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Abstract In order to facilitate the optimal operation in the presence of process disturbances, the optimal selection of controlled 
variables plays a vital role. In this paper, we present a Mixed Integer Quadratic Programming methodology to select controlled 
variables c=Hy as the optimal combinations of fewer/all measurements of the process. The proposed method is evaluated on a 
toy test problem and on a binary distillation column case study with 41 trays. 
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1. INTRODUCTION 

To facilitate the optimal operation in the presence of 
disturbances, the optimal control structure selection is 
important. The decision on which variables should be 
controlled, which variables should be measured, which 
input variables should be manipulated and which links 
should be made between them is called control structure 
selection. Usually, control structure decisions are based on 
the intuition of process engineers or on heuristic methods. 
This does not guarantee optimality and makes it difficult to 
analyze and improve the proposals.  

This paper considers the selection of controlled variables 
(CVs) associated with the unconstrained degrees of 
freedom. We assume that the CVs c s are selected as a 
individual measurements or combinations of subset or all 
available measurements y . This may be written as 

  c=Hy where ny ≥ nc ;  

  ny : number of measurements; 

  nc: number of CVs = number of unconstrained 
DOFs = nu ; 

where the objective is to find a good choice for the matrix 
H. In general, we also include inputs (MVs) in the 
available measurement set y.   

Skogestad and coworkers have proposed to use the steady 
state process model to find “self-optimizing” controlled 
variable as combinations of measurments. The objective is 
to find H such that when the CVs are kept at constant set 
points, the operation gives acceptable steady state loss 
from the optimal operation in the presence of disturbances. 

The theory for self-optimizing control (SOC) is well 
developed for quadratic optimization problems with linear 
models. This may seem restrictive, but any unconstrained 
optimization problem may locally be approximated 
suitably by this method. The “exact local method” of 
Halvorsen et al. (2003) handles both disturbances and 
measurement noise. The problems of finding CVs as 

optimal variable combinations (c=Hy, where H is a full 
matrix) are originally believed to be difficult to solve 
numerically (Halvorsen, 2003), but recently it has been 
shown that SOC problem may be reformulated as a 
quadratic optimization problem with linear constraints 
(Alstad et al., 2009). The problem of selecting individual 
measurements as controlled variables (so H contains nc 
number of columns with a single 1 and rest of the columns 
are zero, mathematically HHT = I) is more difficult. The 
maximum gain rule (Halvorsen et al., 2003) may be useful 
for prescreening but it is not exact. Even though these 
methods simplify the loss evaluation for a single 
alternative, it requires evaluation of every feasible 
alternative to find the optimal solution. As the number of 
alternatives increase rapidly with the process dimensions, 
resorting to exhaustive search methods to find the optimal 
solution is computationally intractable. Kariwala and Cao 
(2009) have derived effective branch and bound methods 
for the exact local method. These branch and bound 
methods require monotonicity property in the objective 
function. Furthermore, branch and bound methods are 
quite complex and they require derivation of good upper 
and lower bounds. This motivates the need to develop 
simple and efficient methods to find the optimal solution.  

We consider three interesting problems related to finding 
H: 

1. Selection of best individual measurements as CVs 
(select n = nc measurements)  

2. Selection of CVs as combination of all ( ny ) 
measurements. 

3. Selection of CVs as combination of best subset of 
n measurements. Where { , }n nu ny∈  

We consider the solution of these problems when applied 
to the exact local method formulation of Halvorsen et al. 
(2003). Problem 2 is the easiest one, Problems 1 and 3 
involve structural decisions (discrete variables) and are 
therefore more difficult to solve. Nevertheless, from a 
practical point of view Problems 1 and 3 are important as 



it is not wise to use more measurements than necessary to 
get an acceptable loss. 

To solve Problem 1, Cao and Kariwala (2008) has 
developed bidirectional branch and bound methods to find 
the best individual measurements as CVs using minimum 
singular value criterion. To solve Problem 2, Alstad et al. 
(2009) has reformulated the self optimizing control 
problem as a constrained quadratic optimization problem. 
To solve Problem 3, Kariwala and Cao (2009) developed 
partial bidirectional branch and bound (PB3) methods to 
find best subset of measurements. The methods developed 
by Kariwala and Cao (2009) exploit the monotonic 
property of objective function in SOC problem and these 
methods are of limited/no use if the objective functions are 
not monotonic.  

In this paper we propose a different method to solve 
Problems 1 and 3 by reformulating the exact local method 
problem formulation as a Mixed Integer Quadratic 
Programming (MIQP) problem. The MIQP formulation is 
simple and can easily be extended to other cost functions. 
The developed methods are evaluated on a toy problem 
and on a binary distillation column with 41 trays. The 
developed MIQP methods for SOC are generic and can 
easily be evaluated for any system. 

 

2.EXACT LOCAL METHOD FORMULATION 

 

We here review the “exact local method” formulation from 
Halvorsen et al. (2003) and its optimal solution from 
Alstad et al. (2009). We want to operate the plant close to 
optimal steady state operation, by using available degrees 
of freedom { } { }

all acu  = u u∪ . The steady state cost 
function J(uall,d) is minimized for any given disturbance d. 
The possible process parameter variations are also 
included as disturbances. Few of the available degrees of 
freedom uac are used to implement optimally “active 
constraints”, so that u contains only the remaining 
unconstrained steady state degrees of freedom. 

The “reduced space” unconstrainted optimization problem 
then becomes 

 
min ( , )

u
J u d

     (1) 

In this work we want to find a set of nc = nu controlled 
variables c, or more specifically optimal measurement 
combinations   

  c = Hy      (2) 

such that a constant set point policy (where u is adjusted to 
keep c constant) yields optimal operation (equation (1)), at 
least locally. With a given d , solving equation (1) for u 
gives Jopt(d) , uopt(d) and yopt(d) . In practice, presence of 
implementations errors and changing disturbances makes 
it impossible to have u = uopt(d) and results in deviation 
from optimal operation and this deviation is quantified as 
loss. The resulting loss (L) is defined as the difference 

between the cost J, when using a non-optimal input u , and 
Jopt(d) as in Skogestad and Postlethwaite (2005): 

  L = J(u,d) - Jopt(d)    (3) 

The local second-order accurate Taylor series expansion of 
the cost function around the nominal point (u*; d*) can be 
written as 
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where ∆u = (u - u*) and ∆d = (d - d*). nu and nd are sizes 
of ∆u and ∆d. For a given disturbance (∆d = 0), the 
second-order accurate expansion of the loss function 
around the optimum (Ju = 0) becomes  
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where 
1/ 2 ( )opt
uuz J u u−  

In this paper, we consider a constant set point policy for 
the controlled variables which are chosen as linear 
combinations of the measurements as in equation (2). 

The constant set point policy implies that u is adjusted to 
give cs=c+n where n is the implementation error for c. 
Here we assume implementation error is caused by the 
measurement error i.e. n = H*ny. Now we want to express 
the loss variables z in terms of d and ny when we use a 
constant set point policy. 

The linearized (local) model in terms of the deviation 
variables is written as  

  y y
dy G u G dΔ = Δ + Δ   (6) 

  dc G u G dΔ = Δ + Δ   (7) 

where yG HG= and y
d dG HG=  

For a constant set point policy (∆cs = 0) (Halvorsen et. al. 
2003) 

1opt
uu udu J J d−Δ = − Δ

 1( )opt y y
uu ud dy G J J G d F d−Δ = − − Δ = Δ  (8) 

The F in equation (8) is the disturbance sensitivity matrix 
from disturbances d to measurements y at optimal 
operating points and can be evaluated directly from 
optimal process operating data. For illustration, select the 
process operating data close to optimal operation for the 
possible process disturbances ∆d and for these 
disturbances ∆yopt are known and disturbance sensitivity 
matrix F can be calculated directly. And this obviates the 
need to calculate yG , y

dG and ,uu udJ J . The magnitudes of 
the disturbances d and measurement error ny are quantified 
by the diagonal scaling matrices Wd and Wn

y respectively. 
And we write  



 dd W d ′Δ =     (9) 

 y
y y

n
n W n ′=     (10) 

and by introducing the magnitudes of ∆d and ny, the loss 
variables z in equation (3) can be written as  
 y

y
d n

z M d M n ′′= +    (11) 

where 1/ 2 1( )y
d uu dM J HG HFW−= −   (12) 

 1/ 2 1( ) y
y

n uu n
M J HG HW−= −   (13) 

1
( )[( ) ]y y

uu ud d d n ny ny ndY G J J G W W−
× += −    (14) 

 
Using the equations (12), (13), (14) and (5) the loss can be 
rewritten as     

 
'

2'
1/ 2 11 ( ( ) )

2
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d
L J HG HY

n
−
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The loss in equation (15) can be minimized with H as the 
decision variable. Similar to Halvorsen et.al. 2003 the 

norm of d’, ny’ is chosen to be constrained by '

'

1
y

d

n

⎡ ⎤
≤⎢ ⎥

⎢ ⎥⎣ ⎦
, 

and the opitmization problem is formulated to minimize 
the worst case loss and average loss as in Kariwala and 
Cao (2008). 

 1/ 2 1 21min ( ( ) )
2

y
uuH

J HG HYσ −   (16) 

 
21/ 2 11min ( ( ) )

6( )
y

uu FH
J HG HY

ny nd
−

+
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For these SOC problems Kariwala et.al. (2008) proved that 
the combination matrix H that minimizes the average loss 
in equation (17) is super optimal and in the sense that the 
same H minimizes the worst case loss in equation (16). 
Hence solving the optimization problem in equation (17) is 
considered in the rest of the paper. The scaling factor 

1
6( )ny nd+

does not have any effect on the solution of 

the equation (17) and hence it is omitted in the problem 
formulation. 
 
Lemma 1: The problem in equation (17) may seem non-
convex, but it can be reformulated as a constrained 
quadratic programming problem (Alstad et al., 2009). 

  

2

1/ 2

min

.

F
H

y
uu

HY

st HG J=
  (18) 

Proof: From the original problem in equation (17) the 
optimal solution H is non-unique. If H is a solution then 
H1 = DH is also a solution as 

-1/2 -1 -1/2 -1
uu y uu 1 y 1(J (HG ) )(HY) = (J (H G ) )(H Y)  for any 

non-singular matrix D of nu x nu size. This means the 
objective function is unaffected by the choice of D. One 
implication is that HGy can be chosen freely. We can thus 

make H unique by adding a constraint, for 
example 1/ 2y

uuHG J= . More importantly this simplifies 
the optimization problem in equation (17) to optimization 
problem shown in equation (18). End proof 
 
The problem in equation (18) is a constrained quadratic 
programming problem in measurement combination 
matrix H. We further reformulate the problem in (18) by 
vectorizing the decision matrix H to a vector x as 
described in Alstad et al., (2009). 
 
First X is introduced as TX H . The matrices X and 

1/ 2
uuJ  are split into vectors as 

1/ 2
1 2 1 2[ ]; [ ];nu uu nuX x x x J J J J= =  and we 

further introduce the long vectors as below  
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and the large matrices 
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and as Juu is symmetric positive definite matrix, 1/ 2
uuJ  is 

also symmetric positive definite 
1/ 2T T T

y y y uuHG G H G X J= = =  and as 

1 2 1 2[ ]
T T T Ty y y y
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the constraint can be written as 
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In summary, the optimization problem (18) for finding the 
optimal H can be written as a constrained quadratic 
programming problem in the variables Xδ as follows. 



 
min

.

T T

XN
T

X Y Y X

st G X J

δ δ δ δ

δ δ δ=
  (19) 

Note here that Xδ is a stacked vector of all the columns in 
X or HT.  
 

3. MIQP FORMULATION 
 
The mixed integer quadratic programming (MIQP) 
approach provides a different method to solve Problems 1 
and 3 described in introduction. Note here that Problem 1 
and Problem 2 may be considered as special cases of 
Problem 3. The main advantages with the MIQP 
formulation are that these are simple, easily extendable 
and exact.  
 
We start from the formulation given in (19) to find the 
optimal loss for the exact local method. Then we address 
this best measurement subset selection problem by 
formulating the problem in equation (19) as a Mixed 
Integer Quadratic Programming (MIQP) problem as 
described below. Let 1 2, , nyσ σ σ { }0,1∈  be binary 
variables and let rest of the variables be the same as in 
equation (19). For the chosen measurement subset in the 
ny measurements, the decision variables associated to that 
binary variables are chosen to be bounded in a range of –M 
to M. And these bounds are formulated as big-M 
constraints. Thus the MIQP problem with big-M 
constraints can be written as in equation (20). 
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and n is the measurement subset size.  
 
In MIQP formulations, selections of a higher value for M 
in big-M constraints guarantee optimal solution, when 
bounds on decision variables are unknown. But higher M 
requires increased computational time in finding the 
optimal solution. Hence to find the suitable M value in 

finding optimal solution in an acceptable computational 
time, the constrained QP problem in (19) with ny 
measurements is solved. Based on the solution of equation 
(19) M is chosen as 2 times the maximum absolute value 
of the solution. Then MIQP problem in equation (20) is 
solved for different values of n from nu to ny. Later, the 
optimal measurement subset size n can be selected for the 
concerned process. 
 
Lemma 2: The best individual measurements in exact 
local method (Problem 1) can be obtained from the MIQP 
problem formulation (equation (20)) solution for 
measurement subset size equal to nc. 
 
Proof: As mentioned in the proof of Lemma 1, If H is a 
solution then H1 = DH is also a solution for any non-
singular matrix D of size nuxnu as 

-1/2 -1 -1/2 -1
uu y uu 1 y 1(J (HG ) )(HY) = (J (H G ) )(H Y) .Hence 

the objective function is unaffected by the choice of D.   
 
Let Hnc. be the optimal solution to this MIQP problem 
(equation 20) for best nc measurements combination 
matrix.  Now by choosing 1

ncD H −= and we find the best 
indiviual measurements Him.(Solution to Problem 1) End 
proof 
 
Application to toy test problem. To illustrate the problem 
formulation, consider the toy problem of Halvorsen et a.l. 

(2003) which has two inputs ( )1 2
Tu u u= , one 

disturbance d and two output measurements 

( )1 2
Tx x x= . The cost function is  

 2 2
1 2 1( ) ( )J x x x d= − + −  

 
where the outputs depended linearly on u , d as 
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At the optimal point we have 1 2x x d= = and Jopt(d) = 0.  
 
Both the inputs and outputs are included in the candidate 
set of measurements y. For the example, the steady gain 
matrix from y to u (Gy), steady disturbance gain matrix 
from y to d ( y

dG ), hessian of cost function with u , d 
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The resulting optimal sensitivity matrix is computed as 
follows 
 

1
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These matrices are used to get the stacked vector Xδ, Jδ, 
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Tand Yδ and the associated matrices in MIQP 
formulation in equation (20) are 
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4. RESULTS 

 
4.1 Toy problem  
 
The minimized loss function with the number of 
measurements used as CVs (i.e. the measurement 
combinations) is shown in Figure 1. From Figure 1, the 
loss is minimized as we use more number of 
measurements to find the CVs as the combinations of 
measurements. And the reduction in loss is very small 
when we increase the measurement subset size from 3 to 4. 

Figure 1. Optimal average loss with best measurement 
combinations vs no. of measurements used. 
 

Based on the Figure 1, we can conclude that using CVs as 
combinations of 3 measurement subset is optimal for this 
toy problem. 
 
4.2 Binary distillation column Problem 
 
The binary distillation column and the associated data are 
taken from Skogestad (1997). The distillation column in 
LV-configuration with 41 stages is used. The 41 stage 
temperatures are taken as candidate measurements. Note 
that we do not include the inputs in the candidate 
measurements for this case study. We formulated the 
MIQP problem for the distillation column with 41 trays to 
find the 2 CVs as the combinations of 41 tray 
temperatures. An MIQP is set up for this distillation 
column with an M value of 1 in big-M constraints in                
equation (20). We solved the MIQP to find the CVs as the 
combinations of best measurement subset size from 2 to 
41. The CPLX solver in Tomlab environment is used to 
solve the MIQP problem. The same problem is solved by 
downwards branch and bound, partial bidirectional branch 
bound methods of Kariwala and Cao (2009). The 
computational times (CPU time) taken by MIQP, 
Downward BAB, PB3 method and exhaustiv|e search 
method are shown in Figure 3. Note that exhaustive search 
is not performed and an estimate of CPU time assuming 
0.01 s for each evaluation is plotted. From Figure 3, it can 
be seen that the MIQP finds optimal solution in 6 orders 
faster than exhaustive search methods in computational 
(CPU) time. MIQP method runs relatively quickly for 
measurement subset size from 25 to 41, but it took fairly 
longer time for subset sizes from 10 to 19. As these subset 
sizes (10 to 19) have very high number of possibilities 
(41C10 to 41C19), the longer time taken by MIQP method 
is justifiable. But on an avearge basis MIQP methods are 
slower by 1 order to PB3 and 0.5 orders slower than 
Downwards BAB methods. In conclusion, even though the 
MIQP methods are not computationally attractive to that 
of Downwards BAB and PB3 methods; the variation in the 
computational time by order of 1 is acceptable as these 
optimal CVs selection problems are performed offline. 
Despite these, MIQP method is valuable as the method is  

 
Figure 2. Optimal average loss using MIQP method with 
best measurement combinations vs no. of measurements 
used. 



 
Figure 3. Comparsion of computation times 
 
simple and can easily be extended to any quadratic cost 
functions to find optimal CVs in SOC framework. The 
minimized loss function with the number of measurements 
used for CVs (i.e. the measurement combinations) is 
shown in Figure 2. From Figure 2, it can be seen that the 
loss decreases rapidly when the number of measurements 
increased from 2 to 14, and from 14 very slowly. Based on 
the Figure 2, we can conclude that using CVs as 
combinations of 14 measurements subset is optimal for 
this 41 stage binary distillation column problem. MIQP 
formulations are easy than the BAB methods and 
structural constraints such as selection of certain number 
of measurements from top section, selection of certain 
number of measurement from bottom section can be done 
easily. 
 

6. CONCLUSIONS 
 
Optimal CV selection as measurement combinations to 
minimize the loss from the optimal operation is solved. 
The CV selection problem in self optimizing control 
framework is reformulated as a QP and CVs selection as 
combinations of measurement subsets is formulated as an 
MIQP problem. The developed MIQP based methods are 
easier compared to the bidirectional branch and bound 
methods reported in literature to find the CVs as 
combinations of measurement subsets. And MIQP 
methods cover wider spectrum of quadratic based 
objective functions whereas bidirectional branch and 
bound methods are limited to objective functions with 
monotonic properties. MIQP based methods takes longer 
time than bidirectional branch and bound methods, but this 
is acceptable as the optimal CV selection problem is done 
offline. MIQP problem formulations are easily extendable 
for optimal measurement subset selection for systems with 
few structural constraints. 
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