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ABSTRACT: Based on internal model control (IMC), we present a design method to take into account both input and output
disturbances. The proposed design provides generalized IMC filters that can be used to obtain good results in terms of output
sensitivity (favoring output disturbances), or in terms of input sensitivity (therefore placing the emphasis on load disturbances). If
both input and output disturbances are expected, the design offers the possibility of obtaining a balance that improves the overall
disturbance rejection response.

1. INTRODUCTION

The objective of a control system is to make the output y
behave in a desired way by manipulating the plant input u. There
are basically two different problems:1,2 the Servo problem, which
concerns the tracking of the reference signal r, and the Regulator
problem, which aims at rejecting the disturbances d entering the
control loop. In both cases, the controller K is designed to make
the control error (e = y � r) small.

This work exclusively addresses the Regulator problem. Note
that, if the resulting tracking performance was not suitable, this
could be fixed in a second step by introducing a reference
prefilter.2,3 More generally, the Servo and the Regulator problems
can be solved independently, using a two-degree-of-freedom
(2DOF) topology.1,4,5 In what follows, we will assume that
disturbances cannot be measured and can enter both at the input
and at the output of the plant P. Therefore, a feedforward strategy6,7

is not advantageous in the considered scenario, where the feed-
back controller completely determines the disturbance response.

To cope with the input/output Regulator problem, here, we
rely on the internal model control (IMC) paradigm.3 Historically,
the inherent shortcomings of the IMC method have resulted in
the search for new filters and/or alternative procedures: for
minimum-phase (MP) unstable plants, Campi et al.8 suggested a
filter that allows easy adjustment of the closed-loop bandwidth,
as well as robustness improvement. For stable plants, Horn et al.9

modified the conventional filter for enhanced input disturbance
attenuation. From a broader viewpoint, a simple IMC-based
procedure applicable to both stable and unstable plants and
aimed at input disturbances was presented by Lee et al.10 Some
years later, Dehghani et al.11 reported the difficulties with the
IMC procedure in an exhaustivemanner and, in order to undergo
them, devised a numerical design blending IMC andH ∞ ideas.
Although the latter design offers great versatility, it requires
judicious choices for some frequency weights and for the desired
closed-loop response, which may lead to design pitfalls, as noted
in ref 12. Along these lines, a simpler IMC-like H ∞ design
overcoming basic limitations of IMC has been reported by
Alc�antara et al.13

The analytical solution presented here can be seen as theH 2
counterpart of that described in ref 13. With respect to ref 13,
some assumptions have been removed: i.e., the plantmodel is not
restricted to be purely rational nor to contain at least one Right
Half-Plane (RHP) zero. In addition, plants with complex
poles have been included in the discussion. An interesting aspect
of the herefore-adopted H 2 approach is that it unifies the
previous designs,8�10 resulting into a more general structure
for the IMC filter. The distinguishing feature of the new filter is
that it allows one to balance the input/output regulatory
performance in a simple manner. This is a fundamental tradeoff,
disregarded in refs 8�10, that cannot be overcome using a 2DOF
control configuration or a related approach as done in the
literature.14�16

An outline for the rest of the article is given as follows. Section 2
states the problem formally and reviews basic material aboutH 2
optimization and IMC. The proposed design is introduced in
Section 3, and then it is illustrated by example in Section 4, to
obtain different balances of input/output disturbance attenua-
tion. Finally, Section 5 summarizes the main ideas and makes
some concluding remarks.

2. PROBLEM STATEMENT AND BACKGROUND
MATERIAL

Integrating (and close to integrating) processes are very
common in industry (e.g., level systems and pulp and paper
plants). For illustration purposes, let us consider a pure inte-
grator process controlled by a proportional�integral (PI) com-
pensator. The situation is depicted in Figure 1a. As it can be seen
in Figure 1b, a proportional controller (Kp = 5, Ki = 0) yields
excellent results when output disturbances are the main concern.
However, the corresponding response to load disturbances is not
satisfactory. In order to suppress the steady-state error due to
input disturbances, integral action is necessary. The response to
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the alternative settings Kp = 5, Ki = 6 confirms this point.
Figure 1b clearly shows that a fundamental tradeoff exists
between the input and output disturbances. Therefore, if both
types of disturbances are present, a tradeoff tuning methodology
would help improve the overall disturbance response. These
issues concerning input/output disturbances are the theme of
this article. To set the problem, we make use of single-input�
single-output (SISO) linear models of the form

y ¼ Pu þ Wd ð2:1Þ

for which the corresponding feedback setup is depicted in
Figure 2. In (2.1), W (which is not a physical component as P
orK) represents a frequency weight that will be designed tomake
it easy to balance the disturbance response at the input and

at the output of the plant. By also absorbing the input type
(e.g., step-like disturbances) into the weight W, we will assume
hereafter that d in Figure 2 is an impulse (i.e., d(s) = 1). To derive
the feedback controller K, we will examine the structure ofH 2-
optimal controllers. By using anH 2-optimal controller, here, we
understand one such that the integrated square error,

kek22 ¼
Z ∞

0
e2ðtÞ dt ð2:2Þ

is minimized for a particular input. Bearing in mind that
e = �SWd = �SW, where S is the sensitivity function (defined
as Sz 1/(1 + PK)), we can state problem (2.2) in the frequency
domain as

min
C

kek22 ¼ min
C

1
2π

Z ∞

�∞
jSðjωÞWðjωÞj2 dω ð2:3Þ

where C denotes the set of internally stabilizing controllers.
Internal stability is the requirement that all the closed-loop
transfer functions be stable, implying that unstable pole/zero
cancellation between the plant P and the controller K is not
allowed. It is well-known that the IMC parametrization of the
feedback controller,3

K ¼ Q
1� PQ

ð2:4Þ

allows one to write all the closed-loop relations affinely inQ (e.g.,
S = 1 � PQ, T = PQ). Then, in terms of Q, the following
fundamental result solves (2.3).
Theorem 2.1 (Morari and Zafiriou3). Let us factor both the

plant P and the weight W into an all-pass and a MP portion, so
that P = PaPm and W = WaWm. Use the parameters l and k to
denote the number of integrators and unstable poles of P,
respectively. Now, assume that the weight W contains l0 g l
integrators and the first 0e k0 e k unstable poles of P, and define
bP and bW as

bP ¼
Yk
i¼ 1

�s þ πi

s þ π̅i
and bW ¼

Yk0
i¼ 1

�s þ πi

s þ π̅i
ð2:5Þ

with π1, ..., πk being the unstable poles of P. Then, the H 2-
optimal (internally stabilizing) Q is given by

Q ¼ bPðPmbWWmÞ�1fðbPPaÞ�1bWWmg� ð2:6Þ
where the operator { 3 }* denotes that, after a partial fraction
expansion (PFE) of the operand, all terms involving the poles of
Pa

�1 are omitted.
Note that it is straightforward how to selectW for the extreme

cases at hand. For example, if only step output disturbances are
considered, the weight should be W = 1/s, whereas W = P/s for
the case of step disturbances entering at the input of the plant. A
more difficult problem is how to select W systematically for
balanced operation. In addition,W should be such that it allows
to adjust the robustness/performance tradeoff. The selection of
W will be fully addressed in Section 3. We end this section by
observing the following facts.
Remark 2.1. The optimal solution in (2.6) is only dependent

on the MP part of W. Consequently, W can be restricted to be
MP without a loss of generality (i.e., W = Wm).

Figure 1. Motivating example: (a) integrator process with PI controller
and (b) time responses to unity step disturbances at the output (t = 1)
and at the input (t = 5) of the plant.

Figure 2. Basic setup for the input/output Regulator problem.
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Remark 2.2. For MP (possibly unstable) plants (Pa = 1), the
optimal solution in (2.6) becomes Q = Pm

�1, independent ofW.

3. PROPOSED INPUT/OUTPUT REGULATOR DESIGN

This section first addresses the selection of a suitable weightW
for the problem at hand (Section 3.1). After selecting W, an
analytical solution for Q is given based on theH 2 minimization
criterion (see Section 3.2). Finally, in Section 3.3, we examine the
nominal performance, robust stability, and robust performance
properties of the derived controller.

3.1. Selection ofW. Let us take P = PaPm, as in Section 2, and
use dd to denote the generating polynomial of the disturbance
(i.e., dd = s for steps, dd = s

2 for ramps, etc.). For the sake of clarity,
it is temporarily assumed that Pa 6¼ 1 and that P does not have any
complex poles or zeros, nor any pole at the origin. We also
assume that P has slow/unstable poles at s = �1/τ1, ..., �1/τk.
Then, we make the following choice of the weight:

W ¼ ðλs þ 1Þn
dd

Yk
i¼ 1

γis þ 1
τis þ 1

ð3:1Þ

with

n ¼ max f1, δðddÞ þ δðPÞ � 1g ð3:2Þ

where δ(dd) and δ(P) denote the degree of dd and the relative
degree of P, respectively. For the common case of step dis-
turbances (dd = s), (3.2) simplifies to n =max{1, δ(P)}. Finally, λ
and γ1, ..., γk in (3.1) are tuning parameters verifying that

λ > 0, γi ∈ ½λ, jτij� ð3:3Þ

Here, we recall that the main objective of our design is to
consider disturbances entering both at the input and at the
output of the plant. In addition, the design must account for
model uncertainty. The rationale behind the selection of W in
(3.1) is explained below:
• In order to explain the role of λ and γi separately, let us

start considering that λ = 0. Then, we have that W =
(1/dd)Πi=1

k [(γis + 1)/(τis + 1)]. Now, bymaking γi = λ = 0,
i = 1, ..., k, the weight is W = (1/dd)Πi=1

k [1/(τis + 1)]. For
this choice of γi, the design will provide good results, in
terms of input disturbance attenuation, since we are
including the slow/unstables poles of P in W. In other
words, the disturbance passes through the conflicting poles
of the plant (note that fast stable poles do not impose a
tradeoff between input/output regulatory performance).

• At this point, we can improve the output disturbance
response by increasing the value of each γi. To see this, let
us consider that γi is set to the upper bound of the interval
described by (3.3) (i.e., we take γi = |τi|). It is then clear that
|W| = 1/|dd|, for which (2.3) optimizes the ISE for output
disturbances.

• So far, we have assumed that λ = 0. Let us suppose now that
each γi has been fixed to a particular value. As we increase
the value of λ, the minimization in (2.3) will penalize the
magnitude of S at higher frequencies, resulting in a slower
closed loop. Therefore, λ can be used to adjust the robust-
ness/performance tradeoff. Regarding n, the value in (3.2)
will ensure the properness of the final controller (this point
will be clarified later).

Remark 3.1. For simplicity, the γi parameters could be
determined from a single parameter γ ∈ [0,1], as indicated
below:

ðγ1 ,..., γkÞT ¼ ð1� γÞðλ ,..., λÞT þ γðjτ1j ,..., jτkjÞT
ð3:4Þ

3.2. Analytical Solution. The next step toward obtaining the
IMC controller is to use Theorem 2.1. BecauseW =Wm in (3.1)
contains the unstable poles of P, we have bP = bW, and (2.6)
simplifies to Q = (PmW)�1{Pa

�1W}*. This is a valid controller
when P is non-minimum phase (NMP), in the sense that it is
internally stabilizing and proper. However, recalling Remark 2.2,
for MP plants (i.e., Pa = 1) the solution isQ = Pm

�1, regardless of
the value of W. As a consequence, Q may be improper, and it
would be necessary to extend Q by cascading a filter, as in the
conventional IMC procedure. We want to avoid this approach
and obtain a proper solution directly from the specified weight
W. Toward this objective, we finally propose the following
solution:

Q ¼ ðPmWÞ�1fP�1
a Wgf ð3:5Þ

where { 3 }f acts like { 3 }*, but also removes the possibly
nonstrictly proper terms after the PFE. The { 3 }f operator gives
the same result as { 3 }* when the plant is NMP. When P is MP,
the actuation of { 3 }f can be understood in terms of { 3 }* as
follows:

That is to say, we consider a fictitious delay h, apply { 3 }*, and
then evaluate at h = 0. The following example illustrates how to
calculate (3.5).
Example 3.1. Let us consider the (possibly unstable) First

Order Plus Time Delay (FOPTD) model, P = Kg[e
�sh/(τs + 1)],

for which Pm = (Kg/(τs + 1) ,Pa = e
�sh. We assume that |τ|.h > 0

(k = 1). In addition, we assume step-like disturbances, i.e., dd = s,
and take n=1. By substitution into (3.1), we getW= (λs+1)(γs+1)/
[s(τs + 1)], with λ > 0, γ ∈ [λ,|τ|]. If h > 0, the proposed
controller described by (3.5) is identical to theH 2-optimal one:

Q ¼ ðτs þ 1Þ2s
Kgðλs þ 1Þðγs þ 1Þ esh

ðλs þ 1Þðγs þ 1Þ
sðτs þ 1Þ

� �
f

¼ ðτs þ 1Þ2s
Kgðλs þ 1Þðγs þ 1Þ esh

ðλs þ 1Þðγs þ 1Þ
sðτs þ 1Þ

� �
�

¼ ðτs þ 1Þ2s
Kgðλs þ 1Þðγs þ 1Þ

1
s
� τe�h=ττ 1� ðλ=τÞ� �

1�ðγ=τÞ� �
τs þ 1

 !

¼ ðτs þ 1Þð τ� τe�h=τ 1� ðλ=τÞ� �
1� ðγ=τÞ� �� �

s þ 1Þ
Kgðλs þ 1Þðγs þ 1Þ

ð3:6Þ
If h = 0, P becomes MP (Pa = 1). In this case, we make
h = 0 in (3.6) and we arrive at

Q ¼ ðτs þ 1Þð τ� τ 1� ðλ=τÞ� � ð1� ðγ=τÞ� �� �
s þ 1Þ

Kgðλs þ 1Þðγs þ 1Þ
ð3:7Þ
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In particular, note that Q f Pm
�1 = (τs + 1)/Kg as λ f 0,

implying that the H 2-optimal solution is approached for small
values of λ.
The following proposition summarizes the most basic proper-

ties of the proposed controller. [Although we are assuming that
W is given by (3.1), property (P3) holds generally for any MP
weight.]
Proposition 3.1. The IMC controller Q in eq 3.5 is such that
(P1) Q isH 2-optimal if P is NMP. In the MP case, Q tends

to be H 2-optimal when λ f 0, provided that δ(dd)
g 1.

(P2) Q is proper and stable.
(P3) S = 1 � PQ = 0 at the poles of W.
Proof. Consult Appendix A.1.

9
Property (P1) can be interpreted as the combination of the

two steps of the IMC procedure into a single one. Properties
(P2) and (P3) imply thatQ is realizable and internally stabilizing
(becauseW contains the poles of P). In addition, property (P3)
means asymptotic rejection of the disturbances (because the
denominator ofW contains the generating polynomial dd, recall
the Internal Model Principle2,3).
Remark 3.2. From (3.5) and property (P3), Q and 1 � PQ

have zeros at the k slow/unstable poles of P. These zeros get
canceled when forming the equivalent unity feedback controller
K = Q/(1 � PQ). This means that adjusting λ, γi inW does not
change the structure of the final controller, but rather, only its
parameters.
Remark 3.3. Strictly speaking, properties (P2) and (P3) are

not sufficient conditions for internal stability when P is a delayed
unstable system. As explained in ref 17, in this case, there are
irremovable RHP pole/zero cancellations inK that do not allow a
direct implementation. In general, Q can be approximated by a
practical controller K (e.g., proportional�integral�derivative
(PID) type) by following different methodologies.15,16,18

3.2.1. Analytical Solution in Terms of Alternative IMC Filters.
The proposed controller described by (3.5) can be ex-
pressed as

Q ¼ Pm
�1f ð3:8Þ

with f =W�1{Pa
�1W}f. Let us takeW = nw/dw. Now, consider-

ing how { 3 }f acts and taking into account property (P3) in
Proposition 3.1, we can alternatively express f as

f ¼ χ

nw
¼

∑
δðdwÞ � 1

i¼ 0
aisi

ðλs þ 1Þn Qk
i¼ 1

ðγis þ 1Þ
ð3:9Þ

where a0, ..., aδ(dw)�1 are determined from the following system
of linear equations:

Tjs¼πi
¼ Paf js¼πi

¼ 1 i ¼ 1,...,δðdwÞ ð3:10Þ

with πi (i = 1, ..., δ(dw) being the poles ofW (πi =�1/τi). From
(3.1), δ(dw) = k + δ(dd) in general, except when P is stable and
we take γi = τi for all i. In the latter case, the weight (3.1)
simplifies to W = (λs + 1)n/dd, and δ(dw) = δ(dd). Note that,
as long as the ai coefficients satisfy (3.10), the filter time

constants λ and γi can be selected freely without any concern
for nominal stability. In more detail, (3.10) corresponds to

πδðdwÞ � 1
1 3 3 3 π1 1

l 3 3 3 l l

πδðdwÞ � 1
δðdwÞ 3 3 3 πδðdwÞ 1

0
BBB@

1
CCCA

aδðdwÞ � 1

l
a0

0
BB@

1
CCA

¼
Pa�1nwjs¼π1

l
Pa�1nwjs¼πδðdwÞ

0
BB@

1
CCA ð3:11Þ

In the context of step-like inputs, the filter (3.9) generalizes some
previously reported filters in the following way:
• For stable plants, by taking γi = τi, the conventional IMC
filter3 is obtained. However, if we take γi = λ, then the filter
that has been described in ref 9 results.

• Essentially, the filter suggested in ref 8 for MP unstable
plants corresponds to taking γif∞ in (3.9). In the general
unstable plant case, the filter that has been described in ref
10 is recovered by choosing γi = λ.

Finally, using Lagrange-type interpolation theory,3 it is possi-
ble to develop an expression for (3.9) explicitly:

f ¼ 1
nw
∑

δðdwÞ

j¼ 1
ðPa�1nwÞjs¼πj

YδðdwÞ
i¼ 1
i6¼j

s� πi

πj � πi
ð3:12Þ

[This formula is not valid for repeated poles.]
3.3. Nominal Performance, Robust Stability, and Robust

Performance. In any practical design method, robust perfor-
mance is the ultimate goal: we want the controller to work well
under uncertain circumstances. Assuming that a condition for
robust stability is met, the next subsection gives an upper bound
for the performance degradation with respect to the nominal
case. How the robustness/performance compromise is influ-
enced by the tuning parameters λ and {γi}i is addressed later in
Section 3.3.2.
3.3.1. General Relations. From Section 2, the ISE for an output

disturbance d (d = 1/dd) is given by

ISEo ¼
Z ∞

0
e2ðtÞ dt ¼ 1

2π

Z ∞

�∞
jSdd�1ðjωÞj2 dω ð3:13Þ

Similarly, when d enters at the input of the plant, the correspond-
ing ISE is

ISEi ¼
Z ∞

0
e2ðtÞ dt ¼ 1

2π

Z ∞

�∞
jPSdd�1ðjωÞj2 dω ð3:14Þ

Equations (3.13) and (3.14) indicate the nominal performance
achieved by the final design in terms of input/ouput disturbance
attenuation. Robust stability can be assessed by the well-known
condition2,3

kΔTk∞ ¼ sup
ω

jΔðωÞTðjωÞj < 1 ð3:15Þ

where Δ(ω) g 0 is a bound for the plant multiplicative
uncertainty. In practice, nominal performance and robust stabi-
lity alone are not enough, because some plants in the uncertain
set may be on the verge of instability, yielding very poor
performance. Therefore, it is necessary to guarantee some degree
of robust performance. To this aim, it is useful to have an upper
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bound for both ISEi and ISEo. The worst error is generated by
the worst plant, which can be expressed as P(1 + δ(s)Δ(ω))
for some δ(s) such that |δ(jω)| e 1. Using the inequality |1 +
P(1 + δΔ)K|g |1 + PK|� |PK|Δ, the actual sensitivity function
I can be bounded as

jI j ¼
����� 1
1 þ Pð1 þ δΔÞK

����� e
����� 1
1� jΔTj

�����jSj ð3:16Þ

From (3.13), (3.14), and (3.16), the following upper bounds for
the actual errors result:

ISEo e ISEo ¼ 1
2π

Z ∞

�∞

����� 1
1� jΔTj

�����
2

jSdd�1j2 dω ð3:17Þ

ISEi e ISEi ¼ 1
2π

Z ∞

�∞

����� 1
1� jΔTj

�����
2

jPSdd�1j2dω ð3:18Þ

As it is logical, the modeling error increases the (finite) gap
between ISEi (ISEo) and ISEi (ISEo) as the stability boundary in
(3.15) is approached, exhibiting the typical tradeoff between
nominal performance and performance degradation.2,3,19

3.3.2. Tuning Guidelines for the Parameters λ and γi. In view
of eqs (3.13), (3.14), (3.17), and (3.18), nominal performance is
captured in terms of S, whereas robust performance is expressed
using T (which also determines robust stability (3.15)). The
shape of these transfer functions depends on the values of the
tuning parameters. The role of λ is the same as in the conven-
tional IMC: basically, for a given value of each γi, increasing λ
makes the system slower, to the detriment of ISEo and ISEi, but
favoring the robust stability condition (3.15) by reducing the
closed-loop bandwidth. Let us consider now that λ, γj (j = 1, ..., k,
j 6¼ i) have been fixed, and see which is the influence of γi. From
earlier discussion, when γi = λ < |τi|, W is asking for good load
disturbance rejection by forcing S = 0 at s =�1/τi, which may be
responsible for a large peak on |S| and |T| and a somewhat
aggressive response.13 As we increase γi,W specifies lower gains
for |S| at middle-high frequencies, which, via a waterbed effect
argument2,13 is achieved augmenting |S| at low frequencies.
Consequently, augmenting γi has an smoothing effect. In parti-
cular, this means that improving the response to output dis-
turbances will also make the system slower. As it will be shown in
Section 4, after increasing γi, λ can be decreased to compensate

for the reduction of the closed-loop bandwidth. In summary,
tuning γi also has an effect on robustness, but it should be clear
that the way of affecting the robustness properties is different: λ is
more related to the closed-loop bandwidth, which, by the robust
stability condition (3.15), is responsible for robustness in the
high-frequency region (model uncertainty). On the other hand,
the γi parameters affect the mid-frequency robustness properties,
altering the peaks of the sensitivity functions. More precisely,
augmenting γi contributes to flattening the frequency response.

4. SIMULATION EXAMPLES

In this section, we consider three simulation examples to
illustrate the features of the proposed procedure. For evaluating
robustness, we use the peak of the sensitivity function

MS z kSk∞ ¼ sup
ω

����� 1
1 þ PKðjωÞ

����� ð4:1Þ

Because MS is the inverse of the shortest distance from the
Nyquist curve of L = PK to the critical point�1 + 0j, small values
ofMS indicate good robustness. For a reasonably robust system,
an upper bound for the MS value can be fixed at ∼2.2 Another
robustness indicator used throughout the examples is given by
MT z )T )∞ z sup

ω
jTðjωÞj. The robustness interpretation for

MT (the peak of |T|) comes from the robust stability condition
(3.15). To quantify the input usage, we compute the total
variation (TV) of the input u:

TV ≈ ∑
∞

i¼ 1
juiþ1 � uij ð4:2Þ

where {ui}i=1
∞ denotes a discretization sequence of u. In the

examples that follow, we restrict our attention to (unity) step
disturbances (dd = s), as it is commonly done in the literature.
Example 1. The purpose of this preliminary example is to

illustrate the different effect of the λ and γ parameters, complet-
ing the discussion in Section 3. We will consider the process
~P = �100(10s + 1)(0.02s + 1)/[(�100s + 1)(s + 1)(0.2s + 1)],
modeled as P = �100(10s + 1)/[(�100s + 1)(s + 1)]. The
proposed design yields Q = Pm

�1f = P�1f, where

f ¼ a1s þ 1
ðλs þ 1Þðγs þ 1Þ ð4:3Þ

Figure 3. Frequency and time responses (Example 1), Δ = (~P � P)/P.
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with a1 = 100{[1 + (λ/100)][1 + (γ/100) � 1]} and γ ∈ [λ,
100]. For γ = λ, (4.3) coincides with the conventional IMC filter
used in refs 3 and 10, which, in this case, favors input distur-
bances. As a consequence, the response for output disturbances
may be undesirable. Figure 3 displays the time/frequency
responses for λ = γ = 0.15. As it can be seen, the peak in |T|
(MT = 1.16) degrades robust stability, read as |T(jω)| < 1/
|Δ(jω)| "ω, and it is responsible for the large oscillations in the
response to the output disturbance. We know that, by increasing
γ (we take γ = 20), it is possible to improve this response. As
stated in Section 3, this also tends to make the system slower. In
order to preserve the original closed-loop bandwidth, the para-
meter λ can be decreased (we finally take λ = 0.06). As shown in
Figure 3, this retuning allows to keep the original closed-loop
bandwidth while avoiding the peak in |T| (now, MT = 1). The
resulting outcome is better robustness and smoother response.
It is remarkable that it is not possible to press down the peak of
|T| by using the classical filter (for which γ = λ), as illustrated in
Figures 4 and 5. Clearly, if one uses the standard filter structure,
the only reasonable option is to detune the controller, moving
the peak of |T| to lower frequencies (see Figure 5). This will
improve robustness at the expense of nominal performance. In
summary, even if there is an interaction between λ and γ, their
roles are significantly different.
Example 2. As pointed out in the early work,20 an optimal

controller designed for a specific type of disturbance (e.g., a step
acting at the input of the plant) may result in very poor
performance if the actual disturbance (e.g., a step acting at the

output) is different from the one considered at the design stage.
In this example, we examine how a balance between the response
of input and output disturbances can be achieved, focusing on the
FOPTDmodel, P =Kg(e

�sh)/(τs + 1) (Kg = 2, h = 1, τ = 15). The
controller was already calculated in (3.7), and the corresponding
filter has the same form as (4.3), taking now a1 = τ� τ[1� (λ/τ)]-
[1� (γ/τ)]. Let us start by selecting λ =γ= 1.75, which provides
MS = 1.69, MT = 1.28, TVi = 2.98, TVo = 39.78 (TVi and TVo

denote the total variation with respect to the input and output
disturbances, respectively). As shown by Figure 6a, good attenua-
tion of load disturbances is obtained. However, a somewhat large
undershoot occurs for output disturbances. In the uncertain case
(h = 1.9), we can see that the system becomes quite oscillatory
(TVi = 10.72,TVo = 82); see Figure 6b. By choosing γ = τ = 15,
we can avoid the undershoot in the output disturbance response
and improve the robustness margins, now MS = 1.33, MT = 1,
TVi = 2, TVo = 16.14. As a result, the responses are smoother in
the uncertain case (TVi = 2.52, TVo = 18.6), experiencing less
performance degradation. However, the performance for load
disturbances is poor, showing a sluggish return to steady state
(this fact, which is sometimes called loss of integral action, is
specially relevant for very lag-dominant plants with high gain20).
To reach a compromise, we finally retune the controller taking
λ = 0.9, γ = 5. The latter values giveMS = 1.6,MT = 1.13, TVi =
2.55, TVo = 40.67. In the uncertain case, TVi = 6.73, TVo = 67.63.
The data concerning this example have been collected in Table 1.
Example 3. Lastly, we consider a stable, second-order system

with a pair of poorly damped poles (this case is studied in

Figure 5. Frequency and time responses (Example 1).

Figure 4. Frequency and time responses (Example 1).
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Appendix A.2). The model is given by

P ¼ Kg
e�sh

s=ωnð Þ2 þ 2 ξ=ωnð Þs þ 1

Kg ¼ 4, h ¼ 1,ωn ¼ 0:5, ξ ¼ 0:25
	 


Our design suggests the controller Q = Pm
�1f = [(s/ωn)

2 +
2(ξ/ωn)s + 1]f, where f has the following structure:

f ¼ a2s2 þ a1s þ a0
ðλs þ 1Þ2ðγ1, 2s2 þ γ1, 1s þ 1Þ ð4:4Þ

where the ai coefficients satisfy the condition that Paf = e
�sf = 1 at

the poles of the weight:

W ¼
λs þ 1ð Þ2 γ1, 2s

2 þ γ1, 1s þ 1
� �

s s=ωnð Þ2 þ 2 ξ=ωnð Þs þ 1
h i

First, we select λ = 0.5. For output disturbances, we then take γ1,2
= (1/ωn)

2 = 4, γ1,1 = 2ξ/ωn = 1, which results in f = 1/(0.5s+ 1)
2.

The associated responses can be seen in Figure 7 for both the
nominal and uncertain cases. The tuning λ = 0.5, γ1,2 = 4, γ1,1 = 1
givesMS = 1.62,MT = 1, TVi = 4.91, TVo = 140 (nominal case),
and TVi = 6.5, TVo = 142 (uncertain case). This design gives

Table 1. Data Summary for Example 2

Nominal Case

Kg = 2, h = 1, τ = 15

Uncertain Case

Kg = 2, h = 1.9, τ = 15

Model : Kg
e � sh

τs þ 1

� �
Input dist. Output dist. Input dist. Output dist.

Tuning of (4.3) MS MT TV ISE TV ISE TV ISE TV ISE

λ = 1.75, γ = 1.75 1.69 1.28 2.98 0.17 39.78 2.39 10.72 0.31 82 6.3

λ = 1.75, γ = 15 1.33 1 2 0.66 16.14 2.34 2.52 0.69 18.6 3.06

λ = 0.9, γ = 5 1.6 1.13 2.55 0.21 40.67 2.71 6.73 0.29 67.63 5.92

Figure 6. Input/output step responses for Example 2: (a) nominal case (Kg = 2, h = 1, τ = 15) and (b) uncertain case (Kg = 2, h = 1.9, τ = 15).



11177 dx.doi.org/10.1021/ie200717z |Ind. Eng. Chem. Res. 2011, 50, 11170–11180

Industrial & Engineering Chemistry Research ARTICLE

good results for output disturbances, because the slightly damped
poles are canceled by the feedback controller. However, because
no additional damping is really provided, these modes appear
when excited from the input of the plant. Consequently, the
response to load disturbances is quite oscillatory. To obtain
much better performance for load disturbances, we select λ = 0.5,
γ1,2 = λ2 = 0.25, γ1,1 = 2λ = 1. For these settings, the filter f is
defined as

f ¼ 2:9658s2 þ 2:3389s þ 1

0:5s þ 1ð Þ3

As desired, the response to load disturbances has been improved
noticeably. However, a great undershoot appears for output
disturbances, indicating that robustness has been seriously
degraded:MS = 3.88,MT = 2.96. The corresponding input usage
is given by TVi = 41.44, TVo = 1840 (nominal case) and TVi =
236.8, TVo = 8365 (uncertain case, h = 1.15). A tradeoff between
the two designs considered so far can be obtained by selecting γ=
0.25, γ1,2 = 3, γ1,1 = 2, which corresponds to the filter

f ¼ 4:682s2 þ 2:06s þ 1
0:25s þ 1ð Þ 3s2 þ 2s þ 1ð Þ

With this retuning, we ultimately getMS = 2.21,MT = 1.35, TVi =
17.21, TVo = 903 (nominal case), and TVi = 24.4, TVo = 1121

(uncertain case). The idea for selecting γ1,2, γ1,1 is to place the
complex poles of f to the left of those of the plant P, and with
increased damping factor. A summary of the results obtained can
be consulted in Table 2.
To conclude this example, we will consider the simplified

structure for f given by (A.6) in the Appendix A.2, which, in the
case at hand, has the form

f ¼ a2s2 þ a1s þ a0
ðλs þ 1Þ2ðγs þ 1Þ2 ð4:5Þ

where the ai coefficients satisfy the condition that Paf = e
�sf = 1 at

the poles of the weight:

W ¼ ðλs þ 1Þ2ðγs þ 1Þ2

s s=ωnð Þ2 þ 2 ξ=ωnð Þs þ 1
h i

This filter has the same structure that was suggested by Campi
et al.8 for MP unstable plants. If we choose γ = λ, we recover
the design for input disturbances. The purpose now is to show
that, although this filter can also be used to improve robust-
ness with respect to the design for input disturbances, the
robustness enhancement generally requires one to sacrifice
more nominal performance than when using the full-structure

Figure 7. Input/output step responses for Example 3: (a) nominal case (Kg = 4, h = 1, ωn = 0.5, ξ = 0.25) and (b) uncertain case (Kg = 4, h = 1.15,
ωn = 0.5, ξ = 0.25).
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filter with γ1,2, γ1,1. Taking λ = 0.25, γ = 2.2, the concrete filter

f ¼ 8:354s2 þ 3s þ 1

ð0:25s þ 1Þð2:2s þ 1Þ2

results, for which MS = 2.24, MT = 1.4. These robustness
indicators are only slightly worse than those obtained for the
previous tradeoff tuning (MS = 2.21,MT = 1.35). However, the
overall performance is considerably worse, as can be appre-
ciated from Figure 8. This shows the necessity of considering
complex conjugate poles in the filter f for the best tradeoff
design.

5. CONCLUSIONS

We have presented a regulatory design method that considers
whether the disturbances enter at the input or at the output of the
plant.When both types of disturbances are expected, the design allows
one to reach a balance. This is achieved by means of considering a
weighted sensitivity problem,where theweight ismostly guided by the
input type and the conflictive poles of the plant. The final solution can
be interpreted in terms of alternative IMC filters, which allow one to
adjust both the robustness/performance and the input/output dis-
turbance tradeoffs. Simulation examples have shown that improving
the rejection of input disturbances inherently requires larger peaks of
the sensitivity functions, resulting into more aggressive responses.
Further work will focus on the application to PID control.

Figure 8. Time responses for Example 3 with simplified filter structure : (a) nominal case (Kg = 4, h = 1,ωn = 0.5, ξ = 0.25) and (b) uncertain case (Kg =
4, h = 1.15, ωn = 0.5, ξ = 0.25).

Table 2. Data Summary for Example 3

Model : Kg
e � sh

s=ωnð Þ2 þ 2 ξ=ωnð Þs þ 1

h i Nominal Case

Kg = 4, h = 1, ωn = 0.5, ξ = 0.25

Uncertain Case

Kg = 4, h = 1.15, ωn = 0.5, ξ = 0.25

Input dist. Output dist. Input dist. Output dist.

Tuning of (4.4) MS MT TV ISE TV ISE TV ISE TV ISE

λ = 0.5, γ12 = 0.25, γ11 = 1 3.88 2.96 41.44 0.59 1840 11.55 236.8 0.85 8365 33.82

λ = 0.5, γ12 = 4, γ11 = 1 1.62 1 4.91 3.78 140 8.19 6.5 4.73 142 8.34

λ = 0.25, γ12 = 3, γ11 = 2 2.21 1.35 17.21 2.14 903 9.78 24.4 2.62 1121 12.5



11179 dx.doi.org/10.1021/ie200717z |Ind. Eng. Chem. Res. 2011, 50, 11170–11180

Industrial & Engineering Chemistry Research ARTICLE

A. APPENDIX

A.1. Proof of Proposition 3.1. Proof.
(P1) The H 2-optimal solution is given by Q = (PmW)�1-

{Pa
�1W}*. The difference, with respect to the proposed

solution amounts to the { 3 }* operator. If Pa 6¼ 1, { 3 }*
and { 3 }f coincide, because {Pa

�1W}* is strictly proper.
Thus, in this case, (3.5) is optimal (with respect to the
selected W). When Pa = 1, {Pa

�1W}f f {Pa
�1W}*

when λ f 0. This is because Pa
�1W = W tends to

become strictly proper (the n zeros at s = � 1/λ of W
move to infinity). Based on the definition of { 3 }*,{ 3 }f,
both yield the same result when applied to strictly
proper operands. Thus, the proposed Q tends to Q =
(PmW)�1{Pa

�1W}* = Pm
�1 when λ f 0.

(P2) From (3.1) and (3.5), straightforward algebra shows
that the structure of Q is given by

Q ¼ Pm�1χ

ðλs þ 1Þnðγ1s þ 1Þ 3 3 3 ðγks þ 1Þ ðA:1Þ

where χ is a polynomial of degree δd(dd) + k � 1.
Therefore, δ(Q) = n� δ(P)� δ(dd) + 1. Selecting n as
in (3.2) provides δ(Q)g 0, implying that Q is proper.
Stability is also easy to check: the poles ofQ are the left
half-plane (LHP) zeros of P, collected in Pm, and the
zeros of W, which are also in the LHP.

(P3) Equivalently, we will show that T = 1 � S = 1 at
the poles ofW. The complementary sensitivity function is

T ¼ PQ ¼ ðPa�1WÞ�1fPa�1Wgf ðA:2Þ

IfW has a pole at s = p of multiplicitym, then we can write
Pa

�1W = (ϕ(s))/(s� p)m, and (A.2) can be expressed as

T ¼ ðs� pÞm
ϕðsÞ 3 3 3 þ ∑

m � 1

i¼ 1

αi

ðs� pÞi
 

þ αm

ðs� pÞm þ 3 3 3


ðA:3Þ

where αm = ϕ(p). Then, it is clear that T|s=p =
[αm/(ϕ(s))]|s=p = 1.

9

A.2. Extension to Plants with Integrators or Complex
Poles. It has been shown in Section 3.2.1 that the proposed design
amounts to the selection of a convenient filter f, so that
Q = Pm

�1f. Here, we detail the structure of such a filter (passing over
W for brevity) when P has integrators and/or complex conjugate
poles. To keep it simple, we address each situation one at a time.
(i) P has (exclusively) l poles at the origin:

Let P have, exclusively, l poles at the origin. Then, the
corresponding filter is

f ¼
∑

δðdW Þ � 1

i¼ 0
aisi

ðλs þ 1Þn Ql
i¼ 1

ðγis þ 1Þ
ðA:4Þ

where δ(dW) = l + δ(dd). The only difference, with
respect to (3.9), is that, now, γi ∈ [λ,∞), whereas for

slow/unstable poles, we had γi ∈ [λ, |τi|]. This can be
easily understood, because an integrator corresponds to a
pole with an infinitely large time constant.

(ii) P has (exclusively) m complex conjugate poles:
Let us suppose that the m complex conjugate poles are
located at�ξiωni ( jωni(1� ξi

2)1/2. Then, the structure
of the filter is

f ¼
∑

δðdW Þ � 1

i¼ 0
aisi

ðλs þ 1Þn Qm
i¼ 1

ðγi, 2s2 þ γi, 1s þ 1Þ
ðA:5Þ

where δ(dW) = 2m+δ(dd). For input disturbances,γi,2 = λ
2,γi,1 =

2λ, so that Πi=1
m (γi,2s

2 + γi,1s + 1) = (λs + 1)2m. For output
disturbances, we want Πi=1

m (γi,2s
2 + γi,1s + 1) to be equal to

(1/ωni
2)Πi=1

m (s2 + 2|ξ|ωni +ωni
2), which is achieved for γi,2 = (1/

ωni)
2, γi,1 = 2|ξ|ωni (in this extreme case, only when P is stable,

δ(dW) = δ(dd), as explained in Section 3.2.1). It is not so simple
now to determine an interval for γi,1, γi,2 as in the real poles case
(this point is illustrated in Section 4). An exception occurs if the
complex poles are well-damped (|ξi| close to one), in this case,
we can disregard the imaginary part and treat the complex
conjugate pairs as double real poles at s = ωniξi. This allows
one to simplify the filter structure to be

f ¼
∑

δðdW Þ � 1

i¼ 0
aisi

ðλs þ 1Þn Qm
i¼ 1

ðγis þ 1Þ2
ðA:6Þ

with γi ∈ [λ, 1/|ωniξi|].
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