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a b s t r a c t

A simple method has been developed for PID controller tuning of an unidentified process using closed-
loop experiments. The proposed method requires one closed-loop step setpoint response experiment
using a proportional only controller, and it mainly uses information about the first peak (overshoot)
which is very easy to identify. The setpoint experiment is similar to the classical Ziegler–Nichols (1942)
experiment, but the controller gain is typically about one half, so the system is not at the stability limit
with sustained oscillations. Based on simulations for a range of first-order with delay processes, simple
correlations have been derived to give PI controller settings similar to those of the SIMC tuning rules
(Skogestad (2003) [6]). The recommended controller gain change is a function of the height of the first
peak (overshoot), whereas the controller integral time is mainly a function of the time to reach the peak.
The method includes a detuning factor that allows the user to adjust the final closed-loop response time
and robustness. The proposed tuning method, originally derived for first-order with delay processes, has
been tested on a wide range of other processes typical for process control applications and the results
are comparable with the SIMC tunings using the open-loop model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The proportional integral (PI) controller is widely used in the
process industries due to its simplicity, robustness and wide ranges
of applicability in the regulatory control layer. On the basis of a
survey of more than 11,000 controllers in the process industries,
Desborough and Miller [1] report that more than 97% of the reg-
ulatory controllers utilise the PID algorithm. A recent survey [2]
from Japan shows that the ratio of applications of PID control, con-
ventional advanced control (feedforward, override, valve position
control, gain-scheduled PID, etc.) and model predictive control is
about 100:10:1. In addition, the vast majority of the PID controllers
do not use derivative action. Even though the PI controller only has
two adjustable parameters, it is not simple to find good settings and
many controllers are poorly tuned. One reason is that quite tedious
plant tests may be needed to obtain improved controller settings.
The objective of this paper is to derive a method which is simpler
to use than the present ones.

Most tuning approaches are based on an open-loop plant model
(g); typically given in terms of the plant’s gain (k), time constant (�)

� This is an extended version of a paper presented at the IFAC Symposium on
Dynamics and Control of Process Systems (DYCOPS) in Belgium in July 2010.
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and time delay (�); see O’Dwyer [3] for an extensive list of methods.
Given a plant model g, one popular approach to obtain the controller
is direct synthesis [4] which includes the IMC-PID tuning method
of Rivera et al. [5]. The original direct synthesis approaches, like
that of Rivera et al. [5], give very good performance for setpoint
changes, but give sluggish responses to input (load) disturbances
for lag-dominant (including integrating) processes with �/� larger
than about 10. To improve load disturbance rejection, Skogestad
[6] proposed the modified SIMC method where the integral time is
reduced for processes with a large value of the process time con-
stant �. The SIMC rule has one tuning parameter, the closed-loop
time constant �c, and for “fast and robust” control is recommended
to choose �c = �, where � is the (effective) time delay.

However, these approaches require that one first obtains an
open-loop model (g) of the process. There are two problems here.
First, an open-loop experiment, for example a step test, is nor-
mally needed to get the required process data. This may be time
consuming and may result in undesirable output changes. Second,
approximations are involved in obtaining the process model g from
the open-loop data.

In this paper, the objective is to derive controller tunings based
on closed-loop experiments. The simplest is to directly obtain the
controller from the closed-loop data, without explicitly obtain-
ing an open-loop model g. This is the approach of the classical
Ziegler–Nichols method [7] which requires very little informa-
tion about the process; namely, the ultimate controller gain (Ku)
and the period of oscillations (Pu) which are obtained from a sin-
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gle experiment. For a PI-controller the recommended settings are
Kc = 0.45Ku and �I = 0.83Pu. However, there are several disadvan-
tages. First, the system needs to be brought its limit of instability
and a number of trials may be needed to bring the system to this
point. To avoid this problem one may induce sustained oscillation
with an on-off controller using the relay method of Åström and
Hägglund [8]. However, this requires that the feature of switch-
ing to on/off-control has been installed in the system. Another
disadvantage is that the Ziegler–Nichols [7] tunings do not work
well on all processes. It is well known that the recommended
settings are quite aggressive for lag-dominant (integrating) pro-
cesses [9] and quite slow for delay-dominant process [6]. To get
better robustness for the lag-dominant (integrating) processes,
Tyreus and Luyben [9] proposed to use less aggressive settings
(Kc = 0.313Ku and �I = 2.2Pu), but this makes the response even
slower for delay-dominant processes [6]. This is a fundamental
problem of the Ziegler–Nichols [7] method because it uses only
two pieces of information about the process (Ku, Pu), which corre-
spond to the critical point on the Nyquist curve. This does allow
one to distinguish, for example, between a lag-dominant and a
delay-dominant process. A fix is to use additional closed-loop
experiments, for example an experiment with an integrating con-
troller [15]. A third disadvantage of the Ziegler–Nichols [7] method
is that it can only be used on processes for which the phase lag
exceeds −180◦ at high frequencies. For example, it does not work
on a simple second-order process.

Therefore, there is need of an alternative closed-loop approach
for plant testing and controller tuning which avoids the instability
concern during the closed-loop experiment, reduces the number of
trails, and works for a wider range of processes. The proposed new
method satisfies these concerns:

1. The method uses a single closed-loop experiment with pro-
portional only control. This is similar to the Ziegler-Nichols [7]
method, but the process is not forced to its stability limit and it
requires less trial-and-error adjustment of the P-controller gain
to get to the desired closed-loop response.

2. Of the many parameters that can be obtained from the closed-
loop setpoint response, the simplest to observe is the time (tp)
and magnitude (overshoot) of the first peak (see Fig. 1) which is
the main information used in the proposed method.

3. The proposed method works well on a wider range of processes
than the Ziegler–Nichols [7] method. In particular, it works well
also for delay-dominant processes. This is because it that makes

Fig. 1. Closed-loop step setpoint response with P-only control.

use of a third piece of information, namely the relative steady-
state change b = y(∞)/ys.

4. The method applies to processes that give overshoot with
proportional only control. This is less restrictive than the
Ziegler–Nichols [7] method, which requires sustained oscilla-
tions. Thus, unlike the Ziegler–Nichols method, the method
works on a simple second-order process.

In summary, the proposed method is simpler in use than existing
approaches and allows the process to be kept under closed-loop
control.

2. SIMC PI tuning rules

In Fig. 2 we show the block diagram of a conventional feedback
control system, where g denotes the process transfer function and
c the feedback controller. The other variables are the manipulated
variable u, the measured and controlled output variable y, the set-
point ys, and the disturbance d which is here assumed to be a “load
disturbance” at the plant input. The closed-loop transfer functions
from the setpoint and load disturbance to the output are:

y = cg

1 + cg
ys + g

1 + cg
d (1)

In process control, a first-order process with time delay is a
common representation of the process dynamics:

g(s) = ke−�s

�s + 1
(2)

Here k is the process gain, � the dominant lag time constant and �
the effective time delay. Most processes in the process industries
can be satisfactorily controlled using a PI controller:

c(s) = Kc

(
1 + 1

�Is

)
(3)

which in the time domain corresponds to

u(t) = Kce(t) + Kc

�I

∫ t

0

e(t) dt (4)

where e = ys − y. The PI controller has two adjustable parameters,
the proportional gain Kc and the integral time �I. The ratio KI = Kc/�I
is known as the integral gain.

The SIMC tuning rule [6] is analytically based and widely used
in the process industry. For the process in Eq. (2), the SIMC tuning
rule gives

Kc = �

k(�c + �)
(5)

�I = min{�, 4(�c + �)} (6)

Note that the original IMC tuning rule [5] always uses �I = �, but
the SIMC rule increases the integral contribution for close-to inte-
grating processes (with � large) to avoid poor performance (slow
settling) to load disturbance. There is one adjustable tuning param-
eter, the closed-loop time constant (�c), which is selected to give the

Fig. 2. Block diagram of feedback control system.
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Fig. 3. Scaled proportional and integral gain for SIMC tuning rule.

desired trade-off between performance and robustness. Initially,
this study is based on the “fast and robust” setting

�c = � (7)

which gives a good trade-off between performance and robustness.
In terms of robustness, this choice gives a gain margin is about 3
and a sensitivity peak (Ms-value) of about 1.6. On dimensionless
form, the SIMC tuning rules with �c = � become

K ′
c = kKc = 0.5

�

�
(8)

K ′
I = kKc

�I/�
= max

(
0.5,

1
16

�

�

)
(9)

The dimensionless gains K ′
c and K ′

I are plotted as a function of
�/� in Fig. 3. We note that the integral term (K ′

I ) is relatively more
important for delay dominant processes (�/� < 1), while the propor-
tional term K ′

c is more significant for processes with a smaller time
delay. These insights are useful for the next step when we want to
derive tuning rules based on the closed-loop setpoint response.

3. Closed-loop setpoint experiment

As mentioned earlier, the objective is to base the controller tun-
ing on closed-loop data. The simplest closed-loop experiment is
probably a setpoint step response where one maintains control of
the process, including the change in the output variable. From the
setpoint experiment (Fig. 1) one may observe many values, like rise
time, period of oscillations, magnitudes and times of overshoots
and undershoots, etc. Of all these values, the simplest to observe
is the magnitude and time (tp) of the (first) overshoot, and this
information is therefore the basis for the proposed method.

We propose the following procedure:

Step 1. Switch the controller to P-only mode (for example, increase
the integral time �I to its maximum value or set the integral gain KI
to 0). In an industrial system, with bumpless transfer, the switch
should not upset the process.
Step 2. Make a setpoint change with a P-only controller. The P-
controller gain Kc0 used in the experiment does not really matter
as long as the response oscillates sufficiently with an overshoot
between 0.10 (10%) and 0.60 (60%); about 0.30 (30%) is a good
value. Most likely, unless the original controller was tightly tuned,
one will need to increase the controller gain to get a sufficiently
large overshoot. Note that the controller gain to get 30% over-
shoot is about half of the “ultimate” controller gain needed in the
Ziegler–Nichols closed-loop experiment.
Step 3. From the closed-loop setpoint response experiment, obtain
the following values (see Fig. 3):

Fig. 4. Step setpoint responses with various overshoots for first-order plus time
delay process, g = e−s/(10s + 1).

• Controller gain, Kc0
• Overshoot = (�yp − �y∞)/�y∞
• Time from setpoint change to reach peak output (overshoot), tp
• Relative steady state output change, b = �y∞/�ys.

Here the output variable changes are:

�ys = ys − y0: setpoint change;
�yp = yp − y0: peak output change (at time tp);
�y∞ = y∞ − y0: steady-state output change after setpoint step test.

To find �y∞ one needs to wait for the response to settle, which
may take some time if the overshoot is relatively large (typically,
0.3 or larger). In such cases, one may stop the experiment when
the setpoint response reaches its first minimum (undershoot) and
record the corresponding output, �yu. As shown in Appendix A,
one can then estimate the steady-state change from the following
correlation:

�y∞ = 0.45(�yp + �yu) (10)

Note that (10) involves deviations from the original
steady state y0; in terms of the actual variables we have
y∞ = 0.45(yp + yu) + 0.1y0.

To illustrate the use of the closed-loop setpoint experiment, we
show in Fig. 4 closed-loop responses for a typical process with a
unit time delay (� = 1) and a ten times larger time constant (� = 10):

g(s) = e−s

10s + 1
(11)

The responses in Fig. 4 are for six different controller gains Kc0,
which result in overshoots of 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60,
respectively. As expected, the closed-loop response gets faster and
more oscillatory as the overshoot increases. Note that small over-
shoots (less than 0.10) are not shown. The main reason is that it
is difficult in practice to obtain from experimental data accurate
values of the overshoot and corresponding time if the overshoot
is too small. Also, large overshoots (larger than about 0.6) are not
shown, because these give a long settling time and require more
excessive input changes. For these reasons we recommend using
an “intermediate” overshoot of about 0.3 (30%) for the closed-loop
setpoint experiment.

Fig. 5 shows setpoint responses when the P-controller gain Kc0
has been adjusted to give an overshoot of 0.3 for a wide range of
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Fig. 5. Step setpoint responses with overshoot of 0.3 (30%) for eight first-order plus
time delay processes with �/� ranging from 0 to 100 (g = e−�s/(�s + 1), � = 1).

first-order plus delay processes with a unit time delay (� = 1),

g(s) = e−s

�s + 1
(12)

The process time constant � varies from 0 (pure delay process)
to 100 (almost integrating process). The time to reach the first peak
(tp) increases somewhat as we increase �, but the most striking dif-
ference is that the steady-state output change (b-value) approaches
1 as we increase �. Thus, the b-value provides an indirect measure
of the value of �/�, and we will make use of this observation below.

4. Correlation between setpoint response and
SIMC-settings

As mentioned in Section 1, a two-step procedure could be used
where first the closed-loop setpoint response experiment is used
to determine the open-loop model parameters (k, �, �) and next the
SIMC-rules (or others) are used to derive PI-settings. However, the
objective of this paper is to provide a more direct approach similar
to the Ziegler–Nichols [7] closed-loop method.

Thus, the goal is to derive a correlation, preferably as simple as
possible, between the setpoint response data (Fig. 1) and the SIMC
PI-settings in Eqs. (5) and (6), initially with the choice �c = �. For
this purpose, we considered 15 first-order with delay models

g(s) = ke−�s

�s + 1
(13)

that cover a wide range of processes; from delay-dominant to lag-
dominant (integrating):

�

�
= 0.1, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0,

5.0, 7.5, 10.0, 20.0, 50.0, 100.0

Since we can always scale time with respect to the time delay
(�) and since the closed-loop response depends on the product
of the process and controller gains (kKc) we have without loss of
generality used in all simulations k = 1 and � = 1.

For each of the 15 process models (values of �/�), we obtained
the SIMC PI-settings (Kc and �I) using Eqs. (5) and (6) with the
choice �c = �. Furthermore, for each of the 15 processes we gen-
erated 6 closed-loop step setpoint responses (Figs. 4 and 5) using
P-controllers that give different fractional overshoots.

overshoot = 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60

Fig. 6. Relationship between P-controller gain kKc0 used in setpoint experiment and
corresponding SIMC controller gain kKc.

In total, we then have 90 setpoint responses, and for each of
these we record four data: the P-controller gain Kc0 used in the
experiment, the fractional overshoot, the time to reach the over-
shoot (tp), and the relative steady-state change, b = �y∞/�ys.

4.1. Controller gain (Kc)

We first seek a relationship between the above four data and the
corresponding SIMC-controller gain Kc. Recall that with PI-control,
the recommended Ziegler–Nichols [7] controller gain for any pro-
cess is Kc/Ku = 0.45, where Ku is the “ultimate” controller gain that
gives persistent oscillations in the Ziegler–Nichols experiment. As
mentioned, this is generally viewed to be too aggressive and Tyreus
and Luyben [9] recommend Kc/Ku = 0.31. Note that Ku is similar to
our Kc0, and since the Ziegler–Nichols experiment is similar to a
setpoint response with about 100% overshoot, one may hope that
we may use a similar simple relationship. Indeed, as illustrated in
Fig. 6, where we plot kKc (scaled SIMC PI-controller gain for the
process) as a function of kKc0 (scaled experimental controller gain
for the same process) for the 90 setpoint experiments, the ratio

Kc

Kc0
= A (14)

is approximately constant for a fixed value of the overshoot, inde-
pendent of the value of �/�. In Fig. 7 we plot the value of A, obtained
as the best fit of the slopes of the lines in Fig. 6, as a function
of the overshoot. The ratio A is found to vary from 0.85 for over-
shoot = 0.1, to 0.62 for overshoot = 0.3, and 0.45 for overshoot = 0.6.
The following equation (solid line in Fig. 7) fits the data well

A = [1.152(overshoot)2 − 1.607(overshoot) + 1.0] (15)

The correlation in Eq. (15) is based on data with overshoots
between 0.1 and 0.6 and should not be extended outside this range.
To compare with the Ziegler–Nichols [7] ultimate gain approach,
note that a value of A of about 0.31 [9] seems reasonable if we
imagine extending Fig. 7 to overshoots over 100%.

Actually, a closer look at Fig. 6 reveals that a constant slope, use
of Eqs. (14) and (15), only fits the data well for a scaled controller
gain K ′

c = kKc greater than about 0.5. Fortunately, a good fit of the
controller gain Kc is not so important for delay-dominant processes
(�/� < 1) where K ′

c < 0.5, because we recall from the discussion of
the SIMC rules (Fig. 2) that the integral gain KI is more important
for such processes. This is discussed in more detail below.
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Fig. 7. Variation of A with overshoot using data (slopes) from Fig. 6.

4.2. Integral time (�I)

Next, we want to find a simple correlation for the integral time.
We follow the SIMC tuning formula in Eq. (6) and use the minimum
from two cases:

• Case (1). �I1 = � for processes with a relatively large delay �.
• Case (2). �I2 = 4(�c + �) for processes with a relatively small delay

� including integrating processes. In the following we consider
the nominal choice �c = � which gives �I2 = 8�, but we will later
show how to reintroduce a detuning factor.

Case (1): We do not know the value of the dominant time con-
stant �. However, � enters into the SIMC rule for the controller gain
in Eq. (8), so we can insert � = �I1 into Eq. (8) and solve for �I1 to get:

�I1 = 2kKc� (16)

Rewrite kKc as

kKc = Kc

Kc0
kKc0 (17)

Here, Kc/Kc0 = A where A is given as a function of the overshoot in
Eq. (15). The value of the loop gain kKc0 for the P-control setpoint
experiment is given from the value of b:

kKc0 =
∣∣∣ b

(1 − b)

∣∣∣ (18)

To prove this, note from Eq. (1) that the closed-loop setpoint
response is �y/�ys = gc/(1 + gc) and with a P-controller with gain
Kc0, the steady-state value is �y∞/�ys = kKc0/(1 + kKc0) = b and we
derive Eq. (18). The absolute value is included to avoid problems
if b > 1, as may occur because of inaccurate data or for an unstable
process.

To sum up, we have derived the following expression for the
integral time for a delay-dominant process (with �/� < 8):

�I1 = 2A
∣∣∣ b

(1 − b)

∣∣∣ � (19)

Case (2): For a lag-dominant (including integrating) process with
�/� > 8, the nominal SIMC integral time SIMC is

�I2 = 8� (20)

Eqs. (19) and (20) for the integral time have all known parame-
ters except the effective time delay �. One could obtain � the directly
from the closed-loop setpoint experiment, but this is generally not

Fig. 8. Ratio of process time delay (�) and setpoint overshoot time (tp) as a function
of overshoot for four first-order with delay processes (solid lines). Dotted lines:
values of �/tp used in final correlations.

easy. Fortunately, as shown in Fig. 8, there is a reasonably good
correlation between � and the setpoint peak time tp which is much
easier to observe.

Case (1): For processes with a relatively large time delay (�/� < 8),
the ratio �/tp varies between 0.27 (for �/� = 8 with overshoot = 0.1)
and 0.5 (for �/� = 0.1 with all overshoots). For the intermediate
overshoot of 0.3, the ratio �/tp varies between 0.32 and 0.50. A con-
servative choice would be to use � = 0.5tp because this gives the
largest integral time. However, to improve performance for pro-
cesses with smaller time delays, we propose to use � = 0.43tp which
is only 14% lower than 0.50 (the worst case).

In conclusion, we have for a process with a relatively large time
delay:

�I1 = 0.86 A
∣∣∣ b

(1 − b)

∣∣∣ tp (21)

Case (2): For �/� > 8 we see from Fig. 8 that the ratio �/tp varies
between 0.25 (for �/� = 100 with overshoot = 0.1) and 0.36 (for
�/� = 8 with overshoot 0.6). We select to use the average value
� = 0.305tp which is only 15% lower than 0.36 (the worst case). Also
note that for the intermediate overshoot of 0.3, the ratio �/tp varies
between 0.30 and 0.32. In summary, we have for a lag-dominant
process

�I2 = 2.44tp (22)

4.3. Conclusion

For the nominal choice �c = �, the integral time �I is obtained as
the minimum of the above two values:

�I = min(�I1, �I2) = min
(

0.86 A
∣∣∣ b

(1 − b)

∣∣∣ tp, 2.44tp

)
(23)

Remark. In effect, we are here estimating the effective delay �
from tp only, by using � = 0.43tp and � = 0.305tp for obtaining �I1
and �I2, respectively. It is possible get a better fit to the SIMC-value
of �I by making � also a function of, for example, the overshoot and
the b-value, but we have here chosen to keep it simple.

5. Final choice of the controller settings (detuning)

So far we have derived nominal controller settings that corre-
spond to a closed-loop time constant equal to the effective delay
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(�c = �). However, in many cases one may want to use less aggres-
sive (detuned) settings (�c > �), or one may even want to speed up
the response (�c < �). To this end, we want to introduce a detuning
factor F, where F > 1 corresponds less aggressive settings and F < 1
to more aggressive settings [12].

To find out how the factor F should be included in the expres-
sions for the controller gain and integral time we go back to the
SIMC settings in Eqs. (5) and (6). The nominal SIMC setting for �c = �
considered so far (denoted * for clarity) are

K∗
c =

(
0.5�

k�

)
, �∗

I = min(�, �∗
12) where �∗

12 = 8�

The general formulas (5) and (6) can then be rewritten as

Kc = K∗
c

F
(24)

�I = min(�, �∗
I2F) (25)

where

F = �c + �

2�
(26)

Note that �c = � gives F = 1. Formulas (24) and (25) can now be
used to generalize the proposed settings in Eqs. (14) and (23), which
are based �c = �. In conclusion, the final tuning formulas for the
proposed “Setpoint Overshoot Method” method are:

Kc = Kc0A

F
(27)

�I = min
(

0.86 A
∣∣∣ b

(1 − b)

∣∣∣ tp, 2.44tpF
)

(28)

where A = [1.152(overshoot)2 − 1.607(overshoot) + 1.0] and F is a
detuning parameter. F = 1 gives the “fast and robust” SIMC settings
corresponding to �c = �, see Eq. (26). To detune the response and
get more robustness one selects F > 1, but in special cases one may
select F < 1 to speed up the closed-loop response.

6. Analysis and simulation

Closed-loop simulations have been conducted for 33 different
processes and the proposed tuning procedure provides in all cases
acceptable controller settings with respect to both performance
and robustness.

For each process, PI-settings were obtained based on step
response experiments with three different overshoot (about 0.1,
0.3 and 0.6) and compared with the SIMC settings.

The closed-loop performance is evaluated by introducing a unit
step change in both the set-point and load disturbance, i.e., (ys = 1
and d = 1).

Output performance (y) is quantified by computing the inte-
grated absolute error, IAE =

∫ ∞
0

|y − ys|dt. Manipulated variable
usage is quantified by calculating the total variation (TV) of the
input (u), which is the sum of all its moves up and down. If we
discretize the input signal as a sequence [u1,u2,u3, . . ., ui. . .] then
TV = ∑∞

i=1|ui+1 − ui|. Note also that TV is the integral of the abso-

lute value of the derivative of the input, TV =
∫ ∞

0
|du/dt|dt, so TV

is a good measure of the smoothness. To evaluate the robust-
ness, we compute the maximum closed-loop sensitivity, defined
as Ms = maxω|1/[1 + gc(jω)]|. Since Ms is the inverse of the shortest
distance from the Nyquist curve of the loop transfer function to the
critical point (−1, 0), a small Ms-value indicates that the control
system has a large stability margin. We want IAE, TV and Ms all to
be small, but for a well tuned controller there is a trade-off, which
means that a reduction in IAE implies an increase in TV and Ms (and
vice versa).

Fig. 9. Responses for PI-control of simple first-order process g = e−s/(5s + 1) (E17).
Setpoint change at t = 0; load disturbance of magnitude 1 at t = 40.

The results for the 33 example processes, which include the 15
examples (E1–E15) from Skogestad [6] and some additional exam-
ples with oscillating and unstable plant dynamics, are listed in
Table 1. For first-order processes (E14, E15, E16), a small delay must
be added (E14a, E15a, E16a) to be able to get the closed-loop over-
shoot needed to apply the proposed method. All results are without
detuning (F = 1). The complete simulation results for all cases are
available in a technical report [11].

As expected, when the method is tested on first-order plus
delay processes, similar to those used to develop the method,
the responses are similar to the SIMC-responses, independent of
the value of the overshoot. Typical cases are E17 (first-order with
delay), E21 (pure time delay) and E24 (integrating with delay); see
Figs. 9–11. For models that are not first-order plus delay (typical
cases are E1, E5 and E8; see Figs. 12–14), the agreement with the
SIMC-method is best for the intermediate overshoot (around 0.3).
A small overshoot (around 0.1) typically give “slower” and more
robust PI-settings, whereas a large overshoot (around 0.6) gives
more aggressive PI-settings. In some sense this is good, because it
means that a more “careful” step response results in more “care-
ful” tunings. Also note that the user always has the option to use the

Fig. 10. Responses for PI-control of pure time delay process g = e−s (E21), setpoint
change at t = 0; load disturbance of magnitude 1 at t = 15.
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Fig. 11. Responses for PI-control of integrating process g = e−s/s (E24), setpoint
change at t = 0; load disturbance of magnitude 1 at t = 50.

Fig. 12. Responses for PI-control of second-order process g = 1/(s + 1)(0.2s + 1) (E1),
setpoint change at t = 0; load disturbance of magnitude 1 at t = 5.

Fig. 13. Responses for PI-control of high-order process g = 1/(s + 1)
(0.2s + 1)(0.04s + 1)(0.008s + 1) (E5), setpoint change at t = 0; load disturbance
of magnitude 1 at t = 10.
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Fig. 14. Responses for PI-control of third-order integrating process g = 1/s(s + 1)2

(E8), setpoint change at t = 0; load disturbance of magnitude 1 at t = 100.

Fig. 15. Responses for PI-control of first-order unstable process g = e−s/(5s − 1) (E33),
setpoint change at t = 0; load disturbance of magnitude 1 at t = 40.

detuning factor F to correct the final tunings. Note that the proposed
method works well on some unstable (E33; Fig. 15) and oscillating
processes (E30, E31, E32) where there are no PI-rule for the SIMC
method.

The effect of using the detuning factor F is illustrated in Fig. 16
using a simple second-order process (case E1). As expected, using
F > 1 results in more robust controller settings.

7. Derivative action (PID control)

The tuning rules derived in this paper are for PI control (3). In
theory, one may better robustness and/or better output perfor-
mance by adding derivative action (PID control). There are many
PID implementations, and we here consider the “classical” PID con-
troller on cascade form,

cPID(s) = Kc

(
1 + 1

�Is

)
1 + �Ds

1+(�D/N)s (29)

Here, �D is the derivative time and the filter parameter N is typically
around 10 [3]. Because the addition of derivative action comes at

Fig. 16. Effect of detuning factor: responses for PI-control of second-order
g = 1/(s + 1)(0.2s + 1) (E1), setpoint change at t = 0; load disturbance of magnitude
1 at t = 5.

the expense of a more complex controller, more sensitivity to mea-
surement noise and more input usage, Skogestad [6] recommends
that derivative action (PID control) is only justified for dominant
second-order process,

g(s) = e−�s

(�1s + 1) (�2s + 1)
(30)

where “dominant” means that the second-order time constant (�2)
is larger than the effective time delay �. Of the 33 processes in
Table 1, this would apply to cases E1, E2, E3, E5, E6, E8, E10 and
E27. One particular example is the double integrating process (E27,
�2 = ∞), which actually can be stabilized only if we add derivative
action to the PI controller.

Is it possible to use derivative action with the closed-loop tun-
ing approach in this paper? Yes, it is, but one cannot just “add on”
derivative action to the PI-controller, because also the controller
gain and integral time needs to be changed to achieve the benefit
of adding derivative action.

We suggest adding the derivative action beforehand by using a
PD controller during setpoint experiment,

cPD(s) = Kc0
1+�Ds

1+(�D/N)s (31)

The idea is to include the derivative term during the experiment
and then include the same term in the final controller. It is like
designing a PI controller for a modified process. Two disadvantages
with this approach are:

1. We must make sure that the setpoint is differentiated. The
“problem” is that in order to avoid the “derivative kick”, many
industrial PID implementations do not differentiate the set-
point (see Fig. 17), and this will give a too small overshoot in
the PD setpoint experiment. There are two fixes to this prob-
lem: (a) temporarily use a PD-implementation with setpoint
differentiation. (b) Alternatively, and this is better because it
gives less input usage, record the “differentiated” output signal
yD(s) = y(s)(1 + �Ds)/(1 + (�D/N)s) (see Fig. 17) during the experi-
ment.

2. We must decide on a value for the derivative time constant (�D)
before the setpoint experiment.

What value should one select for �D?
With the cascade PID form in (29), Skogestad [6] recommends

selecting �D equal to the dominant second-order time constant, i.e.,
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Fig. 17. Cascade implementation of PID controller without differentiation of set-
point.

�D = �2. However, this requires that we already have some process
knowledge.

In the absence of process knowledge, a reasonable lower starting
value is

�2 = 0.27 tp (32)

where tp is the peak time from an initial P-only setpoint experi-
ment. The starting value is derived as follows: if the true model was
second-order with a delay �0, then from the half rule [6] the effec-
tive delay for a first-order with delay model is � = �0 + �2/2, which
gives �2 = 2(� − �0). We do not know the original time delay �0, but
it should be smaller than �2 to have a benefit of derivative action.
To get a lower value for �2 (and be conservative), let us assume
�0 = �2, which gives �2 = 0.67�. This value works well also when the
process is not dominant second order, because it is only slightly
higher than the derivative time 0.5� recommended to counteract
the time delay in a first-order process (e.g., [5]). Next, from Fig. 8
the effective time delay � is between 0.3tp and 0.5tp, so let us use
� = 0.4tp, and we finally obtain �2 = 0.67� = 0.27tp.

When performing the setpoint experiment with the PD-
controller, one should monitor the value of tp (with approximately
the same overshoot) and make sure that this it is significantly
reduced compared to the P-only setpoint experiment. If this is not
the case then the expected benefits of adding derivative action are
small.

7.1. Proposed approach for PID control

The procedure for the setpoint experiment is unchanged, expect
that we use a PD-controller.

Step 1(D). Use a PD-controller (31) and select a value for the deriva-
tive time �D. A good value is �D = �2 (second time constant), but if
this is not known then a lower starting value is �D = 0.27tp, where
tp is the time to reach the peak using a P-only controller. Make
sure that (a) the PD controller is set up such that the setpoint is
differentiated or (b) record the differentiated output yD.
Step 2. Adjust Kc0 to get a setpoint overshoot between 10% and 60%
(this step is unchanged, except that we use a PD-controller).
Step 3. Collect data for the setpoint experiment (unchanged).

Fig. 18. Setpoint experiment with P and PD controller for 3rd order integrating
process (E8). PD controller has filter parameter N = 10 and setpoint is differentiated.

The recommended formulas for Kc and �I are also unchanged,
but note that this assumes that we use the “cascade” PID controller
in (29). To use the common “ideal” PID controller

c(s) = K ′
c

(
1 + 1

� ′
Is

+ � ′
Ds

1 + (� ′
D/N)s

)
(33)

we must modify the cascade settings by a factor c = 1 + �D/�I by
using the following translation formulas (e.g., [6]) (the effect of the
filter parameter N has here been neglected, i.e., N = ∞ is assumed):

K ′
c = cKc, � ′

I = c�I, � ′
D = �D

c
(34)

7.2. Example PID control

We consider a third-order integrating process, g(s) = 1/s(s + 1)2

(case E8). From the “half rule” of Skogestad [6] this can be approx-
imated by a second-order integrating process g(s) = e−�s/s (�2s + 1)
with � = 0.5 and �2 = 1.5. Since �2 is three times larger than the
effective time delay �, this is a “dominant” second-order pro-
cess, so we expect significant benefits from adding derivative
action.

We now follow the procedure for the setpoint experiment.

Step 1(D). Switch the controller to PD mode. With P-only control
we found tp = 6.19 for an overshoot of 30.7% (Tables 1 and 2) and
based on this, we select �D = 0.27·6.19 = 1.67, which is close to the
value �D = 1.5 recommended by Skogestad [6] for this process. The
filter parameter for the PD-controller (31) is set at N = 10.
Step 2. Setpoint experiments with overshoots of about 30% are
shown in Fig. 18 for the P-controller (Kc0 = 0.58, �D = 0) and PD-
controller (Kc0 = 1.54, �D = 1.67). The time to reach the first peak (tp)

Table 2
P/PD setpoint experiment and resulting PI/PID controller for process g(s) = 1/s(s + 1)2 (E8).

Case P/PD setpoint experiment Resulting PI/PID controller

Kc0 �D Overshoot tp b Kc �I Ms Setpoint Load disturbance

IAE (y) TV (u) Overshoot (y) IAE (y) TV (u) Peak value (y)

E8 0.58 0 0.308 6.2 1.0 0.35715.10 1.75 6.21 0.90 0.35 42.33 1.72 2.92
1.54 1.67 (N = 10) 0.309a 2.25 1.0 0.945 5.49 1.49 2.68 1.51 0.081b 5.81 1.79 0.81

a The PD controller is with D-action on the setpoint.
b The PID controller is without D-action on the setpoint.
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Fig. 19. Response with PI- and PID-controller for 3rd order integrating process (E8).
PID controller has filter parameter N = 10 and setpoint is not differentiated.

is reduced from 6.2 (P-control) to 2.3 (PD-control) which indicates
a large benefit of adding derivative action.
Step 3. The results of the setpoint experiment are summarized in
Table 2. The resulting cascade PID settings with F = 1 are Kc = 0.945,
�I = 5.49 min and �D = 1.67 min. If one uses the ideal form (33), then
one must translate the values using (34) with c = 1.30.

In the closed-loop simulations in Fig. 19, we use the PID structure
in Fig. 17 with N = 10 and no differentiation of the setpoint. Compar-
ing the closed-loop responses for PI and PID-control in Fig. 19, we
note that there is, as expected, a large benefit of adding derivative
action for this process. This holds both for the setpoint and distur-
bance responses. The system is also more robust (sensitivity peak
Ms is reduced from 1.75 to 1.49), but the input usage is somewhat
larger and the sensitivity to measurement noise (not shown in the
simulations) is larger.

8. Industrial verification

The proposed tuning method for PI control has been verified
industrially at the Statoil refinery at Mongstad, Norway. They report
[16] that the algorithm works well in most cases and they see it as
a great advantage to be able to do the tuning in closed loop. The
detuning factor was set to F = 1 in most cases. They have previously
used the SIMC method [6] based on an open-loop step test, but this
took longer time than the closed-loop test.

Results for the pressure control loop for the crude prefractiona-
tor are shown in Fig. 20 (setpoint experiment) and Fig. 21 (resulting
closed-loop PI response). The output y (CV) is the pressure [barg]
and the input u (MV) is the valve position [%]. The responses are a bit
jerky because of infrequent updates of the pressure measurements.

From the setpoint experiment with Kc0 = 35 we obtain the fol-
lowing data (Fig. 20):

tp = 541–516 s = 25 s = 0.417 min
y0 = 1.805 barg
ys = 1.700 barg
yp = 1.671 barg
yu = 1.741 barg

and we obtain the output changes

�ys = |ys − y0| = 0.105 barg
�yp = |yp − y0| = 0.134 barg
�yu = |yu − y0| = 0.064 barg

Fig. 20. Industrial verification. Setpoint experiment.

To save time, the experiment was not run to steady-state, but
from (10) the predicted steady-state change is

�y∞ = 0.45 (�yp + �yu) = 0.45(0.134 + 0.064) = 0.089 barg

From this we get

overshoot = �yp − �y∞
�y∞

= 0.506

steady-state ratio, b = �y∞
�ys

= 0.847

With this overshoot, we find from (15) the gain ratio A = 0.48,
and with a selected detuning factor F = 1.2, the final settings are
from (27) and (28):

Kc = Kc0A/F = 14.0

�I = min(0.95, 1.22) = 0.95 min

The final closed-loop response with PI control is shown in Fig. 21.
The response is good, except for some apparent jerky behavior
caused by the infrequent the measurement update.

Fig. 21. Industrial verification. Final closed-loop PI response.
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9. Discussion: comparison with related approaches

An obvious alternative to the proposed method is a two-step
procedure where one first identifies an open-loop model g (with
parameters k, � and �) from the closed-loop setpoint experiment,
and then obtains the PI or PID controller using standard tuning
rules (e.g., the SIMC rules [6]). In fact, from (18), we can obtain
the following estimate of the process gain k,

k = K−1
c0

∣∣∣ b

(1 − b)

∣∣∣ (35)

Similarly, from (21), we have the following estimate of the dom-
inant time constant �,

� = 0.86 A(overshoot)
∣∣∣ b

(1 − b)

∣∣∣ tp (36)

where A(overshoot) is given in (16). Finally, for the effective time
delay �, we have the following estimate from Case (2):

� = 0.305tp (37)

One may use (35)–(37) also with other tuning rules, but note
these estimates, and in particular A(overshoot) from (16), were
derived with the goal of matching the SIMC PI settings. Never-
theless, the estimates (35)–(37) may be useful, for example, for
gaining insight or when comparing or combining with informa-
tion obtained from an open-loop experiment. However, if the goal
is to use the setpoint experiment to obtain PI settings, then we rec-
ommend the one-step procedure with PI-settings obtained from
(27) and (28), rather than the two-step procedure where one first
obtains the open-loop model g.

A two-step procedure, based on a closed-loop setpoint exper-
iment with a P-controller, was originally proposed by Yuwana
and Seborg [10]. They identified a first-order with delay model by
matching the closed-loop setpoint response with a standard oscil-
lating second-order step response that results when the time delay
is approximated by a first-order Pade approximation. They identi-
fied from the setpoint response the first overshoot, first undershoot
and second overshoot, but the method may be modified to not use
the second overshoot, as in the present paper. Yuwana and Seborg
[10] then used the Ziegler–Nichols [7] tuning rules, which as men-
tioned in the introduction may give rather aggressive setting. We
tried using the SIMC rules instead. This improves the performance,
but nevertheless we found (see [11] for details) that the two-step
approach of Yuwana and Seborg [10] gives results slightly inferior
to the one-step approach proposed in this paper.

Veronesi and Visioli [13] recently published another two-step
approach, where the idea is to assess and possibly retune an existing
PI controller. From a closed-loop setpoint or disturbance response
using the existing PI controller, they identify a first-order with delay
model and time constant and use this to assess the closed-loop
performance. If the performance is worse that should be expected,
the controller is retuned, for example, using the SIMC method. So
far the method has only been developed for integrating processes.

In another recent paper, Seki and Shigemasa [14] propose
to retune the controller based comparing closed-loop responses
obtained with two different controller settings.

10. Conclusion

A simple and new approach for PI controller tuning has been
developed. It is based on a single closed-loop setpoint step experi-
ment using a P-controller with gain Kc0. The PI-controller settings
are then obtained directly from following three data from the set-
point experiment:

• Overshoot = (�yp − �y∞)/�y∞
• Time to reach overshoot (first peak), tp
• Relative steady state output change, b = �y∞/�ys.

If one does not want to wait for the system to reach steady state,
one can use the estimate �y∞ = 0.45(�yp + �yu) where �yu is the
output change at the first undershoot.

The proposed PI tuning formulas for the proposed “Setpoint
Overshoot Method” method are:

Kc = Kc0A

F

�I = min
(

0.86 A
∣∣∣ b

(1 − b)

∣∣∣ tp, 2.44tpF
)

where A = [1.152(overshoot)2 − 1.607(overshoot) + 1.0].
The factor F is a detuning parameter. A good trade-off between

robustness and speed of response is achieved with F = 1, but one
may use F > 1 to get a smoother response with more robustness
and less input usage.

The Setpoint Overshoot Method works well for a wide variety
of the processes typical for process control, including the standard
first-order plus delay processes as well as integrating, high-order,
inverse response, unstable and oscillating process. The method
gives a PI controller, but for dominant second-order processes
where derivative action may give large benefits, one can use a
PD-controller in the setpoint experiment, to end up with a PID
controller.

Compared to the classical Ziegler–Nichols closed-loop method
[7], including its relay tuning variants [3], the proposed overshoot
method is faster and simpler to use and also gives better settings
in most cases. The new overshoot method is therefore well suited
for use in the process industries as has already been verified.
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Fig. 22. Relationship between �y∞ and (�yp + �yu)/2 for 15 first-order with delay
process with 5 different overshoots.
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Appendix A.

The proposed method requires one to obtain the steady-state
output change (�y∞) for the setpoint response, but it may take
some time for the response to settle to the new steady state. To
avoid this, we propose to estimate �y∞ from only �yp (first peak)
and �yu (undershoot). Yuwana and Seborg (1982) derived an esti-
mate of �y∞ that makes use of also the second peak, but achieve
sufficient accuracy without this information. Since �y∞ must lie
between �yp and �yu, a first try is to consider the average. In
Fig. 22 we plot �y∞ as a function of the average [(�yp + �yu)/2]
for 15 first-order with delay process using 5 different overshoot

Table 3
%Error in steady-state output �y∞ when using �y∞ = 0.45(�yp + �yu).

Case %Error in �y∞ (b value)

Overshoot ≈0.30 Overshoot ≈0.60

E1 −0.3 1.2
E2 −0.6 1.0
E3 −2.9 −2.5
E4 −1.1 −1.3
E5 −0.8 0.04
E6 −1.0 −1.2
E7 0.9 6.7
E8 −0.8 −1.0
E9 −0.1 1.2
E10 −0.5 0.9
E11 0.2 1.0
E12 −8.0 −7.3
E13 −13.9 −13.0
E14a 1.1 9.0
E15a 2.1 10.9
E16a 0.4 4.3
E17 −0.4 1.8
E18 0.4 2.8
E19 −0.4 1.8
E20 −0.6 0.8
E21 −0.6 0.8
E22 −0.3 1.7
E23 −18.2 −18.9
E24 −0.3 1.7
E25 −0.9 −1.1
E26 −0.6 1.5
E28 0.9 6.7
E29 0.03 2.9
E30 −6.2 −8.9
E31 −11.4 −11.2
E32 0.3 4.2
E33 −0.4 1.5

(0.2, 0.3, 0.4, 0.5, 0.6). Somewhat surprisingly, we find for the 75
cases that there is almost a linear relationship with a coefficient of
0.895 corresponding to

�y∞ = 0.895(�yp + �yu)
2

≈ 0.45(�yp + �yu)

as given in Eq. (10). In Table 3, the correlation has been further
tested on the 33 processes from Table 1. For an overshoot of about
30% we find that the deviation is less than 1% in most cases; the
main exceptions are for processes with overshoot in the open-loop
response (positive zeros; E12, E13, E24) and oscillations (E30, E31)
where it underpredicts the b-value by as much as to −18% (E23).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jprocont.2010.08.003.
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