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ABSTRACT: The balanced truncation method for reducing the size of a model was originally developed for linear systems. When
extended to nonlinear systems, some considerationsmust be faced. First of all, the calculation of the balancing transformationmatrix is not
unique. This may results in nonphysical values for the reconstructed states, which may lead to failure, for example, in thermodynamic
routines. To reduce this problem, it is recommended to include all the states in the balancing outputs. To further reduce the effect of
nonlinearties in the original model, it is recommended to use a linearizing static transformation of the states, if available. In this paper,
distillation column models are used as a case study, and, in this case, a logarithmic transformation of the compositions is beneficial.

1. INTRODUCTION

As discussed in the literature, model simplification and reduction
are important areas in process system engineering and control
theory.1�3 Simplified and reduced models are used both to gain
insight into theprocess behavior and to ease the computational efforts
of simulation and analysis.4 For distillation columns, several model
reduction and simplification methods have been developed.3,5�11 In
this paper, the balanced truncation method is considered.

Balanced truncation is a popular model reduction technique
that was introduced in the early 1980s,12 and it has also been
applied to nonlinear distillation column models.13 The method
consists of two steps:
(1) Application of a coordinate change (a variable trans-

formation), so that each new state is equally controllable
and observable (balanced system);

(2) Reduction of the model by truncating the new states that
show the weakest input�output dependency.

Alternatively, balanced residualization can be used in step 2;
however, in this case, the dynamic equations corresponding to
the new states with relatively weak input�output behavior are
transformed to algebraic equations. This reduces the number of
dynamic states, but it does not reduce the sum of the number of
the dynamic and algebraic states. This may not give any
computational simplification for nonlinear systems, so balanced
residualisation is not considered in this paper.
1.1. Balanced Truncation of Linear Models. Let us first

analyze a linear model (for the sake of simplicity, a stable linear
system with constant coefficients) given in terms of deviation
variables from a nominal steady state:

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ
xðtÞ ∈ Rn, uðtÞ ∈ R l, yðtÞ ∈ Rm

ð1Þ

The associated controllability and observability Gramians WC

and WO are found by solving the Lyapunov’s equations:

AWC þ WCAT þ BBT ¼ 0
ATWO þ WOA þ CTC ¼ 0

ð2Þ

A balanced form of the system in eq 1 is obtained through a
transformation matrix T (see eq 3), such that the resulting
Gramians of the transformed system WC and WO are equal,
and on the simple form given in eq 4:

_zðtÞ ¼ TAT�1zðtÞ þ TBuðtÞ
yðtÞ ¼ CT�1zðtÞ þ DuðtÞ
zðtÞ ¼ TxðtÞ, zðtÞ ∈ Rn, T ∈ Rn�n

ð3Þ

W̅C ¼ W̅O ¼ Σ ¼

σ1 0 0 3 3 3 0
0 σ2 0 3 3 3 0
0 0 σ3 3 3 3 0
l l l 3 3 3 l
0 0 0 3 3 3 σn

2
6666664

3
7777775

W̅C ¼ TWCTT

W̅O ¼ ðT�1ÞTWOT�1

ð4Þ

Here, σi represents Hankel singular values, ordered according to

σ1 > σ2 > σ3 > 3 3 3 > σn g 0 ð5Þ

The input�output behavior of eq 3 is identical to the input�
output behavior of eq 1.
Let

zðtÞ ¼ zIðtÞ
zIIðtÞ

" #
ð6Þ

Then, one approach to model reduction is balanced truncation,
where the states zII(t) that correspond to small Hankel singular
values are deleted.
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Considering a case with n states and with σ1 > 3 3 3 > σn̂ .
σn̂+1 > σn, one can write the matrices Tl and Tr as nonsquare
submatrices of T and T�1, respectively, as

Truncation of the system in eq 3 gives

_zIðtÞ ¼ TlATrzIðtÞ þ TlBuðtÞ
~yðtÞ ¼ CTrzIðtÞ þ DuðtÞ
zIðtÞ ∈ R n̂, ~xðtÞ ¼ TrzIðtÞ ∈ Rn, n̂ < n

ð9Þ

where ~y(t) is the vector of the outputs of the reduced-order
model and ~x(t) are the reconstructed states.
This reduction method results in a good approximation of the

original system over the entire frequency range.13 One disadvan-
tage of this approach is that it does not preserve the steady-state
behavior of the original system and therefore will result in
offset.14 The method guarantees preserved stability and comes
with an a priori error bound.13�21

1.2. Balanced Truncation of Nonlinear Models. When
extending the balanced truncation method to nonlinear systems,
some considerations must be made.13,18,22�30

Similar to eq 1, a nonlinear system can be written in the form of
eq 10:

_xðtÞ ¼ fðxðtÞ, uðtÞÞ
yðtÞ ¼ gðxðtÞ, uðtÞÞ
xðtÞ ∈ Rn, uðtÞ ∈ R l, yðtÞ ∈ Rm

ð10Þ

Using the linear approximation to obtain the transformation
matricesTl and Tr (see eqs 3�8), the balanced truncated form of
eq 10 becomes

_zIðtÞ ¼ Tlfð~xðtÞ, uðtÞÞ
~yðtÞ ¼ gð~xðtÞ, uðtÞÞ
~xðtÞ ¼ TrzIðtÞ, zIðtÞ ∈ R n̂, ~xðtÞ ∈ Rn, n̂ < n

ð11Þ

where ~x(t) = TrzI(t) are the reconstructed states used when
evaluating the functions f and g.
If the nonlinear model in eq 10 is written in deviation variables,

the elimination of the states zII(t) of the balanced system will still
preserve the matching of the full and the reduced model at the
starting steady-state point, as in the linear case.
On the other hand, one may sometimes choose to not write

the nonlinear model in deviation variables. This case is studied by
Hahn and Edgar13 and to match the initial steady state, the
balanced truncated approximation can be written (even without
deviation variables) as

_zIðtÞ ¼ Tlfð~xðtÞ, uðtÞÞ
zIIðtÞ ¼ zIIðt0Þ
~yðtÞ ¼ gð~xðtÞ, uðtÞÞ

zðtÞ ¼ zIðtÞ
zIIðtÞ

" #
, zðtÞ ∈ Rn,

zIðtÞ ∈ R n̂, zIIðtÞ ∈ Rn � n̂, n̂ < n

~xðtÞ ¼ T�1zðtÞ ð12Þ

For more details, see the Appendix.
1.3. The Issue of the Choice of Outputs for Balancing

(Reconstruction of the States). A feature of the balanced
truncation method, both for linear and nonlinear models, is that
the method focuses on the behavior between the inputs u and the
outputs y. The dynamic behavior of the states x(t) may be not
accurately described and, in some cases, can assume values
completely different from the full model’s behavior. This hap-
pens mainly because of the nonunique (and, therefore, nonexact)
reconstruction ~x(t) of the original states.
For a numerical example, let use the linear model quoted by

Hahn and Edgar,13 where the reactions AfBfC takes place in
a continuously stirred-tank reactor (CSTR). The system has one
input, three states, and one output:

_xðtÞ ¼
_x1ðtÞ
_x2ðtÞ
_x3ðtÞ

2
664

3
775 ¼

�2:0 0:0 0:0
1:0 �1:1 0:0
0:0 0:1 �1:0

2
664

3
775

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
664

3
775 þ

2:0
0:0
0:0

2
664

3
775uðtÞ

yðtÞ ¼ ½ 0 0 1 �
x1ðtÞ
x2ðtÞ
x3ðtÞ

2
664

3
775 ð13Þ

The original states x(t) represent the concentration of the three
species, in deviation variables. The inlet concentration of A (x1)
can be manipulated (u = x1) and the concentration of C (x3) at
the outlet can be measured (y = x3).
This simple system is stable, observable, and controllable. If

just the state x3 is considered as the output for balancing (which
is optimal, in terms of input�output behavior), the transforma-
tion balancing the linear system that is described by eq 13 is as
follows:

T ¼
�0:07729 �0:1845 �2:530
0:08866 0:08595 �2:776
0:04344 �0:1528 1:343

2
664

3
775 ð14Þ
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and the resulting balanced Gramians are

W̅C ¼ W̅O ¼ Σ

¼
0:05939 0:0 0:0
0:0 0:01525 0:0
0:0 0:0 0:001316

2
664

3
775 ð15Þ

It can be seen that the third balanced state of the balanced system
contributes much less to the input�output behavior than the
other two, because its Hankel singular value is more than 1 order
of magnitude smaller than the other ones. Eliminating this state,
the truncated transformation matrices become

Tl ¼
�0:07729 �0:1845 �2:530
0:08866 0:08595 �2:776

" #
;

Tr ¼
�2:7615 5:6741
�2:1436 0:0546
�0:1546 �0:1773

2
664

3
775 ð16Þ

Tl and Tr are the topmost rows and leftmost columns of T and
T�1, respectively, as in eqs 7 and 8.
Therefore, the truncated balanced system is given as

_zIðtÞ ¼ _z1ðtÞ
_z2ðtÞ

" #
¼ �0:2012 �0:621

0:621 �1:031

" #
z1ðtÞ
z2ðtÞ

" #
þ �0:1546

0:1773

" #
uðtÞ

~yðtÞ ¼ ½�0:1546 0:1773 �
z1ðtÞ
z2ðtÞ

" #
ð17Þ

As predicted by theory, the truncated system preserves the
input�output behavior of the full model well. However, the
reconstruction of the states x can be poor for t > t0. Just as an
example, assume that, at a certain time t*, the actual concentra-
tions (in deviation variables) are

xðt�Þ ¼
x1ðt�Þ
x2ðt�Þ
x3ðt�Þ

2
664

3
775 ¼

0:05
�0:25
0:2

2
664

3
775 ð18Þ

Transforming the vector in eq 18 to the corresponding reduced-
order z-coordinates gives

zIðt�Þ ¼ z1ðt�Þ
z2ðt�Þ

" #
¼ Tl

x1ðt�Þ
x2ðt�Þ
x3ðt�Þ

2
664

3
775 ¼ 0:4637

�0:5722

" #

ð19Þ
One loses some information about the states, and reconstructing
the state vector from the truncated model gives

~xðt�Þ ¼
~x1ðt�Þ
~x2ðt�Þ
~x3ðt�Þ

2
664

3
775 ¼ Tr

z1ðt�Þ
z2ðt�Þ

" #
¼

�1:9666
0:9631
0:1732

2
664

3
775

ð20Þ

The vector of the relative errors is:

εrel ¼
�����xiðt

�Þ � ~xiðt�Þ
xiðt�Þ

����� ¼
4033%
485%
13%

2
664

3
775 ð21Þ

As expected, the third state is the closest to the original value
(13% error), because it was chosen as the output y. However, the
reconstruction of the two other states is completely wrong.
This problem does not affect the success of the balanced

truncated method in linear systems, because the reconstructed
states are not needed for the computations. On the other hand,
in nonlinear systems, the error, for example, resulting in a
negative concentration may have catastrophic effects, because
the reconstructed states ~x(t) are used when evaluating the
functions f and g.
1.4. Choice of the Balancing Transformation Matrix for

Nonlinear Systems. For a nonlinear system, how one obtains
the transformation matrix T, its truncation, and its inverse is not
unique.
The simplest approach is to linearize the model at a single

nominal steady state (in this paper, this is called the “simple
method”) and to calculate the matrix T from the linearized
model. The advantages of using a single point are the simplicity of
the procedure and the fact that the linearizedmodel is guaranteed
to be consistent in the linearization point. As an alternative,
Hahn, Edgar, and co-workers13,22�24 suggest to calculate the
balancing transformation matrix T through empirical Gramians.
Here, state data are collected while impulse input signals of
relatively large magnitude are injected in different directions.
Matlab routines to calculate the empirical Gramians are available
on the Internet.31

2. IMPROVING THE BALANCED TRUNCATION OF
NONLINEAR SYSTEMS

In this section, we attempt to provide solutions to some of the
problems in extending the balanced truncation method to non-
linear systems.
2.1. Choice of Outputs for Balancing (Reconstruction of

the States). For nonlinear systems, large errors in the state
reconstruction may be fatal for the simulation of the reduced-
order models, because they may result, for example, in negative
compositions, which result in failure in some routines (such as
thermodynamic packages). To reduce this problem, and thus to
give more robustness to the truncation, we propose to augment
the vector of outputs y with all (or, generally, a weighted set of
all) the integration states x. Since the balanced truncation
method is developed to maintain the input�output behavior,
this will guarantee that the reconstructed states ~x are not too
different from x.
For example, consider again the linear CSTR model described

in eq 13.We use all the states as outputs (y = [x1 x2 x3]
T), and not

just x3 as described in section 1.3. The transformation balancing
the linear system is

T ¼
0:6227 0:5675 0:0473

�0:4663 1:0114 0:2046
0:0897 �0:4635 5:5819

2
664

3
775 ð22Þ
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and the resulting balanced Gramians are

W̅C ¼ W̅O ¼ Σ ¼
0:7119 0:0 0:0
0:0 0:2191 0:0
0:0 0:0 0:0157

2
664

3
775 ð23Þ

Again, the truncation of the last balanced state is justifiable from
eq 23, and, from eqs 7 and 8, the matrices Tl and Tr are given as

Tl ¼
0:6227 0:5675 0:0473

�0:4663 1:0114 0:2046

" #
;

Tr ¼
1:1326 �0:6294
0:5172 0:6850
0:0247 0:0670

2
664

3
775 ð24Þ

Once again, assume that, at a certain time instant t*, the actual
concentrations (in deviation variables) are similar to those
described by eq 18. From eq 24, the corresponding reduced
states are

zIðt�Þ ¼ z1ðt�Þ
z2ðt�Þ

" #
¼ Tl

x1ðt�Þ
x2ðt�Þ
x3ðt�Þ

2
664

3
775

¼ Tl

0:05
�0:25
0:2

2
664

3
775 ¼ �0:1013

�0:2352

" #
ð25Þ

Reconstructing from eq 26, the original states gives

~xðt�Þ ¼
~x1ðt�Þ
~x2ðt�Þ
~x3ðt�Þ

2
664

3
775 ¼ Tr

z1ðt�Þ
z2ðt�Þ

" #
¼

0:0333
�0:2135
�0:0183

2
664

3
775

ð26Þ
The relative error between the original and reconstructed

states is

εrel ¼
�����xiðt

�Þ � ~xiðt�Þ
xiðt�Þ

����� ¼
33%
15%
109%

2
664

3
775 ð27Þ

The largest errors are much smaller than those in eq 21.
However, the third reconstructed state ~x3 now has a relative
larger deviation. To improve on this, one may introduce a
weighting matrix, y = Cx, where

C ¼
ω1 0 3 3 3 0
0 ω2 3 3 3 0
l l 3 3 3 l
0 0 3 3 3 ωn

2
66664

3
77775 ð28Þ

The ω parameters are tuning factors, which give more or less
weight to a state.
2.2. Reducing Nonlinearities. To improve the robustness of

the balanced truncation of nonlinear systems, one should reduce
the nonlinearities of the model using static variable transforma-
tions in order to change the state space before applying themodel

reduction. This is often feasible because the dominant nonlinea-
rities are often at steady state.
Below, this is illustrated on the distillation case study, where

the logarithmic transformation has been used to linearize the
behavior.

3. THE CASE STUDY

To study the extension of balanced truncation to nonlinear
systems, we analyze a simple nonlinear distillationmodel, namely
Skogestad’s “Column A”.32 A simpleMatlab code of Column A is
available on the Internet.33 The main assumptions for the model
are given as follows:
• binary mixture;
• constant pressure;
• constant relative volatility;
• equilibrium on all stages;
• total condenser;
• constant molar flows;
• no vapor holdup; and
• linearized liquid dynamics.
These assumptions and simplifications may seem restrictive,

but they capture the main effects important for dynamics and
control.

The column has 40 theoretical stages plus a total condenser
and separates a binary mixture with relative volatility of R = 1.5
into products with 99% purity.

The dynamic total and light component material balances are,
for a generic stage i (counting from the bottom upward)

(here, xi is the mole fraction of light component in the liquid
phase and yi the mole fraction of light component in the gas
phase) where, from the vapor�liquid equilibrium,

yi ¼ Rxi
1 þ ðR� 1Þxi ð31Þ

and, with the assumption of linearized liquid flow dynamics,

LiðtÞ ¼ L0i þ kiðMiðtÞ �M0
i Þ ð32Þ

The vapor flows are assumed constant up the column (Vi=Vi+1).
For the reboiler, condenser, and feed tray, the balances are

slightly different, but still show the same characteristics as eqs 29
and 30. The total number of dynamic states of this ordinary
differential equations (ODE) model is 82.

The column levels are stabilized using the LV control
structure34�36 with proportional controllers for the reboiler
and condenser levels.

Writing the model as in eq 10 and in terms of input�output
representation, the states x are the mass holdups and the liquid
compositions of each distillation stage. The two process control
outputs of the systems are the top vapor and bottom liquid
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compositions, yD = x41 and xB = x1. The vector of independent
variables u is composed of reflux stream L, boilup V, feed rate F,
and feed composition zF (the last two are actually disturbances).

4. SIMULATION RESULTS

In this section, we report the results obtained on “Column A”
simulated in open-loop mode with level control included and
with boilup V and reflux L as inputs.

The model is not written in deviation variables; therefore, to
avoid the offset at time t0 between the full model and the
balanced truncated models, Hahn’s and Edgar’s suggestions
reported in eq 12 are used.

In the simulations, we are mainly interested in the dynamic
response of the top and bottom compositions (yD and xB). The
low-order balanced truncated model is in the form described in
eq 12. The 82 reconstructed states ~x = [~x1, ..., ~x41, ~M1, ..., ~M41]

T

are used to evaluate the functions in eqs 29 and 30. The
main nonlinearities come from the vapor�liquid equilibrium
(see eq 31).

At time t0 = 100 min, a step input change (10% disturbance,
relative to the nominal value) is applied in the feed rate, with all
the other input variables kept constant (open-loop operation).
The CPU times to simulate the reducedmodels between 100 and
1300 min are recorded. The computer used is a laptop Intel Core
2 Duo CPU (2.00 GHz, 2.00 GB of RAM).
4.1. Cases Studied. The distillation case study is used to

evaluate the following options that can be chosen when applying
balanced truncation to nonlinear systems.
(1) Choice of method for the calculation of the transforma-

tion matrix T:
(a) “Simple method” (linearization in the nominal point);
(b) Empirical Gramians.31

(2) Choice of outputs for balancing:
(a) Only the control outputs (yD and xD);
(b) All the states x, equally weighted;
(c) All the states x, with yD and xB weighted 100 times

more than the other states (see eq 28).

(3) Use of static state transformations:
(a) No transformations;
(b) Logarithmic transformation for all liquid composi-

tions (half of the state vector), to make the response
of distillation models more linear.32,37,38 On stage i,

Xi ¼ ln
xL, i
xH, i

 !
ð33Þ

In eq 33, the subscripts L and H denote the light and
heavy components, respectively. This transformation
linearizes the steady-state and dynamic responses of
the column.39 Since we are dealing with a binary
mixture, eq 33 simplifies to

Xi ¼ ln
xi

1� xi

� �
ð34Þ

where xi is the liquid concentration (mole fraction) of
the light component. The backward transformation is

xi ¼ eXi

1 þ eXi
ð35Þ

The logarithmic compositions guarantee that the
actual compositions (mole fractions) are never nega-
tive. In this way, the physical meaning of the variables
is preserved.
The transformation back from and to logarithmic
compositions must be made each time we evaluate
the functions fMi

and fxi , and this will increase the
computation time.

4 Choice of number of states in the truncated system.
4.2. Results.The main results are summarized in Table 1. The

methods of “simple” transformation based on linearizing in a
single point is compared with the “empirical Gramians”, based on
the average Gramians found over several operating points.13 For
each of these, we compare transformations using only the outputs,
all the states (unweighted) and all the states with the outputs

Table 1. Summary of Results for Reduced Distillation Models with Nine States

Results for Nine States

Relative Error in Responses [%]

case method for obtaining T outputs for balancing output transformation yD xB sum CPU time [ms]

full model 183 (82 states)

1 simple yD and xB none fails with less than 72 states

2 simple all states, unweighted none 0.71 19.85 20.56 46

3 simple all states, weighted yD and xB none 18.15 18.98 37.12 46

4 simple yD and xB log compositions 12.38 19.37 31.75 76

5 simple all states, unweighted log compositions 9.61 12.86 22.47 94

6 simple all states, weighted yD and xB log compositions 12.49 19.46 31.95 77

7 empirical Gramians yD and xB none fails with less than 15 states

8 empirical Gramians all states, unweighted none 8.70 1.34 10.04 28

9 empirical Gramians all states, weighted yD and xB none 0.29 2.20 2.49 24

10 empirical Gramians yD and xB log compositions 2.62 1.05 3.67 37

11 empirical Gramians all states, unweighted log compositions 7.02 8.10 15.11 37

12 empirical Gramians all states, weighted yD and xB log compositions 0.69 0.40 1.09 33
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weighted extra. In addition, we consider with and without using a
nonlinear output transformation (“log compositions”) given a
total of 12 cases. In order to ease the discussion, the table is limited
to one set of truncated (reduced-order) models, namely, those
with 9 states out of 82.
Here, the different cases in Table 1 are compared and

evaluated in terms of CPU time, robustness, and precision to
reproduce the full model. The parameter to evaluate the preci-
sion is εrel

sum. The relative errors are defined as

εyDrel ¼
�����y

red
D ðt∞Þ � yfullD ðt∞Þ
yfullD ðt∞Þ � yfullD ðt0Þ

����� ð36Þ

εxBrel ¼
�����x

red
B ðt∞Þ � xfullB ðt∞Þ
xfullB ðt∞Þ � xfullB ðt0Þ

����� ð37Þ

εsumrel ¼ εyDrel þ εxBrel ð38Þ
Before discussing the results, let us briefly consider the

distribution of the Hankel singular values.
Figure 1 shows the Hankel singular values of the system

balanced using the nominal linear model (“simple method”),
and considering only yD and xB as balancing outputs (case 1).
The Hankel singular values are very different, varying from
∼10�38 to 1, which offers a large potential for truncating the
system. However, as mentioned above, using only yD and xB as
balancing outputs may lead to nonphysical reconstructed states,
and to avoid this problem, one may use all the states as balancing
outputs. Figure 2 shows the Hankel singular values for this case
(case 2).
The spread of the Hankel singular values is much less in this

case, which is expected. However, the spread is still very large
(10�13 to 102), and, thus, a large potential for model reduction
is offered.

5. DISCUSSION OF THE RESULTS

5.1. Choice of Method for the Calculation of the Trans-
formation Matrix. Compared to the empirical Gramians, the
linearization in the nominal point (“simple method”) has the
advantage of simpler computations of the transformation matrix
T. However, the use of the empirical Gramians was found to be

better in most cases. First, consider the case with only the control
outputs (yD and yB) as balancing outputs. The “simple method”
fails when reducing to 71 states or less (case 1), whereas the use
of the empirical Gramians is more robust and fails with 14 states
or less (case 7).
Next, consider the results with all states as balancing outputs

and/or logarithmic compositions. When reduced to 9 states,
Table 1 shows that the empirical Gramians give a smaller error
and a shorter CPU time for the simulation (compare cases 2�6
with cases 8�12). Therefore, the recommendation is to use the
empirical Gramians for the calculation of the transformation
matrix T (recommendation 1).
5.2. Choice of Outputs for Balancing. The data in Table 1

show that including all of the states as balancing outputs makes
the model reduction more robust. Truncations that are not
possible with only yD and xB as outputs (case 1, for example),
are feasible with all the states included in the output vector (case
2). This happens as the physical meaning of all the set of variables
is more likely preserved with all states as outputs for balancing.
On the other hand, the critical states (the control outputs yD

and xB) may lose precision (compare cases 10 and 11). The
weighting factors for yD and xB can be tuned to give smaller
relative errors in yD and xB; for example, a factor 100 is helpful
when the empirical Gramians are used (cases 9 and 12). If the
“simple method” is adopted, then a more careful tuning of
the weighting factors must be made to improve the responses
of the reduced models. For example, if we change, in case 3, the
weighting factor for yD from 100 to 10, then the sum of the
relative errors is reduced from 37.1% to 17.5%. The tuning of
the weighting factors can be made more systematic by an
optimization procedure (not considered in this paper).
The computation time appears relatively independent of the

choice of the balancing outputs.
In conclusion, the recommendation is to include all the states

in the balancing outputs (recommendation 2). This may sacrifice
the precision in some cases, but it will givemore robustness to the
model reduction.
Robustness is a well-known concern of many researchers and

of many in many research fields.47�49 The concern of robustness
is also important for model reduction and simplification. This is
the main reason why it is preferred to lose a small amount of
precision to guarantee robustness, even for the balanced trunca-
tion method.

Figure 1. Hankel singular values with only yD and xB as balancing
outputs (case 1).

Figure 2. Hankel singular values with all of the states as balancing
outputs (case 2).
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5.3. Use of Static State Transformation. Reducing the
nonlinearities of the model with a static state transformation
has generally a beneficial effect on the balanced truncation
method, since truncations that are not feasible (cases 1 and 7)
become feasible with logarithmic compositions (cases 4 and 10).
Even though there is not necessarily a gain in precision, the
procedure is more robust with the logarithmic compositions.
Since robustness is very important, our recommendation

(recommendation 3) therefore is to minimize the nonlinearities
of the model using a static state transformation (when it is
possible).
5.4. Truncation Limits. In Table 1, all results are for truncated

models with 9 states out of 82. In Table 2, it is shown the
truncation limit for some cases which performed well with 9
states. The truncation limit is the fewest number of states that
gives a solution that converges, and seems to vary from 5 (case 9)
to 3 (cases 10 and 12).
When logarithmic transformation is applied to the composi-

tions (cases 10 and 12), it is found that distillation model with
only 4 states still give good accuracy. For case 9, the integration
with only 4 states fails; therefore, for this case, the truncation limit
is five states. Dynamic simulations are shown in Figure 3.
Actually, for cases 10 and 12, models with only three states can

be simulated (Figure 4), but the precision is questionable, and in
particular the initial part of the response is poor. Thus, we
recommend to use 4 states for cases 10 and 12, in order to keep
the dynamics closer to those of the full model.
5.5. Remarks about the Computation Time.Comparing the

reduced models with the full model, the full model has a higher
computation time than the truncated (reduced) models, and the
difference is typically a factor of 5. With regard to the computa-
tion times, some additional words can be said. A full distillation

model has a well-defined block-diagonal structure.40�44 On the
other hand, whereas balancing and truncating reduces the
number of dynamic states, it spoils some of the block-diagonal
structure. As a consequence, the computation time may actually
increase in some cases,45,46 and the model size, therefore, is not
necessarily related to the CPU time. For example, case 9 with
nine states (24 ms) is faster than with five states (32 ms).

6. CONCLUSIONS

The balanced truncation method was originally developed for
linear systems. When applied to nonlinear systems, based on the
distillation case study, we have the following recommendations:
• Recommendation 1: When calculating the balancing trans-

formation matrix T, use empirical Gramians and not the
“simple method” with linearization in the nominal points.

• Recommendation 2: Include all the states in the output
vector to avoid nonphysical values for reconstructed states
used, for example, in thermodynamic calculations. Weight-
ing factors may be used to give more emphasis to particular
states.

• Recommendation 3: To minimize nonlinearities a static state
transformation should be used when appropriate. For the
distillation model, a logarithmic transformation on the
compositions is recommended, in particular, to improve
the robustness.

’APPENDIX

The methodology suggested by Hahn and reported in eq 12
guarantees that ~x(t0) = x(t0) for a generic nonlinear model, even
without deviation variables.

Table 2. Truncation Limits

Relative Error [%]

case method for obtaining T outputs for balancing output transfor. number of states yD xB sum CPU time [ms]

9 empirical Gramians all states, weighted yD and xB none 5 23.75 8.91 32.66 32

10 empirical Gramians yD and xB log comp. 4 0.53 12.39 12.92 31

3 11.69 41.82 53.51 24

12 empirical Gramians all states, weighted yD and xB log comp. 4 1.64 13.02 14.66 36

3 11.67 41.81 53.48 28

Figure 3. Simulation of case 9 with five states and case 10 and 12 with
four states (the latter two have very similar responses).

Figure 4. Cases 10 and 12 with only three states (very similar
responses).
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Hahn’s and Edgar’s contribution13 was originally developed
to avoid the inverse response in the truncated models. The
inverse response occurs because the system’s behavior at the
start of the simulation is mainly influenced by the change of
the system due to the truncation method itself, and not by a
change in the inputs. For nonlinear systems, the steady-state
values are usually different from zero, and neglecting the
steady-state values of these terms may result in an inverse
response.

Alternatively to eq 12, one can adopt a vector of shifting
addend Δxrec to be able to nullify the mismatch at the starting
point of the reducedmodel. What one can do is to calculateΔxrec
at the starting point of the implementation of the truncation
method, to correct the reconstructed states, and use it through-
out the simulation with the reduced-order model.

Equation A1 summarizes the approach.

_zIðtÞ ¼ Tlfð~xðtÞ, uðtÞÞ
~yðtÞ ¼ gð~xðtÞ, uðtÞÞ
Δxrec ¼ xðt0Þ � TrzIðt0Þ
~xðtÞ ¼ TrzIðtÞ þ Δxrec
zIðtÞ ∈ R n̂, ~xðtÞ ∈ Rn, n̂ < n

ðA1Þ

This alternative approach is equivalent to Hahn’s suggestions
reported in eq 12, since reconstructing the states as

~xðtÞ ¼ T�1 zIðtÞ
zIIðt0Þ

" #
ðA2Þ

is analytically the same as

~xðtÞ ¼ TrzIðtÞ þ Δxrec ðA3Þ
where zI represents the balanced states important for the
input�output behavior, while zII represents the truncated ones.

Using Hahn’s nomenclature, P = [I 0] is the projection matrix
which has the rank of the reduced system, and thematricesTl and
Tr can be defined as follows:

Tl ¼ PT ðA4Þ

Tr ¼ T�1PT ðA5Þ
The proof of the equivalence between eqs A2 and A3 is

described here:

TrzIðtÞ þ Δxrec ¼ T�1 zIðtÞ
zIIðt0Þ

" #
ðA6Þ

Substituting eq A5, we obtain

T�1PTzIðtÞ þ Δxrec ¼ T�1 zIðtÞ
zIIðt0Þ

" #
ðA7Þ

From eq A1, the definition of Δxrec is substituted into eq A7:

T�1PTzIðtÞ þ xðt0Þ � T�1PTzIðt0Þ

¼ T�1 zIðtÞ
zIIðt0Þ

" #
ðA8Þ

with

xðt0Þ ¼ T�1 zIðt0Þ
zIIðt0Þ

" #
ðA9Þ

eq A8 becomes

T�1PTzIðtÞ þ T�1 zIðt0Þ
zIIðt0Þ

" #
� T�1PTzIðt0Þ ¼ T�1 zIðtÞ

zIIðt0Þ

" #

ðA10Þ
Equation A10 finally reduces into an identity, since simplifica-

tions lead to

PTzIðtÞ � PTzIðt0Þ ¼ zIðtÞ
zIIðt0Þ

" #
� zIðt0Þ

zIIðt0Þ

" #

PTzIðtÞ � PTzIðt0Þ ¼ zIðtÞ � zIðt0Þ
0

" # ðA11Þ

which is what was intended to be demonstrated.
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’NOMENCLATURE AND LIST OF SYMBOLS
x = integration states, or concentrations
t = time
y = outputs
u = inputs
WC = controllability Gramian
WO = observability Gramian
T = transformation matrix
P = projection matrix
z = balanced integration states
zI = balanced integration states important for the input-output

relation
zII = balanced integration states not important for the input-

output relation
~x = reconstructed states
~y = outputs of the truncated model
X = logarithmic compositions
L = down-going liquid stream
V = up-going vapor stream
M = mass
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