reduction, which is a key requirement. 

 

5.3. Use of static state transformation 

Reducing the nonlinearities of the model with a static state transformation has generally a 

beneficial effect on the balanced truncation method, since truncations that are not feasible 

(cases 1 and 7) become feasible with logarithmic compositions (cases 4 and 10). Even 

though there is not necessarily a gain in precision, the procedure is more robust with the 

logarithmic compositions. 

Since robustness is very important, our recommendation (recommendation 3) is therefore 

to minimise the nonlinearities of the model by use of a static state transformation (when it 

is possible). 
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5.4. Truncation limits 

In  Table  1,  all  results  are  for  truncated  models  with  9  states  out  of  82.  In  Table  2  it  is  

shown the truncation limit for some cases which performed well with 9 states. The 

truncation limit is the fewest number of states that gives a solution that converges, and 

seems to vary from 5 (case 9) to 3 (cases 10 and 12).  

Table 2. Truncation limits. 

CASE Method for 
obtaining T 

Outputs for 
balancing 

Output 
transfor. 

number 
of states 

Relative error [%] 
CPU 
time 
[ms] yD xB sum 

case 9 empirical 
Gramians 

all states, 
weighted  

yD and xB 

none 5 23.75 8.91 32.66 32 

case 10 empirical 
Gramians yD and xB log comp. 

4 0.53 12.39 12.92 31 

3 11.69 41.82 53.51 24 

case 12 empirical 
Gramians 

all states, 
weighted  

yD and xB 

log comp. 

4 1.64 13.02 14.66 36 

3 11.67 41.81 53.48 28 

 

When logarithmic transformation is applied to the compositions (cases 10 and 12), it is 

found that distillation model with only 4 states still give good accuracy. For case 9, the 

integration with only 4 states fails; therefore for this case the truncation limit is 5 states. 

Dynamic simulations are shown in Figure 3. 
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Figure 3. Simulation of case 9 with 5 states and case 10 and 12 with 4 states (the latter two have very similar 

responses). 

 

Actually, for cases 10 and 12, models with only 3 states can be simulated (Figure 4), but 

the precision is questionable, and in particular the initial part of the response is poor. Thus, 

we recommend to use 4 states for cases 10 and 12, in order to keep the dynamics closer to 

those of the full model. 
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Figure 4. Cases 10 and 12 with only 3 states (very similar responses). 

 

5.5. Remarks about the computation time 

Comparing the reduced models with the full model, the full model has a higher 

computation time than the truncated (reduced) models, and the difference is typically a 

factor 5. About the computation times, some additional words can be said. A full 

distillation model has a well-defined block-diagonal structure 40-44. On the other hand, 

whereas balancing and truncating reduces the number of dynamic states, it spoils some of 

the block-diagonal structure. As consequence, the computation time may actually increase 

in some cases 45-46, and the model size is so not necessary related to the CPU time. For 

example, case 9 with 9 states (24 ms) is faster than with 5 states (32 ms). 
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6. CONCLUSIONS 

The balanced truncation method was originally developed for linear systems. When 

applied to nonlinear systems, based on the distillation case study, we have the following 

recommendations: 

 Recommendation 1: When calculating the balancing transformation matrix T , use 

empirical Gramians and not the “simple method” with linearisation in the nominal 

points. 

 Recommendation 2: Include all the states in the output vector to avoid non-physical 

values for reconstructed states used, for example, in thermodynamic calculations.. 

Weighting factors may be used to give more emphasis to particular states. 

 Recommendation 3: To minimise nonlinearities a static state transformation should 

be used when appropriate. For the distillation model a logarithmic transformation 

on the compositions is recommended, in particular, to improve the robustness.  

 

7. APPENDIX 

The methodology suggested by Hahn and reported in equation (12) guarantees that 

0 0( ) ( )t tx x  for a generic nonlinear model, even without deviation variables. 

Hahn’s and Edgar’s contribution 13 was originally developed to avoid the inverse response 

in the truncated models. The inverse response occurs because the system’s behaviour at the 

start of the simulation is mainly influenced by the change of the system due to truncation 

method itself, and not by a change in the inputs. For nonlinear systems the steady-state 
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values are usually different from zero and neglecting the steady-state values of these terms 

may result in inverse response.  

Alternatively to equation (12), one can adopt a vector of shifting addend recx  able  to  

nullify the mismatch at the starting point of the reduced model. What one can do is to 

calculate recx  at the starting point of the implementation of the truncation method, in 

order to correct the reconstructed states, and use it all along the simulation with the 

reduced-order model. 

Equation (39) summarises the approach. 

 

 0 0

( ) ( ), ( )

( ) ( ), ( )
( ) ( )

( ) ( )
ˆ( ) , ( ) ,

I l

rec r I

r I rec
n n

I

t t t

t t t
t t

t t

t t n n

z Tf x u

y g x u
x x T z

x T z x

z xR R

  (39)

  

This alternative approach is equivalent to Hahn’s suggestions reported in equation (12), 

since reconstructing the states as  

 

 
1

0

( )
( )

( )
I

II

t
t

t
z

x T
z   (40) 
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is analytically the same as  

 

 ( ) ( )r I rect tx T z x   (41) 

 

being Iz  the balanced states important for the input-output behaviour, while IIz  the 

truncated ones. 

Using Hahn’s nomenclature, P I 0  is the projection matrix which has the rank of the 

reduced system, and the matrices lT  and rT  can be defined as follow: 

 

 lT PT    (42) 

 

 
1 T

rT T P    (43) 

 

The proof of the equivalence between equations (40) and (41) is here described: 

 

 
1

0

( )
( )

( )
I

r I rec
II

t
t

t
z

T z x T
z    (44) 
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Substituting equation (43) we obtain: 

 

 
1 1

0

( )
( )

( )
IT

I rec
II

t
t

t
z

T P z x T
z   (45) 

 

From equation (39), the definition of recx  is substituted into equation (45): 

 

 
1 1 1

0 0
0

( )
( ) ( ) ( )

( )
IT T

I I
II

t
t t t

t
z

T P z x T P z T
z   (46) 

 

With  

 

 
01

0
0

( )
( )

( )
I

II

t
t

t
z

x T
z   (47) 

 

equation (46) becomes: 

 

 
01 1 1 1
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Equation (48) finally reduces into an identity, since simplifications lead to: 

 

 

0
0

0 0

0
0

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

0

I IT T
I I

II II

I IT T
I I

t t
t t

t t

t t
t t

z z
P z P z

z z

z z
P z P z

  (49) 

 

Which is what was wanted to be demonstrated. 

 

8. ACKNOWLEDGMENTS 

StatoilHydro is acknowledged for funding. We also thank Andreas Linhart for helpful 

discussions. 

 

9. NOMENCLATURE AND LIST OF SYMBOLS 

x  integration states, or concentrations 

t time 

y  outputs 
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u  inputs 

CW  controllability Gramian 

OW  observability Gramian 

T  transformation matrix 

P  projection matrix 

z  balanced integration states 

Iz  balanced integration states important for the input-output relation 

IIz  balanced integration states not important for the input-output relation 

x  reconstructed states 

y  outputs of the truncated model 

X logarithmic compositions 

L down-going liquid stream 

V up-going vapour stream 

M mass 
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